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Introduction: Issue of Low-Grade 
Waste Heat

• Problem: low-grade waste heat emitted 
to the environment
• ~66% waste heat is low-grade (< 

200C)
• difficult to utilize effectively 

• Solution: supercritical CO2 Carnot 
engines
• Supercritical CO2 working fluid has 

a critical temperature of 31.1C 
• “Replace” large cooler duties in 

process with the Carnot engines
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Low-Grade Waste Heat
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Figure 1: Interreg Central Europe. Low-grade waste head 

utilization in the European Union, June 2017.



Methods: Supercritical CO2 Carnot 
Engine

• Lower isotherm at critical 
temperature of 31.1C 

• Upper isotherm at low-
grade waste heat 
temperature

• Straddle critical volume 
• Maximize area on P-V 

plot (available work)
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Figure 2: Carnot Cycle on P-V Plot



Methods: Excel Program
Engine Sizing Given Process Inputs

• Analytically calculate work of 
the Carnot cycle using Van der 
Waals equations of state 
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• Reversible adiabatic and 
isothermal steps assumed

• <1% difference to numerical
solution

Inputs
• Compression 

ratio
• Isotherm 

temperatures
• Engine 

size/frequency
• Starting volume
• Cooler size

Outputs
• Work available
• Pressure
• Frequency/engine 

size required
• Remaining cooler 

duty
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Figure 3: Excel Program Method



Methods: Excel Program
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Figure 4: Developed Excel Program

Compression Ratio 2
Critical Volume (L/mol) 0.094
V1 (L/mol) 0.0705
Upper Isotherm T (K) 343
Lower Isotherm T (K) 304.18
Power from Carnot (kW) 135.39

Engine Size (L) 0.25

QH (J/mol) 2328.60491
Work (J/mol) 263.54648
Maximum Pressure (Bar) 295.200354
Frequency (Hz) 289.740011
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Methods: Example Process 
Analysis

• Toluene disproportion process (J.T. Banchero B.D. Smith (Ed.) 
R.J. Hengstebeck. Disproportionation of toluene, 1969.)

• Decrease the duty of the major cooler (208.69 kW) of the 
process 
• Stream with a heat capacity of 2.44 kW/C at 125.53C

• For efficiency purposes, the Carnot cycle would take in a hot 
stream no cooler than 60C

• In practice, any process could be analyzed in a similar manner 
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Use a Carnot 
engine to offset 

some of the cooler 
duty
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Figure 5: Toluene Process- Streams Diagram

~209 kW duty!



Results: 
Decreasing 208.69 

kW Cooler 
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Figure 6: 60C Lower Isotherm Figure 7: 70C Lower Isotherm

Figure 8: 100C Lower Isotherm



Results: Decreasing 208.69 kW Cooler 

Upper 
Isotherm 
Temp (C)

Work 
(J/mol)

Power
(kW/mol)

Max 
Pressure 

(bar)

Engine Size 
(L)

60 224.14 11.21 266 2.01
70 264.00 13.20 296 1.45
100 270.56 13.53 386 0.644

• Compression ratio of 2 and a frequency of 50 Hz:

• By increasing the temperature of the input stream there is:
• roughly a 21% increase in available power
• significant increase in pressure required to go from 70C to 100C (30 bar)
• small increase in available work (2%)
• Carnot efficiency increases from 9%, to 11%, to 18%
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Results: Decreasing 208.69 kW 
Cooler 

• Cooling the stream from 125.53C to 70C releases 135.49 kW
• P = Heat Capacity *  Temperature Change 
• P = (2.44 kW/C) * (125.53-70C) = 135.49 kW

• Cooler still required to decrease the temperature from 70C to the desired 
final value of 40C 
• P = (2.44 kW/C) * (70-40C) = 73.2 kW

Generate 135.49 kW, Reduce Cooler Duty by 65%
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Results: Calculating Required 
Frequency Given Engine Size

Engine Size 
(L)

Hz (s-1)

0.25 289.7
0.5 144.9
1 72.4
1.5 48.3
2 36.2
4 18.1
6 12.05
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Figure 9: Engine Frequency and Size



Results: Energy Savings

Electricity 
Source

Price ($/MWh) Cost Savings 
per Year ($)

USA National 
Average

72.4 70,628

Conventional 
Coal

98.8 96,285

Biomass 95.3 92,968
Onshore Wind 48 48,825
Solar Thermal 126.6 123,502

§ 1.45 L engine that 
provides 135.49 kW, 
24 hours a day for 
300 days/year 
amounts to 975,528 
kWh/year

U.S. Energy Information Administration. Levelized Cost and Avoided
Cost of New Generation Resources in the Annual Energy Outlook 2018,

March 2018.
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Results: 
Power 

Potential

Average household 
power meters ~5W

15.84 kW/mol

660 kW
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Conclusion

§ Through the use of supercritical CO2 Carnot cycles, the ability 
to recover and utilize a significant portion of the waste is 
realized

§ The developed Excel program includes a simple calculation to 
determine the engine size and/or frequency required to utilize 
this waste heat

§ Decrease net external energy requirement and environmental 
emissions
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Q is supplied from the process 
streams 
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