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What is Glass Transition?

Philip W. Anderson, Nobel Laureate in condensed matter 
physics, 1977.  These statements still hold true today. 

Solidification of a liquid upon cooling through 
its Tg without altering morphology
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Liquid Crystals Identified with Optical Textures

Glassy Liquid Crystals, GLCs

• Crystals: positional order in a three-dimensional lattice

• Liquid Crystals: orientational order, positional order in 1- or 2-D 

• GLCs: liquid crystals frozen into solid state without crystallization, a 
three-way oxymoron

• All liquids expected to form glass at a sufficiently rapid cooling rate

• Most organics, e.g. liquid crystals, will crystallize on cooling from melt

• GLCs as an approach to self-organized solid films across a large area

I. Dierking, Textures of Liquid Crystals, Wiley-VCH Verlag: Weinheim, 2003.

Cholesteric ColumnarNematic Smectic
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Unique Features of Glassy Liquid Crystals

• Glassy Liquid Crystals (GLCs): three-way oxymoron

• Glass formation over crystallization of liquid crystals is an exception 
rather than a rule

• The nature of glass and glass transition has remained one of the 
most challenging problems in solid-state physics

• No theory or computation has been demonstrated for molecular 
design of organic glasses, especially GLCs 

• Our modular approach has produced multifunctional GLCs with 
record high glass transition and clearing temperatures while 
resisting crystallization for over two decades and counting

• Monodomain solid films can be fabricated via solvent-vapor 
annealing at room temperature 
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DSC Thermograms of Single-Component Liquid Crystals
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First-Generation Core-and-Pendant Glassy Liquid Crystals
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C&E News, 17 January 1994: Cover Story on Advanced Energetic Materials

Advanced explosives serving as the cores for GLCs
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High-Temperature Nematic GLCs
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Morphological Stability of Liquid-Crystal and Amorphous Glasses 

Quantified by Maximum Crystallization Velocity, MCV

Tc,max/Tm=0.92 ± 0.03; Tg/Tm≈2/3Tc,max/Tm=0.93 ± 0.01 CV=0 at Tm for all 

Shi and Chen, Liq. Cryst., 1995, 12, 785-790. Naito and Miura, J. Phys. Chem. 1993, 97, 6240-6248.

(II) and (III) at 6 nm/s, comparable to 

slowly crystallizing isotactic polystyrene
Top to bottom: 6.3 x 108 to 1.6 x 104 nm/s

( II ) ( III )

Thermally processed GLC films have remained 

intact left at 25 oC for 22 years and counting
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Linear and Circular Polarization of Light 

Wire-grid linear polarizer allows incident

waves with electric fields perpendicular to 

wires to pass through without attenuation.

The vertical components of waves with 

other orientations will be allowed as well.

A linear polarizer and a quarter wave plate 

combine to form a circular polarizer, converting  

an unpolarized incident to circularly polarized 

light with handedness  determined by the nature of 

quarter wave plate.
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Selective Wavelength Reflection by a Left-Handed Cholesteric Film

One Dimensional Photonic Band-Gap

• Cholesteric film as a helical stack of quasinematic layers

• Three parameters governing optical properties: helical sense, pitch length, p, and 

average refractive index, navg; selective reflection wavelength, lR=p navg

• Unpolarized light with l=lR on a left-handed film: left-handed circularly polarized 

component reflected, right-handed transmitted

• Complete reflection of unpolarized light with l=lR by a stack of left- and right-

handed films with otherwise identical properties

• Incident light with llR and any polarization state, transmitted through left- or 

right-handed film
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Pitch Length
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Examples of Reflective Coloration in Nature
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Chem. Mater. 1999, 11, 1590.

13



( 21 ) G 63oC N 183oC I ( 22-S or R ) G 75oC I
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Deterministic Synthesis of Cholesteric GLCs – II and III

Chem. Mater. 2003, 15, 2534.
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Deterministic Synthesis of Cholesteric GLCs - IV

Chem. Mater. 2008, 20, 5859.
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Cholesteric Glassy Liquid Crystals

Enantiomeric chiral-nematic GLCs yield opposite handedness and 

selective reflection in UV-region
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Quality Ch-GLC Film: Fabricated, 1995; Photo, 2020
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Highly Circularly Polarized Fluorescence from 

a Chiral-Nematic GLC Film Doped with a Laser Dye

ge= 2(IL– IR)/(IL+IR),  |ge| ≤ 2

Nature 1999, 397, 506.
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Circular Polarizers and Notch Filters with Chiral-Nematic GLCs
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• Nearly 100% circular polarization

• Notch filter with a contrast ratio > 5000:1

• Spectral tunability by mixing enantiomeric 
chiral-nematic GLCs at varying ratios

Adv. Mater. 2000, 12, 1283.
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Broadband Reflectors via Racemization of a Chiral Dopant in a 

Chiral-Nematic GLC Host with 140 mW/cm2 at 334 nm at 100 oC

Adv. Mater. 1999, 11, 1183.

Molar ratio at 1.00:4.36:0.55

Tg= 65, Tc=156 oC; 22 mm film
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Photopolymerized Cholesteric Film with Pitch Gradient 

Broer et al., Nature 1995, 378, 467.
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Monomer 1 : Monomer 2 = 0.6 : 0.4

15-mm film

Broer et al., Nature 1995, 378, 467.
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Scalable Synthesis of Cholestteric GLCs:

Ind. Eng. Chem. Res. 2018, 57, 4470−4473

G 73oC Ch 295oC I



Motivation for Monodisperse p-Conjugated Oligomers

• Conjugated polymers widely explored for photonics & electronics

– Distributed chain length and composition, kinks, bends

– Purification, processing, alignment can be quite challenging

• Monodisperse conjugated oligomers

– Structural uniformity, solubility, purity

– Ease of processing and characterization: understanding of structure-
property relationships, conducive to practical applications

– Glass transition? Crystallization? Liquid crystallinity? Synthesis?

• “Glass transition is currently regarded as the deepest unsolved 
problem in solid state theory.” Freed, Acct. Chem. Research, 2011, 44, 
194-203.

– Referring to glass formation in isotropic polymer fluids, let alone 
ordered fluids such as liquid crystals, be they small molecules or 
polymers
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Hairy-Rod Approach to GLC Conjugated Oligomers

F(MB)5

F(Pr)5F(MB)2

F(MB)10F(EH)2

• Rigid rods: high melting point to obscure inherent liquid crystallinity

• Aliphatic pendants: meltability and solubility, film preparation by spin-
casting from solution
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Chem. Mater. 2003 15, 542. Adv. Mater. 2003, 15, 1176.
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Film Morphology and Polarized OLED Device Structure

Glassy-Amorphous

Polydomain Glassy-Nematic

Monodomain Glassy-Nematic
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Polarized Absorption and Emission of Monodomain Films 

on Rubbed PEDOT/PSS 
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Linearly Polarized Phosphorescent OLEDs

Organic Electronics 2011, 12, 

15-21; Ibid. 2014, 15, 311-321.  

Grazing incident X-Ray scattering

Confocal laser scattering microscopy

Host:Guest = 75:25 by wt.Host

Guest
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cyclophane
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Chem. Mater. 2005, 17, 164.
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Monodisperse Oligofluorenes with a Varying Degree of Pendant Chirality

C-702

C-612

C-522

C-432
JACS, 2002, 124, 8338; 

Ibid. 2003, 125, 14032.

36



Right-Handed Helical Stacking of Chiral Oligofluorenes

R2 R3

R1R1R1

R3R2R3 R3

R1
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Circularly Polarized Fluorescent OLED Comprising a 70-nm-thick C-522 Film

[turn-on voltage less than 5V; luminance yield, 0.94 cd/A at 20 mA/cm2]
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Light Amplification by Stimulated Emission of Radiation

Lasing Identified by Five Criteria

• Clear evidence of threshold in output energy as a function of pump 

energy with a greater slope above threshold than below

• Spatial and temporal coherence, highly directional, and sharply 

focused

• Significant spectral line narrowing, less than 1 to several nm

• Existence of laser cavity resonance, including mirrorless cavity 

presented by a cholesteric liquid crystal film

• Strong output beam regardless of polarization state
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Apparatus for Characterization of GLC Lasers

Nd:YAG l = 532 nm, t =35 ps, Rep. Rate =10 Hz

Focusing lens

GLC laser

Lens condenser

Reference 

detector Output 

detector

l/2
wave-plate

Linear polarizer

l/4
wave-plate
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OF-r G 104 oC N 304 oC I

F(MB)5-N G 92 oC N 171 oC I F(MB)5-Ch G 91 oC Ch 173 oC I

Host and Guest Molecules for Fabrication of Lasers

Chem. Mater. 2003, 15, 542. J. Am. Chem. Soc. 2002, 124, 8337.

Chem. Mater. 2003, 15, 4352; Adv. Mater. 2004, 16, 783.
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Robust Circularly Polarized Lasers
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Appl. Phys. Lett. 2009, 94, 04111.
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Cholesteric GLC Laser
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• Lasing output energy as a function of pump 

energy

• Monodomain character of the cholesteric GLC 

film verified with a polarizing optical 

micrograph included as the inset

• Green curve: Reflection spectrum 

• Black curve: OF-r fluorescence spectrum 

from nematic GLC F(MB)5-N film 

• Red curve:  lasing peak at 635 nm with a 

pump fluence of 121 mJ/cm2 at 10 Hz

Chemical composition: 1.5 wt% OF-r in F(MB)5-Ch:F(MB)5-N

at a 24.0:76.0 mass ratio
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Cholesteric Fluid LC Laser
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Chemical composition: 2.0 wt% OF-r in CB-15:ZLI-2244-000

at a 35.6:64.4 mass ratio

• Lasing output energy as a function of 

pump energy

• Monodomain character of the fluid CLC 

film verified with a polarizing optical 

micrograph included as the inset.

• Green curve: Reflection spectrum 

• Black curve: OF-r fluorescence spectrum 

from nematic LC ZLI-2244-000 film 

• Red curve:  lasing peak at 658 nm with a 

pump energy of 30 mJ/cm2 at 10 Hz
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Temporal Stability of Lasing Output
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• Heating via optical pumping

• Light-induced pitch dilation

• Laser-induced fluid flow

Disruption of fluid LC structure and 

orientational order of OF-r molecules; 

GLC films remained robust

Appl. Phys. Lett. 2009, 94, 04111.
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Cholesteric GLC Film with a Lateral Pitch Gradient

F(MB)5-Ch:F(MB)5-N 

mixture at 20.0:80.0 mass ratio 

doped with 2.5 wt% OF-r

F(MB)5-Ch:F(MB)5-N 

mixture at 29.0:71.0 mass ratio 

doped with 2.5 wt% OF-r

Thermally activated molecular diffusion 

across interface of 14-mm-thick film at 

220 oC for 62 h before cooling to 25 oC

400 μm

Bands capable of lasing

Grandjean-Cano band Grandjean-Cano line

Appl. Phys. Lett. 2011, 98, 111112
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Stop-Bands and Lasing Spectra in an 

Arbitrary Grandjean-Cano Band
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• Each Grandjean-Cano band is characterized by a constant value of an apparent helical 

pitch length, as evidenced by

o Three reflection spectra in (b) correspond to the three positions identified as X’s in (a)

o Three overlapping lasing peaks
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A Cholesteric GLC Film with Lateral Pitch Gradient Capable of 

Multiple Lasing Wavelengths on Demand within a Single Film
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Slope Efficiency and Lasing Threshold of Spatially Resolved Lasers
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• Maximum slope efficiency at 1.5% superior to the best value of 0.5% reported to date 

for gradient-pitch cholesteric fluid LC lasers 

• Observed thresholds, G, are the lowest of all gradient-pitch cholesteric fluid and glassy 

liquid crystal lasers reported to date

• The slope efficiency profile largely tracks fluorescence spectrum of OF-r

49



Conclusions

• Absent physical understanding of glass transition, core-

pendant and hairy-rod approaches to the highest Tg and Tc

with superior stability against crystallization ever reported

• Conformational multiplicity underpinning versatile 

molecular design concepts, resulting in self-organized solid 

films for robust optoelectronic devises

• Cholesteric and Nematic GLC films demonstrated for 

– Non-absorbing circular polarizers, optical notch filters, reflectors

– Polarized fluorescent and phosphorescent OLEDs

– Anisotropic organic field-Effect transistors

– Robust solid-state lasers with temporally stable output 

– A lateral gradient-pitch GCLC film renders multiple lasing 

wavelengths on demand

Comprehensive book chapter @ http://www.che.rochest/~shc/HP_5.pdf
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