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Abstract

We describe a macroscopic mathematical framework and Monte Carlo algorithm for find- ing structures that best satisfy
energy supply/demand constraints in a network. The method uses a Markov ‘routing matrix” for directing flows in the
algorithm’s “inner” loop while the elements of this matrix are periodically updated in an “outer’ loop using Monte Carlo
sam- pling. A novel feature of the method is the way in which it ‘evolves' network structures based upon minimizing an
objective function we call the ‘network roughness’ function. We illustrate the efficacy of the method on an example
problem.
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1. Introduction and literature review

We describe research investigating a novel mathematical framework describing a macro- scopic
network flow model in conjunction with a hybrid Monte Carlo-Markov matrix opti- mization
algorithm for its solution. The overall aim of the optimization is to find network structures that best
satisfy supply/demand constraints throughout the system. Investigating a novel mathematical
framework describing a macroscopic network flow model in conjunc- tion with a hybrid Monte Carlo-
Markov matrix optimization algorithm for its solution. The overall aim of the optimization is to find
network structures that best satisfy supply/demand ~ constraints throughout the system. The
computational method is two-tiered. In the inside loop the probability elements of a Markov ‘routing
matrix’ are found which are used to direct network flows. Their values are periodically updated in an
*outer’ loop using Monte Carlo sampling in a manner reminiscent of simulated annealing. The overall
aim of the method is to find network structures that best satisfy supply/demand constraints throughout
the system.

Complex network behavior is important to many physical and chemical systems when
interactions can be represented by network (graph) structures. These structures are mathe- matically
represented by components (nodes) in the system that is linked together by edges. Examples of
applications of these concepts include computer networks [1], biological systems [2-8], power supply
grids [9-17] and financial risk management networks [18, 19]. The be- havior in these systems
depends upon the pattern of interconnections between components  in the network. Knowledge of
this connectivity is key to answering many practical questions e.g., how do we route the commodity
of interest (e.g. information, energy, traffic etc.) so as to avoid bottlenecks? Is a highly connected
network preferable to a sparsely connected system? Where new capacity should be incorporated? In
power supply applications, for example,the net work architecture (i.e scale-free or homogeneous [20])
will have a significant effect on system reliability where intermittent equipment failure, demand
overload, and flow congestion have to be dealt with to ensure proper system functioning [21], [20],
[22].

Algorithms for optimizing flow models in networked systems fall into three main classes:
Markov matrix-based [23]. linear/mixed integer linear programming methods (ILP) [24],[25] or
conductance model analogues, i.e. Kirchoff circuits [26]. These approaches either solve fixed
structure networks (in the Kirchoff case) or involve linear models. Our approach by way of contrast
allows for both network structure evolution (the so-called rewiring problem [27], [28])as well as non-
linear objective functions. To our best knowledge this has not been done thus the approach described
represents a significant new direction.
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2. The energy distribution network model

We consider an undirected graph G = (V (G), E(G)) with vertex set V' (G) and edge set E(G). The edge
set £(G) of the network can be represented by an adjacency matrix A [29] and we will assume that
any two edges may be connected with no-self-loops. The resultant flow model has the following
canonical form [30]:

TR ADBS.
P= TR Q R
ABS. 0o 1

Here Iisa K_by_ K identity matrix, 0 isa K by N_zero matrix,/R is a nonzero N by K
absorbing state matrix, and Q is the N by N transition probability (Markov) matrix which directs
flows along the network from node i to node j according to the prob- ability associated with the
element gj;. For an absorbing network where there is energy consumption at each node the sum of the
matrix row elements gjare less than one along each row [30]. If the absorption probability at node i is
qai thenl —=ZiNg;= qu

If the required total power availability at each point in the network is denoted by the  row
vector u and the external power/backup availability at each node is denoted by the row vector s then
(assuming no losses) we can write the following energy flow conservation equation relating these
quantities:

u=uQ+s (2)

We observe that the row vector u has individual elements u;representing the power flow into
“each node i. Some of this power is transmitted elsewhere in the network while a fraction is consumed
locally.
If we define a matrix U,~,which has the elements of vector « arranged along its main
diagonals follows,
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we can define a matrix D that represents the power flow between nodes.
Each element djof D is defined as follows,
di=ui X gy “4)

whereg;is the ij element of Q.
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If we define the demand goal at each node as athen the ‘residual’ energy at each node is
given by /= ¢; — a;which can be eitherZpositive oXr negative. If the system is capable of

Satisfying its energy needs internally

N

cp = (1— E iy ) Ui

4

that some points are under-supplied and vice-versa. Indeed the network design problem is to
mitigate these potential imbalances.

2.1. Network structure evolution

We now introduce the concept of the ‘network flow roughness’ function w(iV ) inspired by the use
of an analogous property in systems involving stochastic deposition processes [31]. In that
particular context it represents the overall uniformity of a thin-film surface being randomly
deposited on a substrate. Here it is used, however, as a measure of the overall departure of the
network’s residual energy ‘surface’ from to what is manifestly a stochastic flow re-distribution
process. We define the network roughness function wi(/V') at the K'"iteration as follows:

N
wi(N) = L/NY &

The function wx(N ) is a quantitative measure of the overall satisfaction of energy demand
throughout the system. We use it to decide whether or not to accept each flow redistribution step,
and simultaneously re-wire the network, using Monte Carlo sampling, in a manner analogous to
the Metropolis method [32-34].
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3. Results and discussion

We ran the algorithm with the network structure shown in Figure 1 which was generated as a
random graph with energy supply and demand values at each point generated from a uniform
random distribution.

The improved supply-demand equilib- rium throughout the network is demon- strated in
Figure 2 with the decrease in the network roughness function, which is a quantitative measure of
the extent of supply- demand satisfaction, quite evident. These results were done at various values
of the annealing factor f which controls the rate at which the algorithm progresses towards the
optimal structure. These results which have been observed in other cases [34] show that it (the
annealing factor) appears to not have a significant influence on the calculations. However, this
may be a problem dependent issue which can be investigated numerically by repetitive running of
the program
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Figure 1: Initial Network Structure Figure 2: Network Roughness Function with '
Structure Evolution
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Figure 3: Final Network Structure

The final network structure is shown in Figure 3 with the added links shown in red. This
brief numerical example illustrates the capability of the algorithm in evolving novel network
structures that better satisfy supply-demand equilibrium throughout the system. In a forthcoming
publication [34] we provide further details of the method and more extensive testing of it. The
final net- work structure is shown in Figure 3 with the added links shown in red. This brief numer-
ical example illustrates the capability of the algorithm in evolving novel network structures that
better satisfy supply-demand equilib- rium throughout the system. In a forthcoming publication
[34] we provide further details of the method and more extensive testing of it
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