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Enhanced axial and lateral resolution using

stabilized pulses
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Abstract. Ultrasound B-scan imaging systems operate under some well-known resolution limits. To improve
resolution, the concept of stable pulses, having bounded inverse filters, was previously utilized for the lateral
deconvolution. This framework has been extended to the axial direction, enabling a two-dimensional deconvo-
lution. The modeling of the two-way response in the axial direction is discussed, and the deconvolution is per-
formed in the in-phase quadrature data domain. Stable inverse filters are generated and applied for the
deconvolution of the image data from Field Il simulation, a tissue-mimicking phantom, and in vivo imaging
of a carotid artery, where resolution enhancement is observed. Specifically, in simulation results, the resolution
is enhanced by as many as 8.75 times laterally and 20.5 times axially considering the —6-dB width of the auto-
correlation of the envelope images. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.4.2.027001]
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1 Introduction

A variety of mathematical models and techniques have been
applied to improve the resolution of imaging systems. For ultra-
sound imaging, the methods to achieve a better resolution can be
categorized into two types:'> more sophisticated imaging tech-
niques and better postprocessing algorithms. The former tries
to get more information at the imaging stage using approaches
such as spatial/frequency compounding,** pulse coding/
compression,> synthetic aperture imaging,” and harmonic imag-
ing,'®!! while the latter utilizes signal processing techniques to
recover as much information as possible from the precaptured
image data. Theories, such as time reversal and multiple signal
classification'>'* based on the decomposition of the time rever-
sal operator,li16 have been used to resolve the scatterers or
extended targets, e.g., breast microcalcifications.!”'® However,
the most common approach used in the postprocessing stage
is deconvolution.

Under the assumption of linear propagation, weak scattering
(or Born approximation), and ignoring attenuation and multi-
path effects, the interaction of the propagating pulse and the
scatterers or reflectors can be formulated into a convolution
model.'”?* Based on such a model, deconvolution methods
can be applied to recover the ground truth and thus, improve
the image resolution. There are blind and nonblind deconvolu-
tion methods. Blind deconvolution algorithms>*>~** improve the
resolution by jointly estimating the point spread function (PSF)
and the reflection coefficients of tissue. On the other hand, non-
blind deconvolution approaches utilize more prior information
and are thus generally more specific for the imaging system and
have better performance.?>3338

Within the framework of nonblind deconvolution, a specific
approach to superresolution imaging for pulse-echo systems
was previously described for stabilized asymmetric pulses.*®

*Address all correspondence to: Kevin J. Parker, E-mail: kevin.parker@
rochester.edu

Journal of Medical Imaging

027001-1

Our more recent paper treated the lateral deconvolution for sym-
metric stabilized pulses.*® For symmetric double-sided functions
(comprised of both causal and anticausal parts), the region of
convergence for a stable system with an inverse will be an annu-
lus that includes regions both inside and outside of the unit
circle. Therefore, stabilized pulses are defined as realizable
focal patterns and beam patterns that are continuous functions
in the axial and transverse directions, such that when sampled,
they have their Z-transform zeros positioned away from the unit
circle. This corresponds to inverse filters that are stable in that
they are limited in extent with bounded output. Such inverse
filters are bounded and well behaved in the presence of
noise, and proper design of the stabilized pulse, analyzed
with the help of the Z-transform, can be an important part of
a superresolution strategy.

In this paper, we extend the work to two-dimensional (2-D)
(axial and lateral) resolution enhancement where stabilized
beam patterns can be produced and sampled so as to have stable
and useful inverse filters. We also explicitly treat the problem of
scatterers positioned at subinteger shifts among the nominally
sampled locations. Coherent deconvolution introduced previ-
ously in Ref. 36 may be performed in the two dimensions
sequentially. Examples are provided from Field II’**° and ultra-
sound B-scans. We demonstrate that an axial deconvolution can
be treated within the same general framework as lateral resolu-
tion, and resolution enhancement is possible in both axial and
lateral dimensions.

2 Theory

2.1 Pulse-Echo Convolution Model

In conventional B-mode ultrasound imaging—assuming a nar-
rowband transmission, weak scattering, and with some
approximation—the classical convolution model gives us the
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relationship between the received radiofrequency (RF) data and
the imaging configurations, which is derived based on the work
of Prince and Links*! as

Hx,y,2) = r(x,y,2) x % p(x,y,2), (1)

where x, y, and z are the coordinates in the lateral, the eleva-
tional, and the axial directions, respectively, k is the wave num-
ber, r is the reflection coefficient of the scatterers, 7 is the
resulting image as the RF data, and p(x, y, z) is the propagating
pulse. We assume that p(x,y, z) is separable and of the form

(x,y.2) = ek ) /zg *r Y 2n L sin(2kz + ¢)
pxy.2) = Az 2z) “\c/2 7
()

where c is the speed of sound, s(+)? is the round-trip lateral beam
pattern, related to the Fourier transform of the apodization func-
tion in the transducer face, n,(2z/c) [or essentially n,(f) as
z = ct/2] is the envelope of the axial propagating pulse with
A as its wavelength, ¢ is the initial phase, and the operator
**% represents the three-dimensional convolution. This formu-
lation suggests the separable PSF in the lateral and axial direc-
tions. Laterally, the Fourier transform relationship is utilized
between the beam pattern at focus and the apodization weights.
In the axial direction, the PSF is modeled as a modulated sinus-
oidal wave.

Under some conditions, a few simplifications can be applied.
Let us assume that all scatterers lie in the y = 0 plane; this
reduces the problem to a 2-D model. Further, the beam pattern
is assumed to be relatively constant for some depth near the
focus. Finally, the quadratic phase term can be neglected in the
paraxial approximation or by adding additional time delay for
each individual channel of the transducer. Under these assump-
tions, the received signal is modeled as a simple convolution

F(x,z) = r(x,z) == { (;;f) 2ne <c22> sin(2kz + ‘/’)} :
‘ 3)

where z ¢ is the focus, ** represents the 2-D convolution, and the
system effects s(-) and n,(-) sin(-) are separable functions.

In our previous paper,’ a lateral-only deconvolution was per-
formed in the RF domain; however, to deconvolve the image in
the axial direction, we face the choice of representing the signal
as RF or in-phase quadrature (IQ): a bandpass versus low-pass
quadrature pair. Theoretically, as long as the corresponding
Z-transform has no zeros lying on the unit circle, either repre-
sentation can produce a stable inverse. However, the IQ
data have the advantage of requiring a lower Nyquist frequency.
Furthermore, the baseband Gaussian (or related envelope
shapes) from our previous work fits conveniently into our
processing framework in that both generate stable inverse filters
and perform coherent deconvolution. Thus, we choose to work
with the I and Q pair for inverse filtering. Note that the 1Q
demodulation is performed in the axial direction, thus it does
not significantly change the signal in the lateral direction in
terms of the lateral PSF. Therefore, the deconvolution for
both dimensions is performed in the IQ data domain. Below,
starting from the RF data representation of the axial PSF, we
analyze the details of the 2-D deconvolution in the 1Q data
domain.
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Based on the model in Eq. (3), if we substitute z with
z = ct/2, and then take the Fourier transform (laterally with
respect to x and axially with respect to 7), the spectrum of the
received RF data in the frequency domain i?(u, f) is equal
to

R(u.f) = %R(u,f)S(u)[E(f + fo) — E(f = fo)]e// /1o,
4)

where R(u, f), S(u), and E(f) are the Fourier transforms of
r(x.1), s(x/4zs)%, and n,(1), respectively, and f, = 4< is the
center frequency. Note that for the remainder of this paper,
the axial depth z and the time ¢ are interchangeable by the rela-
tionship z = ct/2.

To generate the IQ data, the RF data are multiplied by a
complex signal e/2/o'. This downmixing process gives a signal
of

Ranlie. ) = L ROs £+ F0) SECS +26o)

— E(f)]e/U 0/ ]o, (5)

After low-pass filtering with a gain of 2, the spectrum of the
baseband IQ data is generated as

Rig(u. f) = =jISWENNR(u, f + fo)el /101 (6)

Going back to the spatial domain, the baseband IQ data
become

Fio(x.2) = —jls(x/2zp)*n.(22/c)]
(€2 (x, 7 + ¢ /2k)]. )

In conventional ultrasound imaging, the absolute value of the IQ
data, denoted as

Faisp (%, 2) = [F1o(x, 2)| = [[s(x/Azp)?n.(22/c)]
* ke 2k r(x, 7 + @ /2k)]|, 8)

is displayed as an ultrasound image after logarithmic compres-
sion. Note that because of the phase interference inside the abso-
lute value symbol, the deconvolution may not be applied to the
envelope image. However, if we deconvolve the IQ data before
taking the absolute value with some bounded-input bounded-
output (BIBO) stable inverse filters for the PSFs s(-)?> and
n,(-), the resulting image becomes

Fax.z) = | = je2r(x. 2+ $/20)] = |r(x, 2+ ¢/2K)|,

(€))

where the resolution enhancement is achieved. Note that the
term ¢/2k is a constant shift in the axial direction. For the
worst case where ¢ = %z, this corresponds to an offset of a
quarter of a wavelength. Nevertheless, this offset is consistent
for the entire image, thus the relative positions and sizes of
the imaged objects are preserved. Hence, it does not influence
the image quality.

The functions and calculations in the convolution model
discussed here are in the “continuous” domain. However, in dig-
ital imaging systems, signal processing is completed in the
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“discrete” domain. For that reason, we examine the Z-transform
requirements for a stable inverse filter.

2.2 Stability Constraints for Symmetric Functions

In theory, let us consider a discrete function f[k], symmetric
about a maximum at k =0, where k € [-n,n] and k € Z.
This has a Z-transform

Fo) = 3 flk™ (10)

k=-n

Note that in this section, z is the complex variable of the
Z-transform, not the depth coordinate. The roots of F(z) =0
are the poles of the inverse filter of the discrete samples
{f[k]. k € [-n, n]}.To have a stable inverse filter, the roots can-
not be located on the unit circle to avoid singularity.

As shown in Ref. 36, F(z) =0 can be reformulated as
g(y) =31 biy* =0, if we set y £ z+ (1/z), where {b;}
is the coefficients of the polynomial. It was also shown that
the “master constraint” for symmetric stabilized beam patterns
is |yg| > 2, where y, € {y:g(y) =0,y € R}, which enables the
use of many classical root-testing methods. These additional
theoretical considerations to further access the zeros of g(y)
include the Enestrom—Kakeya theorem*” and the Jury stability
criterion.** Within these constraints lie some subsets of sampled
beam patterns that have stable inverses.

3 Examples

In this section, examples are given to show that stable inverse
filters exist for PSFs in both the lateral and the axial directions.

3.1 Lateral Beam pattern: Broadband Gaussian
Model

In our previous paper,*® we showed that the lateral focal beam
pattern from the transducer with the Gaussian apodization func-
tion might be modeled as

T i ) o R

2D
Nea:

Spe(x)=

Y

where f and B are the center frequency and the bandwidth of
the transducer, respectively, o; is the standard deviation of the
Gaussian apodization function in the transducer face, x is the
lateral coordinate at focal depth, erf(-) is the error function,
and the constant D = 4+/In 2. The stability constraint for a
nine-point (denoted as n; = 9, where ng is the number of sam-
ples) discrete function sampled from this broadband Gaussian
model with 50% bandwidth was given as

Ax > 0.7750,, (12)

where Ax is the discrete sampling interval. As an example, a
nine-point sampled function with Ax = 1.16; was analyzed
in the Z-plane where all zeros in the Z-plane diagram were
located away from the unit circle, thus generating a stable
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inverse filter. Similarly, stable inverse filters were also found
for the five- and the seven-point samples from well-truncated
Gaussian apodization functions.

3.2 Axial Gaussian Envelope

In simulations, a Gaussian function may be a popular but simple
model for the axial pulse envelope n,(#). Based on the analysis
in Sec. 3.1, stable inverse filters are needed for n,(¢). It was pre-
viously shown that in Ref. 36, the stability constraint for the
Gaussian function of the form

2
C - 13
ol-5) o
was given by
Ax > 0.7040. 14

As an example, a nine-point discrete function sampled
from a Gaussian function with Ax = 0.9¢, was analyzed in
the Z-plane where all zeros in the Z-plane diagram were located
away from the unit circle, thus generating a stable inverse filter.
Therefore, the previous stability analysis of the Gaussian func-
tion for the lateral direction can be utilized directly for the
deconvolution of the baseband Gaussian envelope in the axial
direction.

3.3 Other Practical Axial Stabilized Pulses

In general, controlling the shape of the axial PSF exactly is not a
trivial task. In the lateral direction, the PSF can be predicted
relatively easily using the Fourier transform of the apodization
function.***¢ Axially, the axial PSF is determined by the
impulse responses of the transducer and the excitation signal,
and is influenced by to the mechanics of the transducer, e.g.,
center frequency and damping. As studied in Ref. 47, to gen-
erate a specific transmitting waveform, the impulse response
of the transducer was first estimated by solving an inverse prob-
lem through eight transmit/receive experiments, and then the tri-
state excitation signal was solved according to the desired
waveform.

A simpler way to obtain the axial PSF is to estimate the axial
PSF of the transducer. For example, Jensen and Leeman*® pro-
posed a cepstrum-based estimation approach derived from
homomorphic filtering, where the minimum phase of the
pulse was assumed. In practice, however, it is better to use a
parameterized model. This is because the shape of the pulse
changes with depth, and frequency-dependent attenuation is
expected.”® The adaptiveness and flexibility of the parameter-
ized model can take care of the shift-variant characteristics of
the PSF in the practical imaging environment, where the
pulse shape distorts during propagation.

To parameterize the axial PSF, the shape of the actual axial
PSF should be reviewed. A typical two-way response of the
ultrasound imaging system in the axial direction consists of
several wavelengths, and its envelope is characterized by a rel-
atively sharp initial rise around 0.2 us, followed by a relatively
smoother fall-off from the peak. Denoted as p,(t), this shape
was modeled in Ref. 38 as a square root multiplied by a
Gaussian function of time

pa(t) = V't exp[—(t — 7)% /262 UnitStep(t), (15)
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where 7 and o, are the mean and the standard deviation of the
Gaussian function, respectively. Another model can be found in
Ref. 49, which may be reformulated as

Pa(t) = £ exp(=1*/262) UnitStep(?). (16)

All these models share the form of the product of a polynomial
and a Gaussian function, which can be modeled more generally
as

pa(t) = 1 exp[—(t — 7)" /262%] UnitStep(1), 17)

where the exponents a and b may be any real numbers. As an
example, the model with a = b = 2 is used such that

Pa(t) = 12 exp[—(t — 7)?/2062] UnitStep(t). (18)

To validate this model, the echo from the flat surface of a
homogeneous gelatin phantom was recorded and curve-fitted.
The phantom was immersed in water, and an ATL L7-4 trans-
ducer (Philips Healthcare, Andover, Massachusetts) with a
center frequency of 5 MHz was placed with its axial direction
perpendicular to the surface of the phantom. The distance from
the transducer to the surface of the phantom was 2 cm, which is
also where the focus of the transducer was located. The mea-
sured echo and the curve-fitted signal are shown in Fig. 1. A
similar shape resulted for the situation when the distance and
the focus were both 5 cm. The model in Eq. (18) was fitted as

pa(t) = 1% exp[—(t — 0.2017)?/2/0.2235%] UnitStep(?).
19)

T T
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® Practical two-way echo
Fitted curve

o
™
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o
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Fig. 1 Pulse-echo envelope (axial PSF) measured from the flat sur-
face of a homogeneous gelatin phantom using L7-4 transducer. The
samples are curved-fit into the model in Eq. (18).

The resulting goodness of fit was: sum of squared errors:
0.05166, coefficient of determination (R-square): 0.9909,
adjusted R-square: 0.9906, and root mean squared error:
0.03281. Note that although a and b are treated here as hyper-
parameters, they may also be parameters and take part in the
curve-fitting estimation.

Based on the model in Eq. (19), we can generate inverse fil-
ters that are stable and useful for the deconvolution in the axial
direction. Figure 2 shows a stable inverse filter and the Z-plane
plot from nine samples of the curve-fitted model. The samples
are downsampled with a ratio of 10 from the raw data where the
sampling frequency is 16 samples per period. The stability of the
inverse filter is shown by the positions of the zeros that are away
from the unit circle in the Z-plane diagram. A family of inverse
filters may be generated by adjusting the parameters 7 and o, in
the model.

4 Practical Filtering Issues

In the previous paper,*® we listed six practical issues for lateral-
only deconvolution; they are the spatial variance of the PSF, the
need for downsampling the original image data, parameteriza-
tion of the inverse filters, conditioning kernel for dealing with
noise, the cancellation of the quadratic phase term for the lateral
PSF, and the coherent deconvolution for subinteger shifts. The
first four are more general issues, and the solutions to those
issues still apply to the axial direction in 2-D deconvolution.
The previous one-dimensional (1-D) coherent deconvolution
framework can be extended to the 2-D data; a detailed discus-
sion is given below. In addition, the demodulation process that
generates the 1Q data is also investigated.

4.1 Coherent Deconvolution with Inverse Filter
Banks for Subinteger Shifts

The coherent deconvolution was introduced to deal with the
scatterers located among the sampled positions. In practice, a
bank of five inverse filters generated from both the centered
and shifted sampled functions are used for the deconvolution.
This produces five intermediate deconvolution results, from
which the candidate with the minimum absolute values is
selected as the final output.

Assuming the separability of the lateral and the axial dimen-
sions in the PSF, a coherent deconvolution may be performed in
both dimensions sequentially, termed as “sequential coherent
deconvolution.” Specifically, if there are five inverse filters
designed for each dimension, then the sequential application

1F T ——E T T T 7 T T T 25 T
0s| @ SN IR | 20! (©
\
g o8t o ‘E, ol | 15+
£ 07} /! \ s 1 10r
] \ [%] k -t~
§ 06} /I \\ g /60;8 \\ é 5 I
Loy E ' 8 Ope-—-mmm o 4o *5( - g. 0 h;"o'o.-
S 04 J 5} g1l W ] < -5t l
S 03l o ‘\ £ 1 -10+
z > II \ 2t |
02l . i -5}
otl o | -8t 1 20}
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Fig. 2 (a) A nine-point discrete function sampled from the axial PSF model in Eq. (19). (b) The zeros of
the Z-transform are located away from the unit circle, resulting in (c) a stable inverse filter.
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of the inverse filters in both directions will produce 25 decon-
volution results as candidates for the final image. Note that it
does not matter whether the axial inverse filters or the lateral
is applied first, because they are all linear operations.

In the IQ data domain, where data are composed of complex
numbers, there are two methods to choose the best candidate.
The first method is essentially the same as that used in the lat-
eral-only deconvolution, i.e., picking the complex candidate
with the minimum modulus (the “joint” method). The other
method is to treat the real and imaginary parts separately (the
“separate” method). The separate method first selects the I
part with the minimum absolute value and the Q part in the
same way, combines the two parts, and then takes the magni-
tudes of the selected IQ minima for image display.

Other than the two methods introduced above, the harmonic
mean of the intermediate deconvolution results may also be
chosen as the final output. The major feature is that its output,
when compared to that of conventional averaging, is closer to
the smallest values among the inputs. The harmonic mean wy,,,
of a set of positive numbers wy, w,, ---,w, is defined as

n
Whm = &, 10 (20)
> WL

There are also two ways to apply the harmonic mean method
on the IQ data candidates: either taking the harmonic mean
of the magnitude of the IQ data directly or treating the real
and imaginary parts separately. Unlike the minimum-picking
method, which always picks the candidate with the smallest
absolute value, the harmonic mean of a set of numbers gathers
information from all the inputs. Hence, the output image
depends on which portion of the candidates is used. In practice,
the smallest n;,,, number of candidates in terms of absolute val-
ues may be used as the input of the harmonic mean. In that
sense, the number ny,,, may serve as a potential parameter for
image display.

4.2 Center Frequency in In-Phase Quadrature Data
Demodulation

The downmixing step in the generation of the IQ data requires
knowledge of the center frequency. Due to frequency-dependent
attenuation of the wave during propagation, the effective center
frequency is lower than the original specified in transmission. To
deal with this downshifting of frequency, the effective center
frequency is estimated as®*!

= _ Ji=reinds
O R P(faf

where P(f) denotes the power spectrum of the RF data. Note
that in a practical ultrasound scanner, this downmixing process
begins with a higher center frequency for the near-field,
decreases with depth, and remains the same when it reaches
some certain threshold depth.*?

ey

4.3 Final Procedures

To summarize, the processing steps that occur after the introduc-
tion of the IQ data representation of the image and the model-
based axial deconvolution are:
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1. Estimate the lateral PSF by substituting the parameters
with the imaging settings into the broadband Gaussian
model as in Eq. (11) or by experiment.

2. Estimate the axial PSF using the model in Eq. (18) or
by experiment.

3. Design stable inverse filters for both the lateral and the
axial directions from the corresponding centered PSFs
and from subinteger shifts with appropriate downsam-
pling ratios (DSR) and relaxations of ¢; and o,.

4. Perform B-mode imaging using a Gaussian apodiza-
tion for the transducer (with quadratic phase compen-
sated if necessary) and acquire baseband IQ data.

5. To perform deconvolution, first downsample the 1Q
data in both the axial and lateral directions. Then,
for each subgroup of IQ data, perform the sequential
coherent deconvolution in both the lateral and the axial
directions using the designed inverse filters with the
conditioning kernel if necessary. Then, interleave
the downsampled results.

6. Optionally, apply a median filter to the interleaved
data to further reduce noise and any residuals of
deconvolution.

7. Take the absolute values of the IQ data for envelope
detection, if desired.

The procedures are also shown in Fig. 3.

5 Results and Discussion

The proposed method is implemented using Field II simulations
in MATLAB® (The MathWorks, Inc., Natick, Massachusetts),
and imaging of a tissue-mimicking phantom and the in vivo
carotid artery using the Verasonics V1 scanner (Verasonics, Inc.,
Kirkland, Washington). The experiments were done using the
ATL L7-4 and L12-5 38-mm transducers (Philips Healthcare,
Andover, Massachusetts) with center frequencies of 5 and
7.5 MHz, respectively. The L7-4 transducer was modeled
using Field II. On transmit, single focusing and a Gaussian
apodization truncated in the 60 range is applied with the quad-
ratic phase compensated, while on receive, dynamic focusing is
used with the same Gaussian apodization. The RF data were
acquired at 16 samples per wavelength in the axial direction.
In the lateral direction, the pixel spacing of the RF data is
one-fifth of the pitch width based on denser pulse sequencing.
In all cases, stable inverse filters were designed for both the axial
and the lateral directions in advance based on the models with
proper relaxation of the parameters. The conditioning kernel in
the downsampled domain is used when necessary, and a small
5 X 5 median filter is applied twice in the interleaving domain
before the envelope detection as a simple noise reduction step.
All the ultrasound images are normalized to the maximum and
displayed in 50-dB dynamic range. We first show a simulation
result using Field II to validate the extension of the proposed
deconvolution framework from 1-D to 2-D. After that, results
utilizing stable inverse filters from the practical model for
axial PSF were examined using the Verasonics scanner with tis-
sue-mimicking phantom, followed by in vivo imaging of the
carotid artery.
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Fig. 3 Flow chart showing (a) overview of the processing procedures, (b) the details of the 2-D sequential
coherent deconvolution box, and (c) the details of axial convolution box. DS; is the i/'th downsampled IQ
data; the inverse filter bank contains inverse filters (IF’ for the inverse filters designed for the lateral direc-
tion and IF2 for the axial direction) for discrete function sampled with subinteger shifts; and the candidates
selection chooses the convolution result with methods including the minimum-picking method and the

harmonic mean method.

5.1 Field Il Simulation

The extension of the deconvolution framework to the axial
direction was first verified using Field II simulation. The trans-
ducer is an ATL L7-4 linear transducer, and its impulse response
is modeled as a Gaussian-modulated sine with 50% bandwidth,
resulting in a simple Gaussian axial PSF in accordance with
Sec. 3.2. The number of active transducer elements is 64.
The depth of the phantom is from 45 to 55 mm. It consists
of, from left to right, a blood vessel, an anechoic cyst, individual
scatterers, and a hyperechoic lesion. Specifically, the diameters
of the inner and the outer walls of the blood vessel are 3 and
3.5 mm, respectively; the lateral distance between the two scat-
terers at the same depth is 1.5 mm; both the cyst and the lesion
share the same diameter of 5 mm. Five pairs of individual scat-
terers are placed at the depths from 46 to 54 mm with an axial
step of 2 mm. The lateral distance between each pair is 1.5 mm.
Furthermore, three more pairs of single scatterers are added into
the simulated phantom such that at the depths of 46, 50, and
54 mm, there are scatterers separated by one wavelength (at fre-
quency of 5 MHz) axially for evaluating the performance of the
axial resolution enhancement. The original B-mode image simu-
lated is shown in Fig. 4(a). As can be seen in the figure, in the
region of the individual scatterers, five bright blurs are found,
and the details of the scatterers underneath cannot be discerned.
Figure 4(b) shows the result if the boxcar apodization is used.
Although the lateral resolution is better, the axial scatterer pairs
still cannot be distinguished. The sidelobes brought by the box-
car apodization are also seen.

Following the procedures of the proposed framework, stable
inverse filters in both axial and lateral directions were generated
and used for deconvolution. Inverse filters in the lateral direction
were generated from the broadband Gaussian model with
DSR equal to 10 and n, = 9. For the axial direction, five stable
inverse filters were calculated from the corresponding Gaussian
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envelope with a DSR of 15 and n, = 9. The ¢, and 6, were
relaxed by a factor of 0.95 and 1.15, respectively, for the lateral
and the axial direction. The deconvolution starts with the appli-
cation of the lateral inverse filters, followed by the five inverse
filters in the axial direction, creating 25 deconvolution results. A
conditioning kernel of [1, 1] is convolved in the axial direction.

Figures 4(c) and 4(d) show the results of the raw separate
and the raw joint methods, respectively. In both images, the
originally blurred scatterers are resolved both axially and later-
ally as seen from the increase of the diameter of the cyst,
the decrease of the diameter of the lesion, and the separation
of the scatterers. Specifically, for Figs. 4(a) and 4(c), the size
of the cyst in diameter (lateral X axial) is increased from
3.43 mm X 4.36 mm to 4.74 mm X 4.77 mm, and the blood
vessel wall is seen much more clearly in Fig. 4(c) than in the
original image. The size of the inner blood vessel wall,
which is designed to be 3 mm in diameter, is opened from barely
visible to about 2.07 mm X 2.20 mm. The separate method 1Q
demonstrates high performance in resolving the single scatterers
but suffers seriously from the erosion of the speckle regions, as
many pixels drop below the —50-dB dynamic range of the image
display. On the other hand, the joint method [Fig. 4(d)] provides
a better speckle region while increasing the side-lobes and resid-
uals that blur the objects of interest; this is especially evident in
the long streaks in the axial direction of the single scatterers.

Figures 4(e) and 4(f) show the harmonic mean images with
npm = 4 for both the separate and the joint approaches. From
these figures, it is seen that the joint images have better speckle
uniformity, while the separate images have better resolution and
fewer residuals. Further, the harmonic mean images, to some
extent, balance the trade-off between the resolution performance
and the speckle erosion when compared to their minimum-
picking method counterparts. Last, it should be noted that all
the intermediate deconvolution results are converted to their
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Fig. 4 Image simulated from Field Il with (a) Gaussian and (b) boxcar apodization. The result from the
Gaussian apodization is processed with a 2-D deconvolution using (c) the separate and (d) the joint
minimum-picking methods, and (e) separate and (f) joint harmonic mean calculation with ny, = 4.

The red circles indicate apparent lumen boundaries.

absolute values before computing the harmonic mean, which
makes the result of the harmonic mean all positive numbers.
As a result, the median filtering step described in the procedure
in Sec. 4.3 is applied to the positive values that would otherwise
be positive and negative if the minimum-picking method was
used. This may explain why the images resulting from the har-
monic mean method appear more “filled-in” than those from the
minimum-picking methods.

The resolution of the original images and processed result
using the separate minimum-picking method was examined
in more detail. Figure 5 compares the axial cuts at x = 1.5 mm
across the individual scatterers separated by about 0.3 mm at the
depth around 50 mm. There is a tiny difference between cuts
from images simulated with Gaussian and boxcar apodization,
neither of which can resolve the scatterers. In contrast, the scat-
terers are clearly resolvable in the axial cut from the image proc-
essed with the separate method. The gain of the resolution can
also be evaluated through the normalized 2-D autocorrelation of
the envelope. The —6-dB width of the autocorrelation function is
narrowed by 8.75 and 20.5 times in the lateral and axial direc-
tions, respectively.

In conclusion, the results from the above Field II simulation
example validate the extension of the proposed deconvolution
framework from 1-D (lateral only) to 2-D (axial and lateral).
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Fig. 5 Comparison of envelopes along the axial lines at x = 1.5 mm
across the images at depth of 50 mm showing the resolution of
two individual scatterers in the axial direction. The data are from
the images with Gaussian function apodization, with boxcar func-
tion apodization, and with Gaussian function apodization after
deconvolution.
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The results also verity the theoretical analysis regarding decon-
volution using the IQ data described in Sec. 2. Further, since
only one bank of inverse filters (designed for the depth of
50 mm) is used, the result also shows the tolerance of the inverse
filters for depths that are off-focus to some extent.

5.2 Imaging of a Tissue-Mimicking Phantom

The region in the ATS 535 QA ultrasound phantom, (ATS
Laboratories, Inc., Bridgeport, Connecticut) which contains a
small cyst with a nominal diameter of 4 mm was imaged
using the Verasonics scanner with an ATL L7-4 transducer
with 64 active transducer elements. This image was purposefully
made to have high noise by utilizing low transmit power with
high receive gain. The lateral inverse filters generated from the
broadband Gaussian model were used for deconvolving the 1Q
data in the lateral direction while in the axial direction, inverse
filters were generated from the model in Eq. (19). The param-
eters o; and o, were both relaxed by 0.95, and a conditioning
kernel of [1/2, 1, 1/2] was applied axially.

Figure 6 shows from top to bottom, the original image and
the processed images. Specifically, Fig. 6(b) shows the result
after the lateral-only deconvolution and Fig. 6(c) with 2-D
deconvolution. The raw separate method is used here for
Figs. 6(b) and 6(c). The lateral opening of the cyst in the images
from top to bottom increases from 1.50 to 2.94 to 3.24 mm as
illustrated by the red ellipses, and axially, the diameter increases
from 2.60 to 2.89 to 3.33 mm. The numbers show a major
enhancement for the resolution after the deconvolution in each
direction. The reason for the further opening-up of the cyst in the
lateral direction after the introduction of an axial deconvolution
is that the increased number of candidates (from 5 for 1-D to 25
for 2-D) enables the final output to be more likely to catch a
candidate with magnitude closer to zero.

5.3 In Vivo Imaging of the Carotid Artery

In vivo imaging of the carotid artery was also performed to com-
prehensively evaluate the performance of the proposed method.
Figure 7(a) shows the original image of the carotid artery
together with the thyroid of a healthy adult imaged under
the requirements of informed consent and the University of
Rochester Institutional Review Board. Stable inverse filters in
both directions were found and applied onto the original IQ
data for sequential coherent deconvolution. The parameters o;
and o, were relaxed by 1.05 and 0.8, respectively. A condition-
ing kernel of [1, 1] was applied laterally while in the axial direc-
tion, a kernel of [1/2, 1, 1/2] was applied. Note that the separate
harmonic mean method with ny,,, = 7 was used to preserve the
homogeneity of the speckle region. The processed image is
shown in Fig. 7(b), where the vessel wall of the carotid artery
is better defined, and the speckle pattern of the thyroid region
becomes finer as the —6-dB width of the autocorrelation func-
tion of the speckle region is narrowed by 4.5 and 5.1 times in the
lateral and axial directions, respectively.

2-D deconvolution can also be used to help measure
the intima-media thickness (IMT) of the carotid artery. The
IMT measures the distance between the lumen-intima and
the media-adventitia, and marks subclinical atherosclerosis.>?
Because the thickness is indicated as the length in the axial
direction, the IMT measurement is expected to benefit from
axial resolution enhancement.
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Fig. 6 A 2-D deconvolution of a cyst phantom under high noise con-
ditions. (a) The original image, (b) the resulting image after 1-D (lat-
eral) deconvolution, and (c) the resulting image after 2-D (axial and
lateral) deconvolution.

Figure 8(a) shows a longitudinal view of the same carotid
artery. The image data were generated using the Verasonics
scanner with an L12-5 38-mm transducer with 48 active ele-
ments. Fewer active elements were used so that the F number
is maintained above 2. The red arrows point out the position of
the blood-intima interface of the IMT measurement. Based on
the proposed deconvolution framework in the IQ data domain,
stable inverse filters were generated and used for deconvolution.
A joint minimum-picking method was used for candidate selec-
tion. The parameters o, and ¢, were both relaxed by 0.95.
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Fig. 7 A 2-D deconvolution of an image from in vivo scan, which contains the carotid artery and the
thyroid. (a) The original image and (b) the image after deconvolution.
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Fig. 8 A 2-D deconvolution of a carotid artery image. (a) The original image and (b) the image after
deconvolution. The arrows point to the blood-intima interface, which is related to the IMT measurements.

A conditioning kernel of [1, 1] was applied laterally while in the
axial direction, a kernel of [1/2, 1, 1/2] was applied. The result-
ing image after applying the 2-D axial and lateral coherent
deconvolution is shown in Fig. 8(b), where sharper interfaces
of lumen-intima and media-adventitia are shown. The sharpen-
ing is also shown in Fig. 9, where axial cuts going across both
interfaces (depth from 21.2 to 22.0 mm) in Figs. 8(a) and 8(b) at
a lateral distance equal to about —1 mm are shown.

5.4 Further Discussion

The erosion in the speckle region is inherent in the coherent
deconvolution, because the candidates with the smaller, if
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not the minimum, absolute values are selected. This gives
rise to reduced image intensity (darker image) away from
strong scatterers. The regions where sparse single scatterers
are present benefit from such characteristics because the
relatively high intensity of any strong scatterers is maintained,
whereas for regions that are more homogeneous, such erosion
increases the size of dark channels within a speckle pattern.
Therefore, there is always a trade-off between having better
resolution for the highly reflecting scatterers and maintaining
the smoothness of the speckle region. A harmonic mean
calculation has been tested as a substitute for the minimum-
picking method in finding a balance, but further investigation
is needed.
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Fig. 9 Comparison of the axial cuts going across both interfaces
(depth from 21.2 to 22.0 mm) in Figs. 8(a) and 8(b) at lateral distance
equal to about —1 mm before and after inverse filtering. The arrows
point out the position of lumen-intima and media-adventitia interfaces.
The amplitude in dB is normalized to the maximum amplitude of the
image that each cut belongs to.

We note that for deep-seated organs, depth-dependent attenu-
ation, wavefront aberration, and nonlinear propagation may
become more serious and can result in the distortion of the PSF,
degrading the quality of resolution enhancement. Nevertheless,
in our framework, the inverse filters may be changed by relaxing
the parameters in our model (o; and o,,) within the constraints of
stable inverse solutions. If an image quality or metric is chosen,
the “optimal” value of the parameters can be selected accord-
ingly for a practical imaging condition. The image quality met-
rics include but are not limited to: visual criteria from a
sonographer, flatness of the power spectrum density,>* and res-
olution gain (using width of the autocovariance function of the
RF/envelope data,” width of the autocorrelation function of the
envelope,>?2%% or width of the envelope of the autocovariance
of the RF data?’).

The stability criterion of the inverse filters in this work
requires a rather low sampling frequency, causing aliasing
that hinders the performance of deconvolution. Coherent decon-
volution has been introduced to address this issue, combining
multiple intermediate deconvolution results of low quality to
achieve an enhanced resolution. Furthermore, the stability cri-
terion itself might be improved so that better intermediate
images can be obtained. To be specific, the BIBO stability
requires that the sampled function has no zeros on the unit circle
of the Z-plane, which is equivalent to the requirement that its
discrete-time Fourier transform (DTFT) has no zeros. Take
the Gaussian function of the form in Eq. (13) as an example.
Without the loss of generality, for a sampling internal of
Ax =1, its DTFT spectrum is

Ce ="\ 216495 (jrwoy, e 270), (22)

where 95(-,-) is a Jacobi theta function®® and o is the variable
denoting the angular frequency. Equation (22), as a DTFT spec-
trum, has a period of 2z and never goes to zero, although its
minimum at ® = +nx, n € Z*, approaches zero asymptotically
as the sampling frequency increases. In comparison, sampling
a PSF with a finite number of samples leads to a convolution
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between the original DTFT spectrum and a sinc function,
which may give rise to zeros both on the spectrum and on
the unit circle. It is noted that as the number of samples increases
toward infinity, the stability criterion such as Eq. (14) may
become looser. It is expected that this will allow higher sampling
frequency and lower DSR, which might further enhance the per-
formance of the deconvolution with the possible trade-off of
noise amplification.

6 Conclusion

The previously proposed deconvolution framework has been
extended to the 2-D situation where both the axial and lateral
deconvolution is considered. A mathematical derivation based
on the classical convolution model of ultrasound imaging has
shown that resolution enhancement can be achieved by decon-
volving the ultrasound images in the IQ data domain using
stable inverse filters of the envelope of the axial PSF. Within
the updated procedures, the lateral deconvolution is conducted
along with its axial counterpart through sequential coherent
deconvolution. Examples that apply the proposed method to
images from both Field II simulation and the Verasonics scanner
have shown enhanced resolution in both dimensions by resolv-
ing individual scatterers, opening the anechoic cyst, and sharp-
ening the carotid artery images. The resolution seen is enhanced
by as many as 8.75 and 20.5 times in the lateral and the axial
directions, respectively, evaluating the —6-dB width of the auto-
correlation of the envelope images.
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