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Abstract
Elastography of the brain is a topic of clinical and preclinical research, 
motivated by the potential for viscoelastic measures of the brain to provide 
sensitive indicators of pathological processes, and to assist in early diagnosis. 
To date, studies of the normal brain and of those with confirmed neurological 
disorders have reported a wide range of shear stiffness and shear wave 
speeds, even within similar categories. A range of factors including the shear 
wave frequency, and the age of the individual are thought to have a possible 
influence. However, it may be that short term dynamics within the brain may 
have an influence on the measured stiffness. This hypothesis is addressed 
quantitatively using the framework of the microchannel flow model, which 
derives the tissue stiffness, complex modulus, and shear wave speed as a 
function of the vascular and fluid network in combination with the elastic 
matrix that comprise the brain. Transformation rules are applied so that any 
changes in the fluid channels or the elastic matrix can be mapped to changes in 
observed elastic properties on a macroscopic scale. The results are preliminary 
but demonstrate that measureable, time varying changes in brain stiffness are 
possible simply by accounting for vasodynamic or electrochemical changes in 
the state of any region of the brain. The value of this preliminary exploration 
is to identify possible mechanisms and order-of-magnitude changes that may 
be testable in vivo by specialized protocols.
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1. Introduction

While elastography of different organs is growing in terms of technology and clinical 
 applications (Parker et al 2011), a particular area of research emphasis is the brain and pos-
sible links between neuropathology and altered viscoelasticity. A common clinical goal across 
elastography is to determine what clinical conditions can be detected or followed progres-
sively by measurable changes in tissue stiffness and shear wave speed. In the brain, research 
studies have assessed the elastic properties of the normal brain including regional and grey/
white matter differences, and for pathologies including Alzheimer’s disease, and multiple 
sclerosis. A recent summary of many magnetic resonance elastography (MRE) studies is 
given in Hiscox et al (2016). In addition to MRE, ultrasound studies of brain elasticity are 
under investigation. A transcranial assessment of brain pulsatility has shown correlations with 
disease states (Desmidt et al 2011, Ternifi et al 2014). Furthermore, shear wave elastography 
has shown promising utility for intraoperative uses (Chan et al 2014, Chauvet et al 2016).

One feature of brain elastography research is the wide range of values measured and reported 
within categories, and Hiscox et al conclude that ‘providing standardized baseline values for 
the brain is very challenging’. Methodology plays a role here as does choice of parameters 
including the shear wave frequency, commonly in the range of 50 - 80 Hz. However, there 
is a possibility that the unique structure and function of the brain enable dynamic changes 
in regional elasticity (viscoelastic properties, complex modulus, and shear wave speed) over 
a time scale from many seconds to minutes (Patz et al 2016). For example, at shear wave 
frequencies of 1 kHz in the mouse brain, Patz et al (2017a) have reported regional increases 
of 14% in shear modulus during neuronal activation. If dynamic changes are possible and 
are of significant magnitude, then they could influence experiments where these effects are 
not recognized and are not controlled, thus contributing to a wide variation in experimental 
results. Conversely, if dynamic changes in brain elasticity are possible and are of significant 
magnitude, then they may be experimentally activated or controlled, and the resulting effects 
could add useful clinical information.

For this reason, an examination of hypothetical dynamic changes in brain elasticity is 
warranted. This paper provides a preliminary assessment of three conditions that could, in 
principle, rapidly alter elastic measures: vasodilation within an organ that is unconfined, vaso-
dilation within a strictly confined volume (such as the skull), and changes in the elastic matrix 
of the tissue. All three cases are examined using the microchannel flow model and a general 
transformation rule that gives an expression for the elastic response of tissue in a modified 
state.

2. Theory

2.1. Review of theory

The microchannel flow model (Parker 2014) begins with consideration of a block of tissue, 
comprised of a multi-scale interlocking of cells, connective tissue, and a variety of fluid chan-
nels. To analyze the structural element, an idealized cube of tissue with only one vessel of radius 
r  is supported at the base and subjected to uniaxial loading. If the fluid within a microvessel of 
length L experiences a pressure drop due to the applied stress σx, then under Poiseuille’s Law 
for incompressible fluids in pipes, a volumetric flow rate Q will result (Sutera 1993):

Q =
Cσxr4

η
 (1)
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where C is a constant, r  is the radius of the microvessel, and η is the viscosity of the fluid. Accounting 
for the loss of fluid from the vessel and combining elastic and fluid outflow strains as additive leads 
to a Maxwell model of a series spring and dashpot, therefore the stress relaxation (SR) curve is  
a simple exponential decay. If ε(t) = ε0U(t), where U(t) is the unit step function, then

σSR(t) = ε0Ee−
t�τ for t � 0, (2)

where E  is the Young’s modulus of the elastic parenchyma and the time constant τ  is:

τ =
ηC
Er4 . (3)

The inverse dependence of τ  on radius to the fourth power makes the time constant exquisitely 
sensitive to changes in vessel radius.

Next, we assume there are n multiple microchannels of unequal radius rn and therefore 
unequal flow rates Qn. In this case, if each contributes to the stress relaxation at their respec-
tive time constant τn, then the simplest model for this looks like a parallel set of Maxwell 
elements (figure 1).

This configuration of multiple parallel elements and an optional single spring element is 
the generalized Maxwell-Weichert model (Ferry 1970, Fung 1981), with the time constants 
of each element determined by equation (3) and therefore sensitive to 1/r4

n. Generally, we can 
write the stress relaxation solution for N  Maxwell elements as a Prony series (Lakes 1999), 
the sum of components with characteristic relaxation time constant τN . In the limit, as we 
allow a continuous distribution of time constants τ , the summation becomes an integral and 
A (τ) is the relaxation spectrum, which can be either discrete or continuous, depending on the 
particular medium under study (Fung 1981). Given a material’s A (τ), we can write:

σSR(t) =
∫ ∞

0
A (τ) e−

t�τ dτ . (4)

Now consider a specific power law distribution:

A (τ) = A0τ
−b; 1 < b < 2. (5)

The power law distribution is naturally occurring in many natural structures including normal 
and pathological circulatory systems (West et al 1997, Risser et al 2007). Substituting equa-
tion (5) into equation (4) and solving yields the solution:

Figure 1. The microchannel flow model of perfused soft tissue begins with parallel 
elements (Parker 2014). Each dashpot corresponds to a fluid-filled vessel or channel, 
with the smallest microchannel yielding the largest time constant, via Poiseuille’s Law. 
In the continuing limit, the aggregate sum over the fractal size distribution yeilds the 
microchannel flow model. Reproduced from Parker et al 2014. © 2014 Institute of 
Physics and Engineering in Medicine. All rights reserved.
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σSR(t)=A0 · t1−bΓ [b − 1] for 1 < b < 2, t > 0 (6)

where Γ is the Gamma function. The stress relaxation response is characterized by 1�tb−1 decay 
for t > 0. For values of 1 < b < 2 this tends to have a sharp initial drop and then a slow 
asymptomatic decay. It can also be shown that the frequency dependence of the complex 
modulus is given by a power law:

|E (ω)| = A0√
2π

Γ[a]Γ [1 − a] |ω|a (7)

where a = b − 1. This response is dominated by the steady increase with frequency to the 
power of a.

In practical cases it is more realistic to place limits on the range of τ  for a material, reflect-
ing the longest and shortest time constraints that pertain to the smallest to largest vessels and 
microchannels. In this case, the integration of equation (4) has limits τmin and τmax and

σSR(t) =
∫ τmax

τmin

A (τ) e
−t�τ dτ (8)

and assuming the power law form of equation (5), then

σSR(t) = A0


Γ

[
a, t

τmax

]
− Γ

[
a, t

τmin

]

ta


 for a > 0, t � 0, and 0 < τmin < τmax

 

(9)

where Γ [a, t�τ ] is the incomplete Gamma function (upper-tailed). This version of the micro-
channel flow model is a four parameter model since τmax and τmin must be determined as 
material-specific parameters in addition to a and A0. A different closed form solution exists 
for cases where a � 1. The complex modulus |E (ω)| for the material of equation (9) is given 
in Parker, Ormachea et al (2016), basically this approaches a power law of equation (7), but 
only gradually as τmax and τmin are widely separated.

In summary, if a tissue has a power law relaxation spectrum A (τ) = A0τ
−b, then the stress 

relaxation response will show a σSR ∼= A0t1−b = A0/ta response. The tissue stress–strain 
transfer function in the frequency domain is |E (ω)| ∼= A0|ω|a, and shear wave phase velocity 
cph (ω) ∝ ω

a�2. In prostate and liver (Zhang et al 2007, Parker 2014, Ormachea et al 2016), 
0 < a < (1/4 ) for many normal specimens.

2.2. Mapping changes from r to τ  to A (τ) to σSR(t)

Given a fractal distribution of blood vessels of radius r  where rmax > r > rmin, and a corre-
sponding A (τ) = A0/τ

b from τmin < τ < τmax , where the relationship between τ  and r  is 
influenced by Poiseuille’s Law (equation (3)), we now examine the new relaxation spectrum 
A2 (τ2) if all the vessel radii are increased or decreased by a factor of r2 = χr where χ > 1 
represents vasodilation and χ < 1 vasoconstriction. To map the changes to the relaxation spec-
trum function A (τ), we use the general transformation rule from probability theory (Papoulis 
1987). Given a monotonic distribution A(r) and a transformation τ2 = C/(χr)4

= τ/χ4, then 
the transformed density function A2 (τ2) is given by:

A2 (τ2) =
A (τ)∣∣ dτ2

dτ

∣∣ . (10)
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Substituting and taking the derivative we have

A2 (τ2) = χ4A
(
χ4τ2

)
. (11)

However, assuming A (τ) = A0/τ
b, then

A2 (τ2) =
χ(4−4b)A0

τ b
2

=
χ4(1−b)A0

τ b
2

, (12)

and this also preserves the total area under the relaxation spectrum:
∫ τmax

τmin

A (τ) dτ =

∫ τ2max

τ2min

A2 (τ2) dτ2. (13)

where

τ2max
= C/(χrmin)

4
= (1/χ )

4
τmax and

τ2min
= C/(χrmax)

4
= (1/χ )

4
τmin.

 
(14)

2.3. Proportional dilation/constriction: unconfined space

In this section we consider the relatively simple case of vasodilation (or vasoconstriction) 
within an unconfined tissue such that the extra blood volume associated with enlarged blood 
vessels is simply added to the organ volume.

Consider a baseline or resting state with a power law distribution of vessels between rmin 
and rmax leading to the stress relaxation spectrum

A (τ) =
A0

τ b



τmin � τ � τmax

or
C

r4
max

� τ � C
r4
min

,
 (15)

and the resulting stress relaxation function is given by equation (9). Next, assume that all ves-
sel radii are increased or decreased by some proportion χ, where χ = 1 represents the baseline 
case and after vasodilation or vasoconstriction:

r2 = χr
{

χ > 1 implies vasodilation
χ < 1 implies vasoconstriction . (16)

We apply the transformation rule to determine the new stress relaxation spectrum A2 (τ2), where 
τ2 = C/(r2)

4
= C/(χr)4

= (1/χ )
4
τ , so dτ2/dτ = (1/χ )

4, and applying equation (10):

A2 (τ2) =
χ4A0

(τ2χ4)
b =

χ4(1−b)A0

τ b
2

. (17)

Now integrating 
∫ τ2max

τ2min
A2 (τ2) e−t/τ2 dτ2 we find:

σSR2(t) =
(χ)

4(1−b)A0 (Γ [a, t/τ2max ]− Γ [a, t/τ2min ])

ta
 (18)

where τ2max and τ2min are given by equation (14). Thus, equations (14) and (18) provide the 
transformation of elastic properties as a function of vascular changes proportional to χ, in an 
unconfined space.

K J Parker Phys. Med. Biol. 62 (2017) 7425
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As an example, figure 2 shows a case where the vessels change with 20% vasodilation 
(χ = 1.2) and then 20% vasoconstriction (χ = 0.8), and using baseline parameters found in 
table 1. The parameters chosen are within limits seen in other soft tissues, for example 20% 
vasodilation is within the range of cortical blood flow changes measured by laser Doppler 
flowmetry during sensory stimulation (Malonek et al 1997).

These shifts in vessel radii create a shift in the relaxation spectrum and then a clearly 
observable change in stress relaxation, softening or stiffening the tissue.

The frequency domain or complex modulus is shown in figure 3, demonstrating the same 
trend, which would be detected in MRE as a change in shear wave speed and wavelength.

2.4. Partitioning dilation/constriction using perivascular space under constrained volume

In this case, we consider the brain as a confined space such that localized vasodilation and 
increased blood volume must result in subtraction of an equal fluid volume. The perivascular 
space is one candidate for compensatory volume change (Zhang et al 1990). The anatomical 
structure of the perivascular space is shown in figure 4, suggesting an idealization as concen-
tric tubes of negligible wall radius as idealized in figure 5.

The total volume of a vessel segment length l in figure 5 is:

V = πl( p · r)2

︸ ︷︷ ︸
blood

+πl
[(

r2
0

)
− ( p · r)2

]
︸ ︷︷ ︸

perivascular

= πlr2
0,

 (19)

Figure 2. Stress relaxation curves in an unconfined soft tissue. Parameters are taken 
from table  1 with χ  =  1.2 or 0.8 representing vasodilation or vasoconstriction, 
respectively.

K J Parker Phys. Med. Biol. 62 (2017) 7425
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which is independent of p, a necessary constraint in the confined volume of the brain. The 
partition p is a fraction 0 � p � 1 and may exceed 0.8 in some segments of mammalian brains 
(Harnarine-Singh et al 1972, Møller et al 1974, Fox and Raichle 1986, Zhang et al 1990).

Note that the relative ratio of fluid in the perivascular space to the fluid in the vascular 
space (blood) is 

(
1 − p2

)
/p2; for example, when p  =  0.8, then there is a roughly equal volume 

of fluid in the two compartments. We will assume for simplicity that p is a constant over all 
branches. In this model, consistent with a constrained volume for the brain, increases in blood 
vessel diameters due to vasodilation require an immediate decrease in perivascular fluid to 

Table 1. Baseline parameters used in the microchannel flow model based roughly on 
other soft tissue measurements.

Parameter Value Units Comments

A 1 kPa Unitary, also very soft tissue
b, (a) 1.2, (0.2) Dimensionless 

power
Power law

τmax 30,000 s Set by rmin, C
τmin 0.3 ms Set by rmax, C
rmax 0.75 mm Tertiary branches
rmin 7.5 µm Venules
C 1 × 10−4 s mm4 Scale factor, empirical

χ 1.2 or 0.8 Ratio Vasodilation or vasoconstriction
χE 1.2 or 0.8 Ratio Change in elastic matrix due to 

electro-chemical activation
pb 0.7 Ratio Perivascular to vascular 

concentric radii

Figure 3. Complex modulus vs. frequency for the three cases shown in figure 2 over a 
range of frequency from 2π · 15 Hz to 2π · 1500 Hz, plotted on a log–log scale.

K J Parker Phys. Med. Biol. 62 (2017) 7425
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maintain a constant vascular and perivascular total volume. This presumes that the perivascu-
lar fluid is capable of drainage into and beyond the subarachnoidal spaces. Our focus is on the 
tissue response as the partitioning fraction p is changed. We postulate the superposition of two 
stress relaxation spectra, one for vascular and one for perivascular: A (τ) = Avas (τ) + Aper (τ), 
linked by the fraction p as the constraint on total volume. Both are assumed to be character-
ized by the same power law b since they derive from the same fractal branching geometry. 
Furthermore, the range of diameters extends from prmax to prmin in the vascular network and 
the annular radius ∆r  of the perivascular network extends from rmax (1 − p) to rmin (1 − p). 
Finally, we assume the baseline case Aper (τ) is known for the perivascular spaces and Avas (τ) 
is known for some resting baseline pb. A more critical and detailed look at the perivascular 
model is given in appendix.

Figure 4. Diagram demonstrating the relationships of the pia mater and intracerebral 
blood vessels. Subarachnoid space (SAS) separates the arachnoid (A) from the pia mater 
overlying the cerebral cortex. An artery on the left side of the picture is coated by a 
sheath of cells derived from the pia mater; the sheath has been cut away to show that the 
periarterial spaces (PAS) of the intracerebral and extracerebral arteries are in continuity. 
The layer of pial cells becomes perforated (PF) and incomplete as smooth muscle cells 
are lost from the smaller branches of the artery. The pial sheath finally disappears as the 
perivascular spaces are obliterated around capillaries (CAPS). Perivascular spaces around 
the vein (right of picture) are confluent with the subpial space and only small numbers 
of pial cells are associated with the vessel wall. Diagram reused with permission: Zhang 
et al (1990) John Wiley & Sons. © 1990 Developmental Dynamics.

K J Parker Phys. Med. Biol. 62 (2017) 7425
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Furthermore, let us assume a corresponding baseline stress relaxation function governing 
the macroscopic tissue either measured or estimated a priori as:

σSRb(t) = Avas


Γ

(
a, t

τvmax

)
− Γ

(
a, t

τvmin

)

ta


+ Aper


Γ

(
a, t

τpermax

)
− Γ

(
a, t

τpermin

)

ta


 .

 (20)
Then for vascular changes in p away from the baseline pb, the transformation rules apply 
as in equation (18) where for the vascular space χvas = p/pb and for the perivascular space 
χper = (1 − p)/(1 − pb), so as one compartment increases, the other decreases. Accordingly, 
the new state is

σSR2 =



(

p
pb

)4(1−b)

Avas


Γ

(
a, t

τv2max

)
− Γ

(
a, t

τv2min

)

ta






+



(

(1 − p)
(1 − pb)

)4(1−b)

Aper


Γ

(
a, t

τper2max

)
− Γ

(
a, t

τper2min

)

ta




 ,

 

(21)

Figure 5. Partition of fluid within the vascular space (radius pr0) and perivascular 
space (outer radius r0). In vasodilation p increases but the volume of perivascular fluid 
must decrease to maintain constant volume in the confined brain.

K J Parker Phys. Med. Biol. 62 (2017) 7425
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where

τv2 = (pb/p )
4
τv (max,min)

and
τper2 = ((1 − pb)/(1 − p) )4

τp (max,min).
 

(22)

Consider an example where the vascular radii of interest range as in previous exam-
ples and table  1. Assume pb  =  0.7 represents the resting case. Also assume a vasodi-
lation where p = 0.85, so (p/pb )

4
= (1.2)4

= 2.17. Then for the perivascular space 
((1 − p)/(1 − pb) )

4
= (0.5)4

= 0.0625. With b  =  1.2, and assuming equal contributions for 
both compartments, then

σSR(t) =
A0

t0.2

[{
Γ
(

0.2,
t

30 000

)
− Γ

(
0.2,

t
0.0003

)}
+

{
Γ
(

0.2,
t

940 000

)
− Γ

(
0.2,

t
0.0094

)}]
.

 (23)

After vasodilation, with χ4
v = 2.17 and χ4

p = 0.0625, then

σSR(t) =
A0

t0.2




1
2.170.2

{
Γ
(

0.2, t
(30 000/2.17 )

)
− Γ

(
0.2, t

(0.0003/2.17 )

)}

+ 1
0.060.2

{
Γ
(

0.2, t
(940 000/0.06 )

)
− Γ

(
0.2, t

(0.0094/0.06 )

)}

 .

 

(24)

This result is shown in figure 6, along with a vasoconstriction case where p/pb = 0.6/0.7, 
representing a modest 15% reduction in vessel sizes, compensated by a proportional increase 
in perivascular dimensions. These results are directly counter to the previous unconstrained 
examples of figures 2 and 3. This happens because in constrained-volume vasodilation there 
is a strong opposite effect of squeezing the perivascular fluid space to maintain constant fluid 
volume. The distribution of perivascular spaces is shifted to smaller dimensions, leading 
to longer time constants and a stiffening component that dominates the two parts (vascular/
perivascular). On the other hand, a modest vasoconstriction simply allocates more space to the 
perivascular fluid and has only a small net overall effect.

Figure 6. (a) Vasodilation under volume constraint with compensatory reduction of 
perivascular space dimensions. Note that the result is contrary to those in the case of 
an unconfined organ. This is due to the compensatory ‘squeezing’ of the perivascular 
space in the model. (b) Magnitude of complex modulus from radial frequencies 2π
1.5 Hz to 2π1500 Hz, for the baseline case and vasomodulated cases assuming the 
perivascular network compensates for changes in the vascular space. Note that in 
the case of vasodilation, the ‘squeezing’ of the perivascular space leads to long time 
constants and a relatively high modulus at low frequencies. Thus, experimental results 
may also depend on shear wave frequency.

K J Parker Phys. Med. Biol. 62 (2017) 7425
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It should be noted, however, that the anomalous trend shown in figure 6 has a limited range. 
As p and χ increase during vasodilation, the outer annulus of figure 5 representing the perivas-
cular space is ultimately closed off and unable to function as a fluid-carrying network. At this 
point, the second term of equation  (20) is extinguished, and the presumably vasodilation-
softening effect of figures 2 and 3 would then be observed. It must be emphasized that the 
results in this section are plausible only when local changes in the partitioning of the vascular/
perivascular spaces are enabled by the flow of perivascular fluid into or out of that region.

2.5. Change in elastic matrix

Now consider the case where the elastic properties of the cellular structures change, with-
out any alteration of vessel diameters. Electro-chemical effects in axons, dendritic spines, 
membranes, and even actin filaments have been reviewed by Tyler (2012) and Barnes (2017). 
Functional stimuli may incite regional electro-chemical changes (Patz et al 2016).

From equations (2) and (3) we see that some increase in the material’s stiffness E  increases 
the stress relaxation force σSR(t) but also changes the time constant τ  for an idealized struc-
tural element subjected to uniaxial loading. However, the change in time constant is inversely 
proportional to E , and therefore is less sensitive than to changes in radius which has a 1/r4 
dependence.

Again assuming a baseline case Eb, Ab (τ), τmax, τmin, and σSRb(t), then if E2 = χEE we 
can map the resulting changes through the transformation rules as derived in previous sec-
tions. Specifically, τ2 = τ/χ E, dτ2/dτ = 1/χ E:

A2 (τ2) = χ2
EA (χτ2)

=
χ2

EA0

(χEτ2)
b

=
χ
(2−b)
E A0

τ2b ,

 

(25)

and after integrating:

σSR2(t) =
χ

(2−b)

E A0 (Γ [a, t/τ2max
]− Γ [a, t/τ2min

])

ta . (26)

Figure 7. (a) Change in stress relaxation response assuming a 20% increase or decrease 
in the underlying elastic matrix due to electro-chemical-mechanical effects operating 
at a cellular and subcellular level. All vessel diameters remain constant in this example. 
(b) Magnitude of complex modulus vs. shear wave frequency from 2π15 Hz to 2π1500 
Hz, for the baseline and electrochemical modulated elastic media. Generally, the results 
are proportional to the change seen in stress relaxation curves (7(a)), and are relatively 
consistent over the frequency range.

K J Parker Phys. Med. Biol. 62 (2017) 7425
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where τ2max
= τmax/χE and τ2min

= τmin/χE.
Thus, an increase in E  (χE > 1) translates into two effects: an increase in the overall stress 

relaxation force by a factor of χ(2−b)
E , and a down-shifting of time constants by a factor of 

1/χE, which has a slight ‘softening’ effect.
For the case of χE = 1.2 (elastic modulus increases 20%) and χE = 0.9 (decrease), see 

figure 7.

3. Discussion

It must be noted that the hypothetical scenarios presented have numerous assumptions and 
unknowns. All of the assumptions of the microchannel flow model are included, plus the treat-
ment of the perivascular fluid space as the unique compensating compartment for vasodilation 
under the strict constraint of confined total volume. Furthermore, many of the parameters 
listed in table 1 and used in the scenarios are not well characterized; for example the baseline 
value of the ratio p that partitions the vascular to perivascular spaces. Finally, the theory con-
sidered herein are limited to isotropic and linear conditions. Brain anisotropy would produce a 
direction-dependent effect, which has been recently considered within the microchannel flow 
model (Parker 2017), and nonlinearities in tissues are thought to play a role during large dis-
placements associated with elevated fluid pressures (Rotemberg et al 2012, Arani et al 2017).

With those caveats, the microchannel flow model predicts a strong response to vasomodu-
lation in an unconfined organ. This effect has some experimental confirmation in other uncon-
fined tissues, specifically vasocontriction in the perfused placenta (McAleavey et al 2016) and 
in the excised liver after osmotic swelling (Parker 2015). However, under the constraints of a 
fixed total volume of the brain, the microchannel flow model uses the perivascular space as a 
compensating fluid volume. Of course, this presupposes that the perivascular fluid can drain 
into the subarachnoid space and beyond (figure 4), which is most likely for only localized 
vasodilation due to regional activation. Conversely, in the case of whole brain vasodilation, the 
squeezing of the entire perivascular space would result in an increased intracranial pressure 
(Czosnyka et al 2004) since there is no significant extra space available for the fluid to enter. 
This has been dramatically demonstrated in human subjects during carbogen breathing (Rich 
et al 1953), and represents a different physical condition from that supposed in section 2.

The electrochemical activation of regions of the brain by a variety of mechanisms (Tyler 
2012) may have potential for creating changes in the observed elasticity (Patz et al 2016, Patz 
et al 2017b). By comparison, a different specialized tissue that has been studied extensively 
is lung tissue, where activation of different cell types can create dynamic changes (Yuan et al 
1997), albeit limited, in measured elastic behavior (Suki et al 2011). They concluded that, 
‘Stimulation of the contractile machinery of these cells with different agonists induces local 
internal stresses in the fiber network of the ECM that can lead to changes in the viscoelastic 
properties of the lung tissue. Nevertheless, the viscoelastic properties of the lung parenchyma 
are only moderately affected by the active tone of the interstitial cells’ (Suki et al 2011).

In section 2 we have primarily considered changes in complex modulus which would be 
assessed through shear wave speed or wavelength estimators in elastography experiments. 
Other parameters related to the lossy and frequency-dependent nature of viscoelastic materials 
include the loss tangent, the wave speed dispersion, and attenuation. In both the microchan-
nel flow model and the Kelvin–Voigt fractional derivative models, these are all tightly linked 
(Parker 2014) to the power law parameter a, which is set to 0.2 in table 1 based on experience 
with a number of soft tissues (Zhang et al 2007, Parker et al 2016). In cases where a power 
law relationship has been specifically measured in brain, results cover a wide range from 
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0.2 < a < 1.2 (Streitberger et al 2011, Sack et al 2013, Testu et al 2017). Additional research 
is required to refine these estimates.

In the field of functional magnetic resonance imaging, (fMRI), the neuroactivation of 
a region followed by the vasoactive blood oxygenation level-dependent (BOLD) response 
(Malonek et al 1997, Buxton et al 1998, Hoge et al 1999, Sheth et al 2004) are present, and in 
the microchannel flow model scenarios contained in this paper, this mechanism (vasomodula-
tion) and/or cellular matrix stiffness chemo-modulation could lead to a dynamic and localized 
increase in measures of ‘stiffness’. How can these different hypothetical effects be exam-
ined individually? Teasing out the baseline parameters and different mechanisms will require 
experimentation under a range of different conditions. For example, different types of anes-
thesias can have different effects on vasodilation, as can the mix of oxygen and carbon dioxide 
(Rich et al 1953, Czosnyka et al 2004). Neural activation and non-activation can be tested, 
these are already common within many fMRI protocols. In animal experiments, independent 
measurements of regional blood flow and perivascular flow will be helpful. Ultimately, the 
empirical findings in humans will set the expected values for stiffness measurements in nor-
mal and pathological conditions, however any dynamic response must be either controlled or 
elicited and measured as part of the experimental protocols.

4. Conclusion

The brain is a unique organ in many respects and could have dynamic elastic behaviors that are 
not replicated in other organs. The microchannel flow model predicts an increased σSR and SWS 
produced by vasoconstriction (in an unconfined volume), by increasing the E of the cellular 
matrix by electro-chemical activation, or by vasodilation in a confined space where extra-vascular 
(perivascular) spaces are squeezed to compensate. Decreased σSR and SWS are produced in the 
converse cases. These effects are dynamic and can be frequency-dependent, thus careful exper-
imental controls are required to determine their relative magnitude and associated time constants.
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Appendix

In modeling the effects of the perivascular space on the elastic behavior of the brain, a sim-
plifying assumption was made. The annulus formed by ∆r  extending from rmin to prmax is 
treated in section 2.4, using the microchannel flow model, as equivalent to a vessel of radius 
∆r = rmax (1 − p). This would be reasonable if the flow Q is proportional to ∆r4 as in equa-
tions (1)–(3), which set the underlying rationale for the microchannel flow model.

However the laminar flow in an annulus is given by Rosenhead (1963):

Q =
∆Pπ
L8µ


(r4

max − pr4
max

)
−

(
r2
max − pr2

max

)

ln
(

1
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)
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(
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ln
(

1
p
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 ,

 
(A.1)
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whereas for a cylindrical vessel (pipe) of radius rmax (1 − p) the conventional Hagen-
Poiseuille’s law yields:

Q =
∆Pπ
L8µ

r4
max(1 − p)4. (A.2)

The two expressions are not close except near p → 1 where Q → 0. A Taylor series expansion 
of equation (A.1) with respect to p near p = 1 yields a r4

max(1 − p)3 term and a r4
max(1 − p)4 

term, and higher orders which are not significant in our range of interest (0.8 < p < 1). Thus, 
the more accurate modeling of the behavior of an annular fluid space like the perivascular 
space would require a re-derivation of the microchannel flow model beginning with both a 
r4
max(1 − p)3 and a r4

max(1 − p)4 term in equation (1). The consequences of this mixed power 
law are left for future research.
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