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The Doppler spectrum of echoes from a sinusoidally vibrating scatterer has discrete spectral 
lines weighted by Bessel functions of the first kind. Because the signal and spectrum are 
complicated functions of the vibration amplitude, a number of different approaches have been 
tried in the past to estimate the vibration amplitude, given a received signal. Here, a new and 
simple relationship between the spread (or variance) of the Doppler spectrum and the 
vibration amplitude is derived. A method of estimating the vibration amplitude is proposed 
based on this relation and a noise compensation procedure is also demonstrated. The 
performance of the estimators is studied through simulations. High accuracy is predicted 
under proper sampling conditions even when the signal-to-noise ratio is poor. Slight deviations 
from single-frequency oscillation, as would be caused by nonlinear or nonideal medium or 
source effects, are found to have little contribution to the total estimation error. 

PACS numbers: 43.60.Gk, 43.20.Fn, 43.30.Es 

INTRODUCTION 

The general problem of Doppler shifts from objects with 
time-varying velocity in an inhomogeneous or layered medi- 
um is quite complex. It is still a subject of controversy involv- 
ing linear and nonlinear derivations. 1,2 However, when the 
scattering object is vibrating slowly so as to produce a w. ave- 
length much larger than the geometrical dimensions of the 
scatterer itself, the Doppler spectrum of the signals return- 
ing from sinusoidally oscillating structures is similar to that 
of a pure-tone frequency modulation (FM) process. 3 This 
spectrum is a Fourier series with spectral lines lying above 
and below the carrier frequency. The spacing between spec- 
tral harmonics is equal to the vibration frequency, and the 
amplitudes of harmonics are given by different orders of Bes- 
sel functions of the first kind. 3 A number of applications in 
acoustics, optics, and radio have led to research on extract- 
ing the vibration parameters from a measured Doppler spec- 
trum. Amplitude, phase, and frequency of the oscillating 
structure are the most typical parameters to be estimated. 

Many techniques have been proposed to estimate the 
vibrational parameters. Holen et al. 4 measured the vibration 
frequency of oscillating heart valves by looking visually at 
the spacing between harmonics in the ultrasound Doppler 
spectrogram. The vibration amplitude is estimated by count- 
ing the number of significant harmonics under a certain 
threshold. This procedure is relatively coarse but is related 
to the observation in FM that the bandwidth is roughly pro- 
portional to the modulation parameter, or amplitude of os- 
cillation. 3 Taylor 5'6 studied the laser calibration of micro- 

phones, and determined the vibration amplitude by fitting 
the theoretical spectrum with an unweighted least-squares 
approximation. Lerner et al. 7 in their new technique for 
medical imaging of elastic properties of tissue called "sonoe- 
lasticity imaging," have suggested the estimation of vibra- 
tion amplitude by calculating the ratio of the two largest 
harmonics. Jarzynski et al. 8 undertake a similar estimation 
for precision measurement of the sound fields with laser 
Doppler by comparing the ratio of carrier and fundamental 
harmonics. Similar estimation had also been made by Cox 
and Rogers 9 to study the vibrational motion of auditory or- 
gans in fish. Observing that the ratios of the adjacent Bessel 
coefficients increase monotonically, Yamakoshi et al. 1ø 
came up with an estimator by comparing the relative magni- 
tude of the adjacent harmonics in their study of tissue mo- 
tion. They also derive the vibration phase from the funda- 
mental spectral components of two quadrature channels. All 
of these techniques can be broadly classified in the same cate- 
gory, or approach to estimation of the vibrational param- 
eters using some ratio of amplitudes. One of the disadvan- 
tages of the ratio methods is that they require either intensive 
computation or large look-up tables of theoretical Bessel 
functions for comparison with the measured data. Besides, 
ratio methods work well only when the argument of the Bes- 
sel function is small, which poses a severe limitation on the 
range of estimation. Furthermore, in practice, the perfor- 
mance of the ratio methods is highly degraded since almost 
all Doppler spectra suffer from poor signal-to-noise ratio. 

Finally, a sophisticated algorithm is required to deter- 
mine the best selection of the harmonic pair to be compared. 
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Therefore, this work presents a simple and noise-immune 
algorithm for vibration estimation. 

The problem of vibration amplitude estimation is ap- 
proached through the measurement of the spectral spread 
(or variance) of the Doppler spectrum. The proposed esti- 
mation techniques can be implemented without difficulties. 
For instance, in clinical applications of Doppler ultrasound, 
one could obtain the necessary parameters with slight modi- 
fications of existing instruments. Significant improvement 
on estimation accuracy can be further achieved with a noise 
correction algorithm. The theoretical derivations of the esti- 
mation and results of simulation are shown in the following 
section. The effects of noise, sampling, and nonlinearity on 
the estimator performance are also demonstrated subse- 
quently. 

I. THEORY 

A. Derivation of the Doppler spectrum 

Since the FM spectrum is well known, we briefly sum- 
marize results in this section and introduce our notation. 

When a moving object is illuminated with an incident laser, 
radio, or acoustic wave, the detected backscattered signals 
from that moving object will demonstrate a frequency shift 
known as the Doppler shift. If the scatterer is oscillating with 
the vibration velocity much slower than the wave speed and 
the vibration frequency much less than the cartier (incident 
wave) frequency, the spectrum of the detected scattered 
wave will be similar to that of a pure-tone FM process since 
the instantaneous frequency of the scattered waves has a 
Doppler shift proportional to the vibration velocity. Assume 
that the transmitted or incident signal is 

st (t) = cos(coot), ( 1 ) 

and the scatterers are vibrating with the form 

g(t) = •'m sin(co,.t or q), (2) 

v(t) =•(t) = v,, cos(co,.t ør q), (3) 
where •e(t) is the displacement of the vibration, v (t) is the 
velocity of the vibration, co,. is the vibration frequency, q is 
the vibration phase, g,, is the vibration amplitude of the 
displacement field, and v•, = co,.•e,, is the vibration ampli- 
tude of the velocity field. 

The instantaneous frequency of the received or scat- 
tered waves will be shifted to 

coo + Acoa, (4) 

Acoa = Aco,,cos (col t + •v ), ( 5 ) 
Aw ,, = 2v,, Wo cos 0/Co, (6) 

where cot is the instantaneous frequency of the scattered 
waves, Aco a is the Doppler shift, Co is the propagation speed 
of illuminating wave at frequency coo, and 0 is the angle 
between the wave propagation and the vibration vectors. 

Therefbre, the received or scattered waves can be writ- 
ten as 

s,(t) =A cos[coo t + (Aco,,/coL)sin(co•t + qv) ] (7) 
since the instantaneous frequency is, by definition, given by 
the time derivative of the argument of the carrier cosine 
wave. 

Using trigonometric identities, Eq. (7) can be replaced 
by the series 3 

s,(t) =,4 • J. (/Y)cos[coot + n(coLt + q•) ], (8) 

where the modulation index or the argument of the Bessel 
functions/3 is directly related to the vibration amplitude of 
the velocity or displacement field as follows: 

Aco., 2v., coo cos 0 2•'.,coo cos 0 
/3= = = = 4rr • cos 0, 

coL coL C0 C0 /•0 
(9) 

where Ao is the wavelength associated with the wave of fre- 
quency coo and propagation speed Co. 

Thus, given the Doppler spectrum as described above, 
the estimation of the vibration amplitude is equivalent to the 
estimation of the Bessel argument/3. The exact spectral 
shape of the Doppler signal is complicated and dependent on 
the parameter/3. Examples of Doppler spectra from low, 
medium, and high values of/3 and the two quadrature com- 
ponents of the corresponding Doppler signal are given in 
Figs. 1 and 2, respectively. Given a measured spectrum, it 
can be seen that the backward estimation of/3 is not straight- 
forward, even in the noise-free case. Experimental time-fre- 
quency display data from an ultrasound B-scan instrument 
with Doppler capabilities are given in Fig. 3. The vibration 
frequency is fixed, while the vibration amplitude, which is 
proportional to the parameter/3, is increased from left to 
right, then decreased. More sidebands plus aliasing show up 
when the parameter/3 increases. As shown in Fig. 2, the two 
quadrature components of the Doppler signal correspond- 
ing to those in Fig. 1 are also complex. Thus a time domain 
estimation approach is not obvious. The estimation is even 
more difficult when the background noise is mixed with the 
signal, as shown in Fig. 4. 

B. Vibration estimation from Doppler spectral spread 

Two Doppler spectral parameters, spectral variance (or 
spectral spread) and mean Doppler frequency, are usually 
defined as: 

and 

0'2o, = (co -- •)2S(co)dco S(co)dco (10) 

• = coS(co)dco S(co)dco , ( 11 ) 

where c% is the Doppler spectral spread (a2•o is the variance 
or second moment), • is the mean frequency shift of the 
Doppler spectrum (the first moment), and S(co) is the 
Doppler power spectrum downshifted to baseband. Note 
that the mean Doppler frequency shift • is not necessarily 
zero since the Doppler signal is generally complex and the 
Doppler spectrum S(co) can be asymmetric. 

If the scatterer is vibrating, the Doppler power spec- 
trum that can be derived from Eq. (8) in the previous section 
is 

S(co) -- 2•r • J• (/3)6(co -- nco• ), (12) 
n•--•- 
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FIG. 1. Examples of noise-free Doppler spectra for low/5' = 3: (a) linear and (b) log scale; medium/5' = 10: (c) linear and (d) log scale; high/5' = 30: (e) 
linear and (f) log scale. Normalized fold-over frequency flora = 64, normalized segment length TFET = 4, for all cases. 
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FIG. 2. Examples of two quadrature components of noise-free Doppler signals for low/3 = 3: (a) in-phase and (b) quadrature-phase component; medium 
/3 = 10: (c) in-phase and (d) quadrature-phase component; high/3 -- 30: (e) in-phase and (f) quadrature-phase component. Since the function is periodic, 
only one cycle is shown in the graphs. 
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FIG. 3. Experimental observation of Doppler spectrum from vibrating 
structures under clinical B-scan ultrasound. The lower portion is a time 
( horizontal ) -frequency (vertical) display of data from the region selected 
by the cursor as shown on the upper portion. Vibration frequency is held 
fixed, while vibration amplitude is increased and then decreased from left to 
right. 

where the power spectrum has been downshifted to zero fre- 
quency, as by quadrature detection. 

For this particular Bessel spectrum, the mean frequency 
• is zero since J_, (/3) = ( -- 1 ) "J, (/3) and the power spec- 
trum is therefore symmetric about zero frequency. Thus, the 
spectral spread can be calculated from the zeroth and second 
moments of the spectrum defined as 

mo= • O r 2,,(/3), (13) 

m2 = Z ( no L ) J • (/3), (14) 

where m k is the k th moment of the Doppler spectrum. 
However, the zeroth moment is the total energy of the 

signal and is equal to unity. One can easily show this using 
the following mathematical identity: 

eia sin 0 = • Jn (•) ei"O. ( 15 ) 

Squaring the above equation and replacing 0 with -- 0 in one 
term, we have 

1 • e ily sin Oeil• sin ( - o) 

Z Z Jm (•)Jn (•) ei(m - n)O. (16) 
m= --c• n= --oo 

ß . . 

0.0 115.0 32.0 4•.0 64.0 
Normolized Frequency 

FIG. 4. Example of noisy Doppler spectrum with/g = 10, signal-to-noise 
ratio SNR = 20 dB, normalized fold-over frequency fto•a = 64, and nor- 
malized segment length TFF T --4, (a) linear scale, (b) log scale. 

Integrating the above equation over one period (0 = 0 to 
2rr), and using orthogonality of exponential functions for 
m•//, 

1-- • j2.(/3)__mo, (17) 
a result that has been noted in the literature. • 

The second moment can be derived in the same way by 
taking the first derivative of the Eq. (15) with respect to 0, 

/• COS Oe i/3sin 0 __ Z n J, (•)e inO. (18) 
n• 
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Squaring from the above equation as before, 

• 2 COS 20eifi sin Oeifi sin ( - o) 

= • • mnJ,• (/•)J, (/•)e i('•- 
m• --oo n• 

Then, integrating over one period again, 

(19) 

2 •-- 2 2 

2 -- • nJ•(/5')=m2. (20) 

In general, all moments of the Bessel spectrum can be 
calculated from derivatives of Eq. (15) by proper differenti- 
ation, squaring, and integration. Low-order moments of the 
Bessel spectrum are given in Table I. 

These moments of the Bessel spectrum can also be cal- 
culated from the generating function of Bessel function: 

/(•,Z)• • zngn(•)=e (B/2)[z-•l/z)l (21) 
which can be found in a standard handbook on bessel func- 

tions. 11 By taking the 1 st through the k th derivative of the 
generating function with respect to z and substituting z = 1 
into the resulting expressions, all moments of the Bessel 
spectrum, as functions of the parameter/5', can then be calcu- 
lated from lower-order moments by squaring and simple al- 
gebraic manipulation. 

From this point of view, the Bessel spectrum is actually 
a one-parameter function. Therefore, the second moment 
serves as a good estimator of the spectrum. 

One can estimate the vibration from the Doppler spec- 
tral spread as 

oao_, = (m• -- m• 2 )/mo = [ m• -- (•) • ]/mo, (22) 
and for this case of the Doppler spectrum, • = O, thus 

or 

/5'= x/• (rro•/cot- ). (24) 
This indicates that the amplitude parameter/5' can be 

estimated from the standard deviation of the power spec- 
trum. This straightforward result has, apparently not been 
previously derived for the case of FM broadcast or Doppler 
spectrum from vibrating objects. 

j 2,, (,8)6(0 - n co r ) + N ( co ) ) d co 
X • J•, (l•)6(co -- ncoL ) + N(CO) do 

= (mzs + m2.•v)/(mo,s + mo,•v) 

= [o•o,s + (1/SNR)o•,,•v]/[1 + (1/SNR)], (25) 
where • is the mean Doppler shift of the noisy signal given 
by 

• = co J• (/5')6(0 -- ncot. ) + N(co) dco 

X j2 (/5')6(0- not.) + N(co) do 

(26) 

ink, s and ink,•v are the k th moment of signal and noise about 
the corresponding mean frequencies respectively, rro•,s is the 
Doppler spectral spread of vibration only, rro•,•v is the 
Doppler spectral spread of noise only, and SNR is the signal- 
to-noise ratio given by 

SNR = j 2 (,8) 6 (co -- not- ) do 

X N(co)dco 

=mo, s/mo,•v = 1/mo, s. (27) 

As long as the noise is stationary, the moments of noise 
power spectrum can be estimated when the vibration is re- 
moved or halted. Once the noise moments have been esti- 

mated, the noise-free vibrational Doppler spectral spread 
can then be estimated from the noisy signal as 

cr2o,,s = cr2•, [ 1 + (1/SNR) ] -- (1/SNR)a2o,,•v . (28) 
In some applications, the vibration is inherent and can- 

not be controlled externally. The noise compensation, in this 
case, can be done by estimating the signal-to-noise ratio as 
well as the Doppler spectral spread of the noise from the 
finite bandwidth white noise assumption as follows: 

mo,•v = No do = 2NOB, (29) 
--B 

'"2NoB 3 in2,N : co2N o do = (30) B 3 ' 

o;o,,•v = (2NOB 3/3)/2NOB = B 2/3, (31 ) 
where No is the power spectral density of the white noise, and 
B is the one-sided bandwidth of the white noise. 

C. Noise correction algorithm 

In practical situations, noise presents problems in pa- 
rameter estimation. The Doppler signals tend to be 30-50 dB 
lower than the carrier in many applications, therefore, the 
signal-to-noise ratio for Doppler signal is usually poor. Ad- 
ditive, stationary, and uncorrelated noise can be removed 
from the Doppler spectral spread vibration estimator. If sta- 
tionary uncorrelated noise with power spectrum N(co)• is 
added in the received backscattered signal, the noisy 
Doppler spectral spread rro• can be written as 

TABLE I. Low-order moments of the Bessel spectrum. 

All odd moments 0 

0th moment 1 

2nd moment «/• 2 
4th moment «/• 2 _• _38•4 
6th moment «/•2 _• ½•4 _• •_6•6 
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Even when the noise is not white, the noise compensa- 
tion is still possible as long as noise power and noise spectral 
spread can be estimated a priori by statistical techniques. 

II. RESULTS AND DISCUSSIONS 

Simulated Doppler spectra are obtained by taking fast 
Fourier transform (FFT) of finite segments that are com- 
posed of the two quadrature components of Eq. (7). Figures 
5-9 are families of the estimation errors 

[ (/•-/•)//•] X 100% as functions of various parameters in 
the estimation process, where/• is the estimated vibration 
parameter and/• is the true parameter. 

A. Effects of noise 

The estimation errors are plotted as functions of signal- 
to-noise ratio from 0-40 dB in Fig. 5 (a). White Gaussian 
noise was added independently into the two quadrature 
components. The normalized sampling frequency (defined 
as sampling frequency divided by the vibration frequency) is 
128. Or equivalently, the normalized fold-over frequency 
(defined as fold-over frequency, or aliasing frequency, or 
half-sampling frequency divided by the vibration frequency) 
is 64. A high sampling rate was used to reduce the aliasing 

og • ;,, •. --.-/•:•o \ 

• k'v• • "%•• "•"--... ................. 

o 

0.0 1•.0 40.0 20.0 30.0 

(a) Signal-to-Noise Ratio 

I• ' I ' i i 
o.o •0.0 20.0 30.0 

(b) Signal-to-Noise Ratio (dB) 
40.0 

o 

2;10 0 

o. 

2,1½ 
lb) 

Noise-Dee 

Normalized Fold Over Frequency 

SNR = 40 dB 

o o 

o /•=1 o #=5 

• ' /•=•o 4- 

, __/•= 20 
x 

Normalized Fold Over Frequency 

FIG. 5. Plot of estimation errors in percentage against signal-to-noise ratio 
from 0-40 dB at normalized fold-over frequencYfro.d = 64 and normalized 
segment length TFrr -- 4, (a) without noise correction (theoretical predic- 
tion and results from one simulation), (b) with noise correction (average 
over five simulations). Note the expanded scale in (b) showing drastic error 
reduction achieved by the noise reduction procedure. 

FIG. 6. Plot of estimation errors without noise correction against normal- 
ized fold-over frequency with TFrr = 4, (a) noise-free, (b) signal-to-noise 
ratio SNR = 40 dB. As sampling frequency increases, underestimations 
originated from aliasing decrease in all cases. In (b), noise spectral spread 
causes large errors at high sampling rates since wideband white noise is 
employed in simulations. 

2708 J. Acoust. Sac. Am., Vol. 88, No. 6, December 1990 Huang eta/.' Amplitude of harmonic vibration 2708 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.151.164.114 On: Tue, 09 Sep 2014 14:47:58



o. 

0.0 1.0 

.............. /5'=5 

....... /5'=10 
•.-/• = :•o 
--- -/• = 50 

age estimation errors over five simulations. The estimation 
errors are swinging back and forth around zero as the pa- 
rameter/3 changes. This indicates that the estimator is un- 
biased. The maximum estimation error for poor signal-to- 
noise ratio at 0 dB is still within 4%. The estimation error of 

high/3 is much less than that of low/3, as explained earlier. 

B. Effects of sampling 

The aliasing effect can be serious when the fold-over 
frequency or sampling frequency is not proper. Figure 6 (a) 
shows the noise-free estimation error at normalized fold- 

over frequency expressed as a power of 2. The effect of the 
improper segmentation is minimal here since the normalized 
total length is four, as will be explained later. The estimation 

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' errors blow up at the point when the parameter/3 is larger 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

Normolized Segment Length than a threshold. This sampling criterion can be expressed as 

FIG. 7. Plot of noise-free estimation errors against normalized segment 
length TFrr -- 4. The finite-length effect produces overestimation. When 
the segment length is an integral multiple of vibration period, the estimation 
error drops to a minimum. 

error resulting from the finite representation of the infinite 
spectrum. The normalized segment length (defined as seg- 
ment length divided by the vibration period) is 4. Two sets of 
curves are shown in Fig. 5 (a). The rapidly fluctuating one 
comes from a single simulation, while the smooth one is the 
theoretical prediction of the deviation of the estimation 
without any noise correction using Eq. (28). The simulation 
results agree with the theoretical prediction. These results 
show that the signal-to-noise ratio must be higher than about 

•30 dB to achieve acceptable accuracy of estimation unless 
noise correction procedure is performed. 

From Eq. (25), the performance of the vibration esti- 
mator without noise correction will be degraded when the 
signal-to-noise ratio is low or the spectral spread of noise 
only is large compared to that of vibration only. When the 
parameter/3 is small, the spectral spread of the Bessel spec- 
trum is narrow since the bandwidth (or spectral spread) is 
proportional to the parameter/3 from Eq. (23). In this case 
of low/3, the spectral spread of noise is comparable or even 
larger than that of vibration only, thus the performance is 
highly degraded by the addition of the noise. When the pa- 
rameter/3 is large as in wideband FM, the performance of 
the estimator is fairly good as long as/3 is still smaller than 
normalized fold-over frequency. The overestimation is due 
to the subtraction in Eq. (28). 

Figure 5 (b) is a plot of the estimation error with the 
noise correction algorithm. The vibration was removed to 
estimate the moments of the noise-only Doppler spectrum, 
and then the parameter/3 is estimated from the noisy signal 
by Eq. (28). Sampling conditions are the same as that in Fig. 
5 (a). Note the expanded vertical scale is Fig. 5 (b). Obvious- 
ly, dramatic error reduction is achieved through the noise 
correction procedure. The results of Fig. 5(b) are the aver- 

X ---- 2ffold •/2timaxiL, (32) 

wheref• is the sampling frequency, frold is the fold-over fre- 
quency, and fL is the vibration frequency in Hz. 

It is interesting to note that the aliasing always results in 
underestimation. The reason is that harmonics higher than 
fold-over frequency are folded back into lower frequency 
contents and the co 2 or n 2 term associated with the higher 
harmonics in calculating the second moment is smaller than 
what it should be in the theoretical expressions (10), (14), 
and (23). 

Figure 6 (b) is the same simulation with 40 dB signal-to- 
noise ratio. Interestingly, as the fold-over frequency in- 
creases, the estimation errors increase as a second-order 
polynomial. This results from the property of the white 
Gaussian noise used in simulation. Since the spectral spread 
of a uniform spectrum is proportional to the second power of 
the bandwidth, as shown earlier in Eq. (31 ), the estimation 
error increases approximately as a second-order polynomial 
in normalized fold-over frequency when no filtering process 
is involved. Therefore, filtering should be taken if the sam- 
pling frequency is increased to avoid the aliasing error. In 
practice, filters can be designed to optimize the estimation 
according to the actual spectral moments of signal and noise. 

Figure 7 is the plot of noise-free estimation error against 
normalized total sampling segment length Tvrr. To exclude 
the effect of aliasing error, the normalized fold-over frequen- 
cy is set to 64. The estimation error is minimal whenever the 
normalized total sampling length is equal to an integer. The 
large error of nonintegral normalized total sampling length 
is due to the sharp discontinuity of the time domain signal 
from the inherent periodicity when FFT analysis is exploited 
without windowing. This indicates that windowing or syn- 
chronization is required in practical analysis. Note that the 
finite sampling length always causes overestimation. This 
happens as expected since the sharp discontinuity in time 
domain generates significant sidebands that can subsequent- 
ly increase the spectral spread. 

C. Effects of nonlinearity 

If the vibration is not perfectly sinusoidal due to some 
medium or vibration source nonlinearity, the Doppler spec- 
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Normalized Frequency 
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(d) 

FIG. 8. Examples of noise-free Doppler spectrum for 2% and 10% nonlinearity with fundamental vibration amplitude/3 = 10, normalized fold-over 
frequencyffo•a = 64 and normalized segment length TFvr = 4. Note that the peaks of the spectra shift from the case of no nonlinearity (Fig. 1 ). The relative 
ratios of harmonics also vary as a function ofnonlinearity, vibration amplitude, and fold-over frequency: (a) 2% nonlinearity, linear scale, (b) 2% nonlinear- 
ity, log scale, (c) 10% nonlinearity, linear scale, (d) 10% nonlinearity, log scale. 

tral shape will deviate from the one parameter Bessel spec- 
trum. Assuming the vibration is periodic and can therefore 
be represented by a Fourier series, both the ratio of harmon- 
ics and the spectral spread will be different from that of a 
pure sinusoidal vibration. Assuming that only the funda- 
mental and second harmonics are significant in the vibra- 
tion, the returned signal now can be written as 

S r (t) = A COS [ COot -t-/• sin (CO L t -t- • 1 ) 

-t-/•2 sin(2COL t -t- •%) ], (33) 
where/3 and/32 are the modulation indices of the fundamen- 
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tal and second harmonics of the vibration, respectively. 
An expression for the Fourier series expansion of the 

above signal can be obtained from the analysis of multitone 
FM 3 with slight modification as follows: 

$r ( t) = • • J• ([3)J. ([32) 

Xcos[COo t + m(CO•t + qo•) + n(2CO•t + q02) ]. 

The nonlinearity is defined as 

(34) 
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FIG. 9. Plot of noise-free estimation errors against nonlinearity. The errors 
are almost the same for all values of/•' from 0.1-50. The errors due to nonlin- 
earity are less than 2% when nonlinearity is less than 10%. 

Nonlinearity = N2 • (/3://3) X 100%. (35) 

Figure 8 a-d shows the spectra of 2% and 10% nonlin- 
earity for the case of/3 = 10. The spectral shapes and peaks 
are different from that of pure tone vibration (Fig. 1 ). Sur- 
prisingly, this does not affect the Doppler spectral spread 
much. Estimation for noise-free, small aliasing, and properly 
sampled signal has been performed as shown in Fig. 9. The 
results show that nonlinearity less than 10% contributes less 
than 2% estimation error. In comparison, all conventional 
estimators that utilize amplitude ratios would be dramatical- 
ly affected by 10% nonlinearity. This can be appreciated by 
comparing the patterns of peak amplitudes in Fig. 1 (c) 
against those in Fig. 8 (c). 

D. Combined effects 

A case that is typical in "sonoelasticity imaging, "7'12 
with the following parameters, was performed to show the 
combined error: 

Co = 1.5X 10 • cm/s, 

fo = Wo/2rr = 7.5 MHz (i.e., ,go = 0.2 mm), 

0 = 100, 

f• = co•/2•r = 200 Hz, 

/3 = 10 (i.e., •m = 0.16 mm, Vm -- 20.3 cm/s), 

SNR = 20 dB, 

f•old = 12.8 fL = 2560 Hz (i.e., fs = 5120 Hz), 

TFFT -- 10 TL = 50 ms (i.e., LFrr ---- 256) l, 

N2= 10%, 

where T•r is the segment length for FFT analysis in ms, 
and L •r is the number of samples in T•r. The estimation 
error without noise correction is 3.39%, while the estima- 
tion is reduced to 1.97% after noise removal. Most of the 

error comes from the nonlinearity. If the nonlinearity is re- 
moved, estimator without noise correction gives accurate 
estimation within 0.01%, while the accuracy is increased to 
0.0001% after noise correction. 

If wideband white noise is added but no filtering process 
is used (same parameters, except ffold = 64 fL ), then the 
estimation error for estimator without noise correction rises 

to 30.4%, while the error remains as small as 1.75% after 
noise correction. The large error is due to the large wide- 
band-noise spectral spread as predicted in Eq. (31 ). This 
suggests that either noise correction or filtering is necessary 
for noise reduction when the sampling frequency is in- 
creased to reduce the aliasing error in practical implementa- 
tion. If filtering is applied, the effects on signal spectral 
spread must be taken into account during the filter-design 
phase, since higher harmonics of the signals are removed as 
well. It should be noted that the performance of the estima- 
tor with noise correction can be improved by increasing sam- 
pling frequency without filtering. 

III. CONCLUSION 

We have analyzed the signal reflected from a sinusoidal- 
ly vibrating object. An estimator of vibration amplitude 
based on the derived relation between Doppler spectral 
spread and vibration amplitude has been proposed. A noise 
correction algorithm is also proposed, which can improve 
the estimation accuracy dramatically. Simulations show 
good results within 4% error given signal-to-noise ratios 
ranging from 0-40 dB. Adequate sampling frequency, as giv- 
en in the text, must be satisfied according to the expected 
maximum vibration amplitude. Proper filtering can reduce 
the spectral spread of noise and then reduce the estimation 
error. Windowing or synchronization is required in practical 
implementation to reduce the finite length effect. The pro- 
posed estimator survives through vibration nonlinearity less 
than 10%, whereas other known estimators that make use of 
the harmonic ratio of amplitudes do not tolerate slight non- 
linearities. Overall, the proposed estimator is robust in the 
presence of noise compared to earlier estimators. The esti- 
mation can be obtained via simple calculations from the pa- 
rameters in some existing Doppler instruments, especially 
those available in clinical Doppler ultrasound. To display a 
realtime vibration image, existing faster time domain 
Doppler spectral spread estimators (e.g., Refs. 13, 14) can 
be applied with modifications (e.g., changing scanning pat- 
terns and sampling frequency to reduce,the effect of vibra- 
tion phase) and/or synchronization (with low-frequency vi- 
bration) to display the vibration amplitude. The results 
should be relevant to echocardiology, sonoelasticity imag- 
ing, laser calibration of sound fields and vibration, and other 
radio, radar, and sonar applications. 
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