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Abstract—This review considers three general classes of physical as opposed to phenomenological models of the
shear elasticity of tissues. The first is simple viscoelasticity. This model has a special role in elastography because
it is the language in which experimental and clinical data are communicated. The second class of models involves
acoustic relaxation, inwhich themedium contains inner time-dependent systems that are driven through the external
bulk medium. Hysteresis, the phenomenon characterizing the third class of models, involves losses that are related to
strain rather than time rate of change of strain. In contrast to the vast efforts given to tissue characterization through
their bulk moduli over the last half-century, similar research using low-frequency shear data is in its infancy. Rather
than a neat summary of existing facts, this essay is a framework for hypothesis generation—guessing what physical
mechanisms give tissues their shear properties. (E-mail: ecarsten@rochester.rr.com) � 2014World Federation for
Ultrasound in Medicine & Biology.
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INTRODUCTION

After it became apparent more than a half century ago
that ultrasound had a firm place in both medical diagnosis
and therapy, a parallel investigative effort to understand
the mechanisms responsible for the acoustic properties
of tissues was undertaken. For the irrotational, largely
compressional waves employed in most applications of
diagnostic ultrasound, the bulk moduli and densities of
soft tissues, on which imaging depends, differ from one
to another by only a few percent (Goss et al. 1978).
Acoustic absorptions in tissues even at megahertz fre-
quencies are modest. Modern diagnostic ultrasound sys-
tems have adapted to these properties and produce
high-resolution images at large depths of penetration.

The absorptions associated with the propagation of
irrotational waves are consistent with models involving
acoustic relaxation at the macromolecular level (Duck
et al. 1998). Even solutions of a single molecular species
such as hemoglobin appear to involve many different
relaxation processes with a broad distribution of relaxa-
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tion times (e.g., Carstensen and Schwan 1959b). Other,
largely phenomenological models for tissue properties
have been proposed, and research on this subject con-
tinues today. However, models based on chemical or
structural relaxation at the macromolecular level are
consistent with available observations. In fact, because
it is possible to invoke arbitrary distributions of relaxation
processes to match nearly any observed frequency de-
pendence for the absorption, relaxation models are diffi-
cult to disprove. Structure makes a modest contribution
to absorption (Carstensen and Schwan 1959a; Pauly
and Schwan 1971). Professor Waag has contributed
fundamentally to an understanding of ultrasound
propagation through macroscopically inhomogeneous
tissues (e.g., Mast et al. 1999; Nachman et al. 1990;
Salahura et al. 2010).

For years, the use of shear waves in diagnostic med-
icine languished because of their large absorption coeffi-
cients. That changed with the invention of elastography,
which uses shear strains and shear waves at extremely
low frequencies, where propagation even in soft tissues
can extend to useful distances (Parker et al. 2011). Prog-
ress in the development of elastography as a diagnostic
tool has accelerated over the last two decades, but we
have yet to undertake an in-depth study of the mecha-
nisms responsible for the shear properties of tissues.
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There are several reasons to believe that such studies
will be even more valuable than they have been for
compressional wave propagation. First, the shear moduli
of soft tissues are five or six orders of magnitude smaller
than their bulk moduli (Gao et al. 1996; Sarvazyan et al.
1995). Furthermore, the effective shear viscosities of soft
tissues reported at audible frequencies (Boursier et al.
2009; Deffieux et al. 2007; Zhang et al. 2007) are
several orders of magnitude greater than they are at
megahertz frequencies (Frizzell et al. 1976). Those prop-
erties alone suggest that we can expect qualitatively
different information about tissues from elastography
than we have learned from compressional wave probes
of soft tissues. Most important, in contrast to the case
for compressional waves, it turns out that the shear
moduli of diseased tissues, in many cases, are an order
of magnitude or more greater than they are for normal
soft tissue, making the value of the shear modulus itself
a useful diagnostic datum. Today, we know frommany in-
dependent studies that there is a rough correlation be-
tween shear modulus of liver and its degree of fibrosis
as assessed qualitatively through biopsy (Carstensen
et al. 2008; Sandrin et al. 2003). Because shear
modulus can be measured non-invasively and quantita-
tively, there is reason to hope that it can eventually pro-
vide the diagnostic baseline to which other diagnostic
data are referenced in the management of liver disease.

Empirical or phenomenological descriptions of
observed data are useful even though they tell us little
or nothing about the underlying physical processes. Our
purpose in this review, however, is to start first with
guesses about what it is in the structure and behavior of
tissue that controls its shear properties and, then, to
formulate these guesses into models that are sufficiently
specific and quantitative that they can be tested experi-
mentally. Of course, all knowledge is faith—guesses or
models of the truth that to the best of our experience,
directly or indirectly, are consistent with observations
of the real world. This essay is more a framework of
guesses than a review of tested models. In the long run,
however, there is great hope that physically based models
will elucidate the diagnostically relevant information that
elastography promises.

Our knowledge for shear elasticity as it applies to
elastography is at approximately the stage of develop-
ment that the theory for compressional wave propagation
was a half-century ago. And, the opportunities for study
are almost completely open to us. There is hope, however,
that progress can be more rapid in shear wave studies, in
part because of the guidance we may find in the similar
effort that has been made over the years in the study of
irrotational wave propagation.

The terms stiffness and compliance are generic de-
scriptors of the difficulty or ease of distorting objects or
the materials from which they are made. At one extreme,
we might have the stiffness of a coiled spring that could
be quantified as a simple 1-D scalar relationship between
force applied and its change in length. At the other
extreme, to describe the material properties of the steel
from which it is made, we need fourth-order stiffness ten-
sors to relate the second-order stresses applied to the ma-
terial to the second-order strains. Such formulations
permit us to deal with materials that are anisotropic.
Certain tissues such as muscle are in fact strongly aniso-
tropic. Although this discussion is limited to purely
isotropic materials, the need to deal with more complex
media in the long run should not be ignored.

The stiffness of an isotropic medium can be charac-
terized by two moduli: the bulk modulus, k, the ratio of
the mean normal stresses on an element of the material
to its volume change, and the shear modulus, m, the ratio
of shear stress to shear strain, which characterizes the
change in shape of the element. It is the shear modulus
of tissue that has been found to change profoundly in
certain diseased states; it is the shear modulus that is
the focus of elastography, and physical models of the
shear modulus are the subject of this discussion. As we
illustrate, when stress and strain are purely shear, it is
possible to reduce the general tensor equations to simple
scalar statements, thus greatly simplifying our presenta-
tion. It is possible to design laboratory experiments that
involve only shear. All medical applications of elastogra-
phy involve both shear and bulk strains. However, shear
strains in these applications are orders of magnitude
greater than bulk strains.

Although no model is ever the full truth, all we ask is
that it be ‘‘true enough’’ to be useful. Of the general classes
of models for soft tissues (Delingette 1998; Fung 1981;
Humphrey 2003), we consider three. The first is simple
viscoelasticity. It assumes that each element of tissue
has shear stiffness and coincident shear viscosity—each
quantity independent of time and frequency. It says that
shear stress is proportional not only to the strain itself,
but also to the time rate of change of strain. Despite its
simplicity, this model has a special role in elastography
because it is the language in which experimental and
clinical data are communicated. In fact, the first
generation of clinical elastography systems makes no
effort to describe the frequency or rate dependence of
shear tissue properties.

As noted earlier, the shear viscosity of soft tissues, as
seen through the simple viscoelastic model, is strongly
frequency dependent. For the broader picture, therefore,
more complex models are required. This second class
of models involves acoustic relaxation, in which the me-
dium contains inner time-dependent systems that are
driven through the external bulk medium. The stress
response with relaxation is dependent on both strain
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and time rate of change of strain as in the simple visco-
elastic model. The response is just somewhat more
complicated. Most of the observed shear properties of tis-
sues can be described with relaxation models.

The third class of models is somewhat more specu-
lative. There is some evidence that when tissues are
strained they do not return spontaneously to their native
state as would be expected for a viscoelastic or relaxation
medium, for example, pitting edema. For behaviors like
this, the absorptions are related to strain rather than
time rate of change of strain, the processes are almost al-
ways non-linear, the models may not be causal and the
wave speed may be dispersionless, that is, independent
of frequency. This process is called hysteresis.

It will be readily apparent that this is not a tutorial, a
neat summary of existing facts, but rather an invitation to
the reader to collaborate in the development of more ac-
curate and elaborate conceptual physical models of the
shear properties of tissues and the potential relationships
of these models to diagnostic medicine.

Our primary motivation for this review has been to
develop an intuitive picture of tissues and their shear
properties. It is our hope that by erring on the side of qual-
itative description, we can prevent the trees from
obscuring the forest. In that spirit, we provide next an
overview of our review.

Part I is just Newton’s second law of motion
(force 5 mass 3 acceleration) applied to a linear elastic
continuum. When we apply the law to a continuous me-
dium instead of a simple object, our problem is compli-
cated by the need to decide what the ‘‘object’’ is to
which we apply the force. As a result, our modified New-
ton’s law relates elastic force density, or force per unit
volume, to the inertial force density involving the accel-
eration of mass per unit volume.

We write the force density as the divergence of the
stress in the medium; the stress is the force per unit
area, and its divergence is the space rate of change of
the stress and, hence, the net force per unit volume. It
takes a package of three scalar numbers to specify a force
(a vector or first-order tensor) and nine scalars to specify a
stress state or stress tensor (a second-order tensor). The
stress tensor is symmetric, so at most six of its scalar el-
ements are independent. The science of acoustics, in gen-
eral, deals with fluids. In that case, the force per unit area
in the medium is the same in all directions and always
normal to any surface. This simplification means that
the stress can be characterized by a single, time- and
space-dependent, scalar number. In acoustics, that scalar
is called the pressure. Of course, pressure is a stress (a
force per unit area and a second-order tensor), but it
can be treated as a scalar in basic acoustics. The force
density of the pressure, when treated as a scalar, is its
gradient. It happens that the gradient of the pressure
treated as a scalar is equal to its divergence when treated
as a second-order tensor. It is quite remarkable that al-
most the entire theory behind diagnostic ultrasound starts
with the acoustic assumption, that is, tissue is a fluid.

Of course, shear waves cannot propagate in fluids.
We will see that elastography is possible because soft tis-
sues fall in a narrow window of shear moduli and shear
viscosities where shear stiffnesses are large enough to
support wave propagation and viscous losses are small
enough that they can travel useful distances.

Whether our focus is on diagnosis, safety or therapy,
we are interested in what happens to tissue when it is sub-
jected to mechanical stress. We quantify the tissue
response by its strain. Despite the central role that strain
plays, conventional diagnostic ultrasound can be prac-
ticed without giving it much thought. That, in part, is
because compressional strain is so small—of the order
of 0.001 at the highest pressure levels permitted under
Food and Drug Administration guidelines. Those tran-
sient pressures are nearly 2 MPa. That is roughly the
pressure one would experience under water at about
200 m. In fact, the small strains may account for the
fact that huge transient pressures can be used in conven-
tional diagnostic procedures with no apparent effect on
the tissues. The shear strains we employ in elastography
are another story.

Strain comes in two flavors: bulk strain, which mea-
sures change in volume, and shear strain, which measures
change in shape of the medium. Both occur in conven-
tional diagnostic ultrasound. In that application, however,
they are of the same order of magnitude and very small. In
elastography, shear strains are of the order of a few
percent despite the fact that the shear stresses are of the
order of a kilopascal—five or six orders of magnitude
smaller than the stresses used in conventional diagnostic
ultrasound. Depending on the point of view of the
observer, shear strain may look like changing a cross sec-
tion of the medium from a square to a parallelogram or
from a square to a rectangle. For pure shear strain these
shape changes take place without change in the volume
occupied by the element.

In the same way that we use Hooke’s law to relate
the stretching of a spring to the force applied, we can
relate stress to strain using a generalized Hooke’s law.
Arbitrary, realistic applications relating stress to strain
can become rather complicated. However, it is possible
to choose examples that illustrate the basic physical pro-
cesses with minimal mathematical complications. For a
linear, elastic, isotropic material at the most basic level,
the ratio of dilatational stresses to bulk strain is called
the bulk modulus, and the ratio of shear stress to shear
strain is given by the shear modulus.

If one element of a continuous medium is strained,
it affects its neighboring elements and the strain
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propagates throughout the medium. The rate of propa-
gation is determined by the elastic moduli of the me-
dium. One of the most attractive methods for
measuring these moduli involves measurements of the
dynamics of that propagation. Part I simply elaborates
on this propagation. Discussion of the three classes of
physical models of the shear properties of tissues is
taken up in Part II.
PART I: SHEAR STRAIN IN WAVE
PROPAGATION

The wave
For our purposes, it can be assumed that Newton’s

second law is valid for any physical object; that is, its ac-
celeration is equal to the force acting on it. In a contin-
uum, this can be stated in terms of forces per unit
volume, or force densities,
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where r is density, t is time and x
!

is particle displace-
ment. (For linear systems where the amplitude of oscilla-
tion is small, the total time derivative in eqn [1] can be
replaced by the partial time derivative.) Force densities
may be viewed as arising from either (i) an imbalance
in surface forces (first term), (ii) as ‘‘generated’’ inter-
nally, for example, gravity or radiation force associated
with the absorption of ultrasound (second term) or (iii) in-
ertial forces (third term). The components of the stress
tensor T

0

consist of the components of the vector forces
per unit area on each of three orthogonal surfaces. Spec-
ifying the stress requires a second-order tensor composed
of nine scalars. However, stress, by convention, includes
only forces that change volume or shape of the medium.
That makes the stress tensor symmetric, and at most six of
its scalar elements are independent. (See eqn [17] and
associated Fig. 4.)
Stress and strain are related through a generalized
form of Hooke’s law. If we rewrite the stress in eqn (1)
in terms of the strain, the relation involves just one
vector-dependent variable, the particle displacement, x

!
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where Sij5½(vxi/vxj1 vxj/vxi) and c
0
0

is the fourth-order
stiffness tensor, which relates stress to strain, xi and xi be-
ing the spatial coordinate and element of the displace-
ment vector, respectively. Written in this form, it looks
like Hooke’s law for a simple mechanical spring. That
is essentially what it is. The compact notation helps us
feel the basic physics. In this case, however, we can
generate revealing, simple, special cases by looking un-
der the hood.

The simplest medium we can choose that is relevant
to the propagation of shear strains is an isotropic solid. In
greater detail for that case, eqn (2) is
where Tij are the elements of the symmetric stress tensor
T
0
. In this way, the bulk modulus k of the medium and its

shear modulus m relate the stress tensor to the strain
tensor.

Although certain tissues are significantly aniso-
tropic, and at some level, all tissues are non-linear,
dealing with these additional complexities would be
more confusing than helpful in our discussion of basic tis-
sue models. Therefore, we will assume throughout that
tissue is isotropic and that its elastic properties are not
changed by strains in the medium.

We can precisely determine the stiffness of a
spring by applying a force to one end and measuring
its change in length. In principle, we can measure the
stiffness of tissue by applying a stress and measuring
the strain. We need stress and strain fields, however,
not single numbers—a somewhat greater challenge.
Actually, the differences among tissues’ shear moduli
are so high that it is possible produce useful, semi-
quantitative diagnostic images simply by showing strain
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alone without a detailed knowledge of the stresses that
produce them.

There is, however, a qualitatively different approach
that is particularly attractive for precision measurement
of tissue stiffness. Although both shear and compres-
sional waves may be generated in tissue, the wave speeds
differ so greatly that it is easy to observe the shear wave
without interference of other acoustic activity in the me-
dium. Furthermore, it turns out that the speed of travel of
shear waves depends only on the slow shear modulus and
density. Thus, as long as the shear wave speed can be
determined, it is unnecessary to have any quantitative in-
formation about the magnitudes of the stresses or strains
involved. It is even possible to create elastographic im-
ages of the tissues based on the speed of the shear wave
as it propagates. This discussion will be confined wholly
to studies of tissue properties through wave propagation.

Substituting eqn (3) into eqn (1) yields
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the curl and the curl of the divergence of a vector are
each zero, one can obtain equations for pure dilatational
waves by taking the divergence of each side of eqn (4)
and, for pure rotational waves, by taking the curl of both
sides:
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The wave from eqn (5) tells us that dilatations and com-
pressions move through media with a speed
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Similarly eqns (6) through (8) say that the slow wave
speed of rotational (incompressible/shear) waves in
elastic media is
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m

r

r
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Because bulk moduli of tissues are many orders of magni-
tude greater than their shear moduli, dilatational wave
speeds and wavelengths are much greater than those of
incompressible, rotational waves at the same frequency.
Although both waves are generated in elastography,
when the excitation is a very short pulse (e.g., transient
and radiation force elastography), they quickly separate
spatially and can be treated independently.

As shown in eqns (5) and (8), the precise character-
ization for the two qualitatively different modes of elastic
wave propagation should probably be incompressible and
irrotational. These negative terms are frequently approx-
imated with the more intuitive terms ‘‘shear, transverse,
or rotational’’ and ‘‘compressional or longitudinal,’’ al-
though we can have longitudinal shear waves and longi-
tudinal, compressional waves that involve shear strain.

With one exception, the displacements, or waves,
used in elastography are generated by surface forces
(Parker et al. 2011). Surface forces currently used in elas-
tography include (i) continuous sinusoidal excitation
(sono-elastography [Lerner et al. 1988. 1990]); (ii) step
functions (sometimes called ‘‘compression elastogra-
phy’’ [Ophir et al. 1991]); and (iii) single cycle (some-
times referred to as ‘‘transient elastography’’ [Sandrin
et al. 2003; Bercoff et al. 2004]). In the second case,
time-dependent shear strains are computed directly
from ultrasonically measured displacements of the
media. From these time-dependent strains, it is possible
in principle to determine the complex shear modulus of
the medium (Amador et al. 2012). In the first and third
cases, complex shear moduli of the media are inferred
from characteristics of the shear waves generated by
the surface forces. Images may be formed directly from
displacements of the media or through measurements
of shear wave speed in the tissues. In all realistic applica-
tions of elastography, both compressional/dilatational
and shear strains waves are generated. In fact, the particle
displacements associated with both strains are compara-
ble. However, the shear strains are orders of magnitude
greater than the compressional strains, and the shear
wave speeds are far smaller than the compressional
wave speeds. Of course, elastography is concerned with
shear phenomena.

The exception noted above is radiation force elas-
tography (Fatemi and Greenleaf 1998; Sarvazyan et al.
1998; Nightingale et al. 1999; Nightingale et al. 2001;
Bercoff et al. 2004; McAleavey et al. 2009), in which
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the externally applied source of shear waves comes from
the absorption within the tissue of externally applied
high-frequency ultrasound. We have carried the term
F
!

b in eqn (1) to this point to show the way that they drive
dilatational and rotational waves when they are present.
These sources are irrelevant to our discussion of tissue
models and will be dropped at this point.

In isotropicmedia, each element can be characterized
by a coincident mass and two stiffnesses: one that controls
the volume of the element and a second that controls its
shape. Now assume that a piston exerts a sudden (�step
function), inwardly directed force normal to the surface
of a semi-infinite medium. Elements of the medium adja-
cent to the surface accelerate forward, creating strains and
corresponding stresses in themedium. The applied force is
balanced first by the inertial forces of the accelerating
mass and, subsequently, by the stiffness of the medium
as it becomes strained. The divergence of the stresses be-
comes force densities that accelerate the elements next in
line, which in turn repeat the process, initiating a wave of
longitudinal displacements and strains traveling into the
medium with a speed given by eqn (9).

In the longitudinal wave just described, elements of
the medium change both their volumes and their shapes.
In comparison, applying a force tangentially to the sur-
face of same medium changes the shape of the elements
of the medium without change in volume. Because of
the relatively small shear stiffnesses involved, the ampli-
tudes of displacements in tissues are much greater than
they would have been for longitudinal waves of the
same frequency and stress.

The characterization of the medium by coincident
mass and stiffness suggests the possibility of a corre-
sponding resonance frequency. In fact, if the tissue sam-
ple is confined between reflecting surfaces, the pulse that
we generated above will be returned from the far inter-
face. If we time our subsequent pulse to correspond
with the second reflection from the near surface, we can
build up the amplitude of the displacement just as we
would to a swing in the playground or the air in an organ
pipe (standing waves). The resonance frequency is deter-
mined by the dimensions of the container, however. It is
not an intrinsic property of the tissue.

Equations (5) and (8) are informative, but in the
general case, we need a wave that includes both bulk
and shear strains and, furthermore, explicitly involves
the particle displacement, which is the parameter that is
directly observed in elastography. So, we return to eqn
(4), keeping in mind that in tissue, bulk moduli are
many orders of magnitude greater than shear moduli.

In an elastic medium ðms0Þ, the normal stresses
need not be equal, but by using eqn (3) we can define
without approximation
t5
T111T221T33

3
5 kV$ x

!
5 k

DV

V
5 kTrS

0

(11)

where TrS
0

is the sum of the diagonal elements, the trace,
of the strain tensor, and the scalar t then is the mean of the
normal stress components. It is the negative of the scalar
pressure as used in acoustics. In soft tissues, where shear
and bulk moduli are of the order of 1 kPa and 1 GPa,
respectively, �
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to an accuracy of one part in a million (eqn [3]). In other
words, t and 2p (pressure) differ only conceptually, and
the first term of eqn (4) can now be seen as the gradient of
the scalar, mean, bulk stress. It is entirely dilatational and
travels with the corresponding wave speed (eqn [9]).

Oestreicher (1951), among the first contributors
to the bioacoustics of tissues, identified this ‘‘mean’’
normal stress with the negative pressure in acoustics
and used it as a convenience in his treatment of the field
of an oscillating sphere in a viscoelastic medium. This
quantity should not be confused with ‘‘average’’ normal
stress, which, in mechanics, is frequently used to identify
the average of the forces over an arbitrary finite surface
area.

The second term in eqn (4) can be written with
roughly the same accuracy as the vector Laplacian of
the displacement, yielding with minimal approximation

Vt1mV2 x
!

5 r
v2 x
!

vt2
(13)

Each of the terms in this general wave equation is a force
density. Actually, eqn (13) is a set of six scalar equations,
each of which must be satisfied independently—an equa-
tion for each of the real and the imaginary components of
each of the orthogonal components of the 3-D vector x

!
.

Thus written, the wave equation is remarkably infor-
mative. It is completely general in the sense that it in-
cludes the contributions and interactions of both shear
and compressional waves to the particle displacement.
The first term is the force density associated with dilata-
tion and has a propagation speed of cd. The second is asso-
ciated with shear and propagates at a speed of cs. From the
point of view of elastography, because cd is two to three
orders of magnitude greater than cs, the dilatational
wave effectively illuminates an entire organ simulta-
neously. It is a bit likewalking through a room (slow, shear
wave) that is lit by a flashing sign from across the street
(fast, dilatational wave). The light may be brighter near
the window, but the whole room goes light and dark at
the same time.



Fig. 1. Absolute magnitudes of the normalized radial compo-
nents of the force densities in eqn (13) as a function of
the real shear modulus of the medium—the compressional
term (cd 5 1500 m/s, dotted line), the shear term (dashed
line) and their sum (solid line). (Note that signs of the compres-
sional and shear terms are opposite, and hence the solid curve
is the difference of the plotted absolute values.) Radius of
sphere 5 1 cm, absorption coefficient of the shear
component 5 212 m21, its phase velocity 5 2.4 m/s, density
of medium 5 1000 kg/m3, point of observation r 5 2 cm,
q 5 p/4, frequency 5 1000 rad/s. All values normalized to
the source displacement. All computations via Mathematica

(Wolfram, Champaign, IL, USA).
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Relative importance of shear and compression
In any biomedical application it is natural to askwhen,

or under what conditions, we can ignore any of the terms in
eqn (13). More generally, wewish to determine the relative
importance of shear, compression and acceleration (iner-
tial) terms. The classic example in Graff (1975:356) shows
an oscillating indentor on a semi-infinite half-space and the
resulting partition into shear, compressional and Rayleigh
(surface) waves. However, the relative contributions are
highly dependent on particular values of material parame-
ters, geometry and frequency.

As an interesting example, when you palpate your
liver, the normal stress you apply with your fingers is
transmitted throughout the organ in times on the order of
100 ms. The dilatational stresses are not spatially uniform,
of course. They decrease with distance from your fingers.
The dilatational stress on its own causes almost no change
in the tissue because of its huge bulk modulus. For almost
a millisecond, the tissue is essentially rigid, and then, in
response to the shear stresses that your fingers generate
at the surface of the skin, elements of the tissue begin to
change shape and relatively large displacements occur. It
is important to emphasize that those shear stresses are
both normal and transverse; that is, they come from diag-
onal and off-diagonal elements in the stress tensor.

Because the terms on the left are second-order
spatial rates of change, comparison of the magnitudes
of those terms depends strongly on the geometry of the
application. Rather than try to generalize, we use a single
example that is relevant to all forms of elastography.
Oestreicher’s (1951) solution for the displacement field
of a translating sphere is perhaps the best analytical
model for this purpose. His solution in spherical coordi-
nates (r, q, f) chosen with the axis of oscillation at
q 5 0 is
xr 5 x0 cos q
a3

r3

�
e2jkðr2aÞð313jha2ðhaÞ2Þð222j2kr1ðkrÞ2Þ

ð212jka2ðkaÞ2ÞðhaÞ21ðkaÞ2ð11jhaÞ 1
e2jhðr2aÞ2ð313jka2ðkaÞ2Þð11jhrÞ
ð212jka2ðkaÞ2ÞðhaÞ21ðkaÞ2ð11jhaÞ

�

xq 52x0 sin q a3

r3

�
e2jðkr2aÞð313jha2ðhaÞ2Þð11jkrÞ

ð212jka2ðkaÞ2ÞðhaÞ21ðkaÞ2ð11jhaÞ2
e2jðhr2aÞð313jka2ðkaÞ2Þð11jhr2ðhrÞ2Þ
ð212jka2ðkaÞ2ÞðhaÞ21ðkaÞ2ð11jhaÞ

� (14)
where a is the radius of the sphere, k 5 u/cd is the prop-
agation constant for dilatational waves, h 5 u/cs is the
propagation constant for shear waves and u is the angular
frequency. The equations for xr and xq each have two
groups of terms within the brackets. The first group prop-
agates with a speed cd 5 u/k, and the second group prop-
agates as cs5u/h. These are the compressional and shear
components, respectively. As we will see in the next sec-
tion, for steady-state conditions involving a single fre-
quency, we can include absorption simply by letting the
propagation constants be complex numbers, for example,
h 5 b – ja. At frequencies used in elastography, the ab-
sorption coefficients of compressional waves are so small
that we have always assumed the k is real.

Figure 1 gives the absolute magnitude of the radial
component of the two terms on the left side of eqn (13)
and their sum as the propagating medium morphs from
liquid to a solid. The parameters chosen for the illustration
are more or less representative of those found in elasto-
graphic applications. Absorption coefficients associated
with the dilatational component of the wave are assumed
to be negligible. The value of the absorption coefficient
for the shear component of the wave corresponds to that
of a viscoelastic medium (see description in Part II) hav-
ing a shear modulus of 1 kPa and a viscosity of 1 Pa s. The
plateau at small values of the real part of the shear



Fig. 2. Absolute value of the radial component of the displace-
ment. All parameters are the same as in Figure 1, except q5 0.
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modulus m1 is determined by that viscosity. The shear
moduli of most soft tissues fall in the range 1–10 kPa.
Serendipitously, that is the region in which the general
wave equation becomes strongly dependent on the shear.
Below 1 kPa, the medium looks much like a viscous fluid.
It is apparent that the force densities for the fast and slow
components of the wave are both important in the region
of interest to elastography.

Of course, elastography directly detects the
displacement or its time derivative. When the excitation
source is at the surface of the body, the radial component
of the displacement is a fair approximation of the
measured quantity. Radiation force elastography tends
to view the tangential displacements. Figures 2 and 3
illustrate these two displacements for the conditions cho-
sen in Figure 1. Again, we find the propagating medium
behaving like a viscous liquid for shear moduli below
1 kPa. That is to say, for shear moduli less than 1 kPa,
the complex shear modulus at u 5 1000 radians/s is
dominated by viscosity rather than real stiffness. In the re-
gion 1–10 kPa, the twowaves interfere constructively and
destructively. Above 10 kPa, phase differences between
the two components approach p, leading to a new plateau
in the value of the displacement. Throughout, we deal
Fig. 3. Absolute value of the tangential component of the
displacement. All parameters are the same as in Figure 1, except

q5p=2.
specifically with single-frequency, continuous waves. It
is worth mentioning, however, that with transient or radi-
ation force elastography, the dashed and dotted compo-
nents in Figures 2 and 3 would separate spatially a
short distance from the sphere and there would be no solid
curve. This not only has implications conceptually, but
may be important practically in the design of equipment
for use in elastography.

Investigation of the field of the sphere reveals a num-
ber of interesting details. For example, the strain along
the axis of oscillation is almost entirely shear despite
the fact that the particle displacement is entirely radial
and longitudinal. Compressional strain along the axis is
many orders of magnitude smaller than shear strain. Par-
ticle displacement at q5 p/2, is tangential and transverse,
compressional strain is zero and shear strain is entirely
transverse.

The discussion up to this point provides some sug-
gestions of the phenomena that elastographers deal with
in measuring the shear modulus of tissues in diagnosti-
cally useful terms. However, we have given little detail
about the characteristics of shear strain itself.

Shear strain
With the proper choice of coordinate system, we can

resolve the particle displacement vector x
!

that character-
izes an arbitrary mechanical wave into two components:
one in the direction of propagation, the longitudinal
component, and one transverse to the direction of propa-
gation. The longitudinal component is potentially a bit
involved, so for the purposes of the discussion of shear
strain let us begin with a wave that is entirely transverse.

We generate an infinite plane, transverse wave in the
x1 direction in tissue by stressing the x1 surface, whose
normal is parallel to the x1 axis, tangentially in the x2 direc-
tion at an angular frequency of u. The only displacements
in the mediumwill be in the x2 direction, and they will be a
function only of the spatial variable x1. These assumptions
make t 5 0 (eqns [12] and [13]), and furthermore, of the
six independent equations contained in the general wave
equation (eqn [13]), we are left only with the two con-
cerned with force densities in the x2 direction.

m
v2x2

vx21
e!2 5 r

v2x2

vt2
e!2 (15)

where e!2 is the unit vector in the x2 direction. The initial
assumptions tell us that the solution to the equation will
have the form

x
!

2ðx1; tÞ5 x0e
jðut2hx1Þ e!2 (16)

If h5u=
ffiffiffiffiffiffiffiffiffiffiffiffiðm=rÞp

5u=cs. The amplitude of the displace-
ment, x0, is directly proportional to the applied surface
stress.
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Now, let us retrace the physical processes leading up
to this form of the wave equation (eqn [15]). As the wave
progresses, we can describe the change of the medium at
a microscopic level by its displacement gradient (the
outer product of the vector del operator with x

!
2— the

left-hand side of eqn [16]). We can write the displacement
tensor as the sum of its symmetric and anti-symmetric
components, the strain and the rotation, respectively.
The trace of the strain tensor is zero, telling us that there
is no volume change in an element of the medium. As
shown pictorially in Figure 4, the off-diagonal elements
describe the change in shape of the element and, indi-
rectly, the elastic stresses that would return it to its orig-
inal shape.

vx2

vx1

2
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0 0 0
0 0 0

3
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1 0 0
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511
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0 0 0

3
5

(17)

The shear strain itself does not involve a net movement of
the medium. It simply describes the change of shape of
the elements of the medium. Rotation, in contrast, is the
embodiment of the inertial term of the transverse wave
equation in the same sense that translation is for irrota-
tional waves. The anti-symmetric rotation tensor is the
equivalent of V3 x

!
as the rotation appeared in the purely

vector language used in eqn (4). These are just two math-
ematical conventions for describing the rigid rotation of
the medium. Elastic restoring stresses are related only
to the shear strain. Employing eqn (3) gives us that
restoring stress for our example.

T
0

5m
vx2

vx1

2
4 0 1 0
1 0 0
0 0 0

3
5 (18)

The divergence of the stress gives us the elastic force den-
sity that drives the rotation and creates the strain of the
element of the medium.
Fig. 4. An infinitesimal element in a medium, viewed in the ðx1;
x2 direction. The force is balanced by the shear stiffness of the
mass, creating a shear stress in the element. The result is a she
(rightmost term in eqn [17]). The element does not change volu
in the element returns it to its original shape and position. The

boring element to the right. The process repeats, resulting i
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This is qualitatively the same strain that the translating
sphere of Figure 3 radiates at q 5 p/2. The difference is
that rather than being an infinite plane wave, the ampli-
tude of the strain field of the sphere is a function of the
radial position of the point of observation.

Contrast this transverse shear strain with the lon-
gitudinal strain near a radially oscillating bubble. The
individual, normal strains Srr, Sqq and Sff may be very

large, but their sum Tr S
0

is extremely small because, as
the bubble expands, the contraction in the radial strain
is approximately canceled by the lateral dilatation.
Thus, we have transverse and longitudinal shear waves.
Both can have wave speeds that depend solely on the
shear modulus of the medium (eqn [10]).

Shear strain is qualitatively the same in the two
cases. For the transverse shear wave (Fig. 4), we show
the cross section as a parallelogram, and its elements
are off the diagonal (eqn [18]). For the longitudinal shear
wave, we show the cross section of a strained element as a
rectangle, and the elements of its strain tensor are on the
diagonal (Fig. 5). Any second-order tensor can be diago-
nalized, of course. In fact, in a coordinate system rotated
45� from that shown in Figure 4, the strained element
would appear as a rectangle. Strains of the elements are
qualitatively the same. There is a fundamental difference,
however. The transversewave includes rigid rotation. The
longitudinal wave involves translation of the element. All
practical applications of elastography involve both trans-
verse and longitudinal shear waves. Shear strains of suf-
ficient amplitude can produce biological effects. It would
be interesting to determinewhether rigid rotation contrib-
utes independently to those effects as well.
x2Þ plane. A force is applied to the ðx2; x3Þ interface in the
medium and inertial forces of the accelerating element’s
ar strain (a shape change) plus a rotation of the element
me (trace5 0). As the force is removed, the elastic stress
motion of this element exerts a shear stress on its neigh-
n a transverse shear wave moving in the x1 direction.



Fig. 5. Shear strain resulting from a radially oscillating bubble.
The amplitude, A, is a strong function of the distance from the
bubble. The shape of a cubical element morphs to that of a rect-
angular cuboid. When the radial component of the element con-
tracts, the polar and azimuthal components expand, keeping the

volume of the element approximately constant.
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For greater relevance to elastography, we provide
the strains for Oestreicher’s translationally oscillating
sphere along the axis of oscillation in Figure 6.

PART II: TISSUE MODELS

Elastography provides us with ever more accurate
and detailed measurements of tissue shear moduli. Those
data alone can be diagnostically useful simply through
their correlation with clinical information. One may, how-
ever, presume that the informationwill become evenmore
useful whenwe have a detailed understanding of the phys-
ical mechanisms that produce those stiffnesses.

It has become commonplace to use lumped element
models from physical mechanics to represent the proper-
ties of tissues, which we know to be continua at the scale
of shear wavelengths. Let us be clear about the limitations
of this approach before proceeding to use it.

Equation (4) endows each arbitrary element of the
propagating medium with two coincident properties, its
density and its shear modulus. This might be represented
by a parallel combination of a spring and a mass. It is acti-
vated by a difference in the force per unit area between
Fig. 6. Normalized, absolute value of the strains on the axis of a
translationally oscillating sphere: radial longitudinal strain,
Srr (solid); transverse strain, Sqq; Sff (dotted); dilatational
strain, Srr 1 2Sqq 5 DV/V (dashed line). All parameters are as

used in Fig. 1 except q 5 0.
the two ends and responds with a different displacement
on one end than on the other.

At first glance, this appears to be a resonant system,
and viewed as an isolated system, of course, it is. But we
are modeling an arbitrarily small element of the medium.
Changing the dimensions of the element changes themag-
nitudes of both components because we lump the values
per unit volume into discrete elements. Lengthening the
element decreases the stiffness and increases the mass.
The resonance frequency of the element then depends on
its dimensions. The element is resonant in the same sense
that an organ pipe is resonant. It becomes a standing wave
problem and is only indirectly related to the properties of
the medium. There is no basis, therefore, to anticipate res-
onances in an infinite, homogeneous medium.

Furthermore, this first-order model does not include
loss. In fact, the shear wave absorption coefficients of tis-
sues are very large, and from the point of view of standing
waves, most of the body’s organs are effectively infinite
in extent because of those losses. Elastography relies on
the marked differences in stiffness between tumors and
normal tissue. Considering the lossy nature of tissue
and irregularities in tumor morphology, it seems unlikely
that tissue ‘‘resonances’’ associated with the size and
shape of elastic units will be useful clinically.

We can look at the resonance question in a slightly
different way by keeping the elements representing the
medium constant in size, but recognizing that each
element is surrounded by similar elements. Consider
the lower 1-D model in Figure 7. Apply a step force to
the first element. The first mass accelerates to the right,
compressing the spring, which simultaneously counters
the motion of the mass and exerts increasing force on
the adjacent element. Instead of a resonance oscillation,
a wave propagates along the ‘‘infinite’’ line.

Stiffness mechanisms
At least two mechanisms give rise to the shear

modulus, m, in biological materials. To illustrate,
Fig. 7. Discrete element tissue models.
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imagine measuring Young’s modulus for a metal rod
and compare that with a similar determination of the
modulus for a rubber band. As the rod is stretched, en-
ergy is stored in the molecular bonds of the metal.
Restoring force comes from the universal tendency of
the material to seek a minimum in energy. Rubber is
amorphous at a molecular level. Stretching reduces the
number of states available, and entropy decreases. The
primary restoring force in rubber comes from the univer-
sal tendency of entropy to increase. Although the two
stiffnesses are fundamentally different, they both
depend on the tendency of a system to minimize free en-
ergy, the ability to do work.

Many of the molecular constituents of tissue are
similar to rubber in behavior. As examples, actin, which
is a component of the cytoskeleton, and fibronectin,
which contributes to the extracellular matrix, are globular
when in solution, but become extended when functioning
structurally. When subject to shear strain, these mole-
cules behave as entropic springs. There are limits to this
behavior, however. When the molecules approach a
pure filamentous form, the intra-molecular bonds domi-
nate the stiffness. So, there is a transition from maxi-
mizing entropy as the restoring factor to minimizing
energy as the strain progresses. Little is known about
the complexities of cellular architecture and its relation-
ship to shear stiffness at the molecular level (Ingber
2003a, 2003b). The net result of the interaction of these
energetic and entropic molecular springs is the
macroscopic shear modulus, m.

It turns out that we have a clue to the question of
which mechanism dominates in specific cases from the
temperature dependence of the stiffness.Molecular bonds
tend toweaken as temperature increases. Entropic springs
become stronger as temperature rises. Shear wave speed,
therefore, should have a negative temperature coefficient
in the first case and a positive coefficient when entropy
dominates. In general, the elastography literature reports
negative temperature coefficients of tissue wave speed.
Kruse et al. (2000) report a negative temperature coeffi-
cient of approximately –2%/�C in excised bovine skeletal
muscle.
Fig. 8. The Kelvin-Voight parallel spring-dashpot model in me-
chanics has some of the properties of the coincident stiffness
and viscosity assigned to the elements of an idealized visco-

elastic medium. A parallel mass is implied.
Simple viscoelastic media
In the discussion up to this point, tissue has been

treated as if it were composed of arbitrarily small ele-
ments each with a coincident stiffness and mass. The
response of the tissue to force depends on the interaction
of the stiffness and mass. Larger stiffnesses lead to
smaller displacements and strains and higher speeds of
propagation of perturbations through the medium. Larger
densities lead to smaller displacements and slower prop-
agation speeds. Nothing in this picture suggests that
tissue absorbs acoustic energy.Wave speed should be dis-
persionless, and particle velocity should be in phase with
the negative stress. If measurements indicate that this is
not the case in tissue, it tells us that the model is either
wrong or incomplete, and that indeed is what we find.
In fact, shear waves used in elastography have far larger
dispersions and absorption coefficients than the compres-
sional waves used in medical ultrasound. The next step,
then, must be to generalize the model to make it consis-
tent with observations.

The simplest modification of the model, both analyt-
ically and conceptually, is to assume that tissue, like fluid,
is viscous; that is, each element of the medium consists of
coincident mass, stiffness and viscosity. (A word of
caution before proceeding: The viscoelastic model has
not been helpful in understanding the behavior of biolog-
ical media in response to compressional stresses.)

The viscoelastic model says simply that stress is
related to strain and time rate of change of the strain. In
the general case,

T
0

5 c1
0
0

$S
0

1c2
0
0

$S
0
�

(20)

where c1
0
0

is the fourth-order elastic constant and c2
0
0

is
the corresponding viscosity, which we model as a dashpot
in Figure 8. That would modify eqn (3) for applications of
the viscoelastic case for any geometry. However, we will
learn as much about models of the shear elasticity of tis-
sues from the special case of a transverse plane wave (eqn
[15]) as we would for a more general wave. For harmonic
steady-state excitation, the time derivative becomes ju,
and we can call the shear modulus m5 m1 1 jum2, where
m1 is the real shear modulus and m2 is the shear viscosity.
The propagation constant becomes complex



Fig. 9. Phase velocity predicted by the viscoelastic model (log-
log plots).

Fig. 10. Absorption per wavelength predicted by the visco-
elastic model.
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and wave speed (eqn [10]) loses its simple meaning.
Instead,
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(26)

u/b5 csf is the shear velocity, the speed one must travel
to stay at the same position or phase of the wave. Despite
the fact that the viscoelastic model assumes a real,
frequency-independent shear modulus for tissue, csf is
frequency dependent.
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At low frequencies,

csf/c0 (28)

However, when u .. u0,

csf/c0

ffiffiffiffiffiffiffiffiffi
2
u
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r
(29)

Thus, u0 is a characteristic or transition frequency that
separates the low-frequency region in which the phase ve-
locity is dominated by the stiffness of the tissue from the
high-frequency region dominated by its viscosity.

With the introduction of a complex shear modulus,
particle velocity is no longer in phase with stress,
and the energy of the wave motion is gradually con-
verted to heat as it propagates. The absorption coefficient
a increases with the square of the frequency when
u ,, u0, and in the high-frequency limit u .. u0, it
is proportional to

ffiffiffiffi
u

p
. The absorption per wavelength is
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Although viscous absorption is small at low frequencies,
it severely attenuates the wave at high frequencies, where
al/2p (see Figs. 9–11).

Values of soft tissue shear moduli range upward from
1kPa,viscosities in elastographyapplications range upward
from 1 Pa s and densities are of the order of 1000 kg/m3.
Thus, values for c0 range upward from 1 m/s, and typical
frequencies of transition from stiffness dominance to
viscosity dominance, u0, are of the order of 1000 rad/s or
100–200 Hz. Figure 10 illustrates that at the transition
frequency u0, the absorption per wavelength is �2; that
is, the amplitude of the wave decreases by an order of
magnitude in one wavelength (order of magnitude�1 cm).

A fit of wave speed data to eqn (27) provides the
complete determination of both of the elastic parameters,



Fig. 11. Absorption predicted by the viscoelastic model.
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as well as the absorption coefficient. Of course, the same
is true for absorption data. Furthermore, if the visco-
elastic model is appropriate, knowledge of the absorption
coefficient and the wave speed at a single frequency is
sufficient to compute the shear modulus and viscosity.
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In the real world, the shear wave speed can be measured
with much higher precision than the shear wave absorp-
tion coefficient. (The reverse is true for irrotational waves
used in conventional diagnostic ultrasound. In that case,
the dispersion in the wave speed is so small that heroic
efforts are required to measure it.) To determine the shear
wave speed, all we need is the wavelength and the fre-
quency. As long as there is a detectable signal, we need
not be concerned with amplitude. This is fine for tech-
niques such as sono-elastography that use single fre-
quencies to excite the tissue. Interpreting the data is
less obvious when the excitation is a pulse, as in radiation
force elastography, or a step function, as in compression
elastography.

Let us pause for a moment and consider how we
might use shear waves to characterize tissues, increasing
sophistication of the procedure with each step. (i) Simply
determining wave speed provides us with valuable infor-
mation. Normal liver, for example, has a wave speed in
the range between 1.0 and 1.5 m/s. In cirrhotic liver,
the speed exceeds 5 m/s. Many studies have reported a
correlation of increasing wave speed with increasing de-
grees of fibrosis of the liver (Carstensen et al. 2008). (ii)
Adding the absorption coefficient to the wave speed at a
single frequency adds an additional number that can be
correlated with the degree of health of tissue. In addition,
those numbers can be given slightly more physical
meaning by using them to compute the shear modulus
and the shear viscosity of the tissue, using eqns (31)
and (32). (iii) Measuring the wave speed (phase
velocity) as a function of frequency and fitting those
data to eqn (27) will also give both the shear stiffness
and the shear viscosity of the tissue. Because wave speed
can be measured with much greater precision in vivo
than absorption, this method may be preferable to mea-
surement of absorption for the determination of the
viscosity.

Converting from acoustic observations to visco-
elastic properties of tissue can change the way we think
of the tissue. In reality, we are viewing the experimental
measurements through the conceptual filter of the visco-
elastic model. Whether this new view means more than
the direct measurements depends a great deal on the val-
idity of the model.

As formulated in the viscoelastic model, shear
modulus and viscosity are simple constants, independent
of time and frequency. If our observations are inconsis-
tent with these assumptions, we are justified in con-
cluding that the model is incomplete or in error.

Measurements of the shear properties of tissues are
still limited. We do have enough information, however,
to see that a simple viscoelastic model fails by orders of
magnitude to describe the behaviors of tissue viscosities
that have been actually observed. In contrast to the as-
sumptions of the viscoelastic model, actual observations
made under that assumption find viscosities at megahertz
frequencies of the order of 0.01 Pa s, that is, only an order
of magnitude greater than that of water (Frizzell et al.
1976; Madsen et al. 1983). However, below 1 kHz, the
corresponding values are of the order of 10 Pa s
(Oestreicher 1951). At both extremes of frequency, we
could describe the behavior of tissue with a coincident
shear modulus and shear viscosity (m 5 m1 1 jm2)
(Fig. 8), but the viscosities in the two local models of
behavior would differ by around three orders of magni-
tude. The gap between these extremes of frequency has
not been studied experimentally, but it is clear that a
comprehensive model must allow for a shift between
these two extremes of behavior.

Despite its limitations, the viscoelastic model has
enduring status because it has become the default window
through which we view our experimental data. We mea-
sure tissue properties as though they were in fact simple
coincident stiffnesses, viscosities and masses, then
qualify the results by describing the dependence of each
parameter on variables such as frequency.



Fig. 12. Relaxation model. Stress is transferred through a
portion of the bulk medium to an internal system.
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Relaxing media
This frequency dependence of the effective complex

shear modulus can be understood as a form of acoustic
relaxation. For our purposes, acoustic relaxation occurs
when stress and energy are transmitted through the
bulk medium to a time-sensitive internal system. There
are many, possible, qualitatively different, relaxing pro-
cesses. In addition to embedded or layered viscoelastic in-
clusions, we might conceivably consider contributions to
shear stiffness from vibration and rotation of molecules,
structural alterations of molecules, chemical processes
and on and on—any internal system or combination of
systems whose times for the response are comparable to
the acoustic period.

When this model was used in studies of the propaga-
tion of conventional diagnostic ultrasound, it became
clear that the bulk modulus of tissues could be attributed
to water and similarly stiff tissue components. However,
water and the other small molecules such as salts and
amino acids contribute almost nothing to the propagation
loss. Rather, the absorption is caused by the presence
of macromolecules, not because of the increase in viscos-
ity associated with their presence, but by pressure- or
temperature-sensitive structural or chemical reactions in
and among the molecules themselves. Furthermore, the
structure of tissue plays only a secondary role in tissue
absorption.

It would be helpful if we could use a thoroughly
tested model of the shear properties of tissue to give real-
ism to our discussion. Unfortunately, none exists. It still
may be helpful if we use a purely speculative, but reason-
able, model. So, let us say that the shear stiffness of the
bulk tissue is determined by the large-scale structure of
the tissue and that its viscosity is the actual viscosity of
the fluids in and around the cells. Furthermore, let us
say that the inner system is intercellular fluid passing
through narrow spaces between cells, and therefore, the
effective viscosity of this inner system is very large.
This should not be equated to what has come to be called
poro-elasticity. Poro-elasticity concerns the dynamics of
squeezing fluid out of tissue; that is, the contents of the
sample itself change during measurement (Berry et al.
2006). What we call the inner system is simply a tortuous
path for the fluids in the sample, not a change in the fluid
content of the sample. A realistic treatment of tissue with
these properties would be extremely complex. However,
the key difference between this problem and a simple
viscoelastic medium is that the inner system is driven
indirectly through the bulk medium. To illustrate the
relaxation that occurs in such a system, we can think of
a portion of the bulk medium as one spring-dashpot sys-
tem, in series with (acting on) another parallel spring-
dashpot combination, representing the internal system
(Fig. 12). Although this model may be promising enough
to warrant serious testing, we use it here only to make the
discussion less abstract.

In this simple example, we confine ourselves to only two
shear moduli, mb5 mb11 jumb25 mb1(11 j(u/u0b)) for the
bulk medium and min 5 min1 1 jumin2 5 min1(11 j(u/u0in))
for the internal system. Part of the medium is occupied
by the internal system, and part of the bulk medium is
in its path and serves as the coupler between the bulk
and inner systems. Describing these systems in terms
of their transition frequencies u0b and u0in instead of
viscosities emphasizes the general nature of possible
relaxation mechanisms.

Ignoring geometric details, the shear modulus of the
series combination will have the form mbmin/(mb 1 min).
Wemust in someway account for the strength of the inner
system, for example, the volume occupied by the inner
spring-dashpot and the bulk system that couples to it.
Let us just say that the space occupied by each of those
components is the same and that the series combination
occupies a volume fraction, fv, of the medium. Then,

m5m11jum2 5mbð12fvÞ1fv
mbmin

mb1min

(33)

Although no pretense is made that these assumptions will
reproduce the properties of real tissues, this simple
approach to the problem illustrates qualitatively the
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frequency dependence that can be expected from the
relaxation mechanism.

If tissue is as described in eqn (33) and we measure
its effective shear stiffness and viscosity (i.e., if we pre-
tend that it is a simple viscoelastic medium), each quan-
tity will be frequency dependent. As an example, assume
a volume fraction for the inner system of 0.2, a stiffness of
1 kPa and a viscosity 20 Pa s; for the bulk system assume
10 kPa and 0.02 Pa s. This choice of parameters yields the
general elastic behavior reported in the literature, in
particular, the strong frequency dependence of the effec-
tive viscosity.

At low frequencies, the inner system contributes to
the effective properties of the composite medium. At
high frequencies, the large viscosity of the inner system
essentially makes it rigid and it ceases to affect the com-
posite system’s elastic properties, leaving a simple visco-
elastic system with properties of the bulk medium.

The corresponding shear wave speeds, cs, and ab-
sorption coefficients, a, are given by

h5
uffiffi
m

r

q 5 b2ja5
u

csf
2ja (34)

where m is defined by eqn (33).
Dispersion of thewave speed is small. It is character-

ized by plateaus below and above the relaxation
frequency, corresponding respectively to the series com-
bination of the moduli of the inner and bulk systems and
the modulus of the bulk medium alone. Above the transi-
tion frequency for the bulk medium, the velocity in-
creases with the square root of frequency (as it would
for a simple viscoelastic medium). The absorption coeffi-
cient increases with the square of the frequency at low
frequencies, plateaus above the relaxation frequency,
then takes on the simple viscoelastic character of the
bulk medium.

The example in Figures 13 and 14 and eqns (33) and
(34) has been chosen to illustrate the relaxation concept in
its simplest form. There is no reason in principle to
believe that tissue has only one inner system. Probably
the relaxation model should be written

m5m11jum2 5Amb1
XN
i5 1

Bi

mbmini

mb1mini

(35)

where A and Bi are appropriate weighting factors for the
system under observation.

As suggested above, the frequency range covered by
most elastography studies is too limited to rule out a sim-
ple viscoelastic model. Bot et al. (1997), however, have
given us the complex shear modulus of a gelatin gel
over the four decades from 100 Hz to 100 kHz. These
data clearly cannot be described by a single, coincident
shear stiffness and shear viscosity. The relaxation model
of eqn (35) readily describes the data with four relaxing
elements, one for each decade of the data. Note: Both
real and imaginary parts of the shear modulus are simul-
taneously matched through this choice of strengths for the
relaxing elements.

Although a simple viscoelastic model is clearly
inadequate to explain the observed data for tissues and
gels, Figures 13 and 15 illustrate that relaxation is a viable
concept. Beyond its ability to represent empirical find-
ings, the strongest support at present for the relaxation
model is its physical and logical attractiveness. Most
important, the relaxation model provides a framework
for viewing empirical data. For it to have more value clin-
ically than a purely phenomenological description of ob-
servations, it will be important to identify the specific
relaxing elements of the tissues.

At first glance, it may seem that absorption and
velocity should provide qualitatively different kinds of
information. That is only partially true. The real stiff-
ness, that is, the low-frequency limit of the shear
modulus, is independent of absorption processes. How-
ever, in the models discussed thus far, the dispersion in
the wave speed is related to the absorption. That conclu-
sion is based on the Kramers-Kronig relations (Kronig
1926; Kramers 1927), which apply to all systems that
are real and causal and whose response vanishes at
infinite frequency. Rigorous application of those
relationships is not realistic, and approximations have
been formulated that relate local absorption to local
dispersion (Carstensen and Schwan 1959b; O’Donnell
et al. 1981). The approximations were developed for
applications in which the magnitude of the dispersion
is much smaller than the wave speed itself. It appears,
however, that they give order-of-magnitude estimates
even for shear waves at elastography frequencies. There
is little question that potentially useful and possibly in-
dependent clinical information is contained in both the
real and the imaginary components of the shear
modulus. Whether that information is obtained through
dispersion or absorption measurements is an engineer-
ing choice.

When we look at elastography data through the
framework of the relaxation model, it adds character to
our understanding of its implications for tissue even if
we have only very general concepts of what the internal
systems may be. (i) The low-frequency limit of the
wave speed gives us stiffness for the composite material
including the internal systems. (ii) The absorption coeffi-
cient (or, alternatively, dispersion in the wave speed) is
determined almost entirely by the viscous properties of
the internal system. We may hope that research will add
greater meaning to the data when the internal systems
are identified.



Fig. 13. Effective shear stiffness and viscosity predicted by eqn (33) with p 5 0.2, mb1 5 10 kPa, mb2 5 0.02 Pa s and
min1 5 1 kPa, min2 5 20 Pa s.
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Hysteresis
Up to this point, we have considered only rate-

sensitive loss systems, that is, systems in which the
work delivered to the medium is proportional to the rate
or velocity multiplied by time. These are probably the
dominant mechanisms of absorption of shear waves in tis-
sues and, perhaps, the only ones that need to be consid-
ered. There is a qualitatively different loss mechanism,
however, that comes under the name of hysteresis, in
which losses are directly proportional to displacements
and independent of the rate (or the frequency) at which
they take place. Hysteresis in the real world is very com-
plex, and our discussion will be grossly oversimplified
(Fig. 16).

Furthermore, it should be noted at this point that the
entire discussion above describes material properties in
the frequency domain. In the time domain, real materials
do not have imaginary properties. However, as long as
we limit our interest to sinusoidal, steady-state stresses
and strains, the time domain response is just the real
part of the complex response. Our interest is in material
properties, not signal propagation, and that can be done
Fig. 14. Wave speed and absorption coefficient predicted by e
min1 5 1 kPa, min2
most easily using the simplest forms of stress and strain.
As a matter of interest, for rate-sensitive loss mecha-
nisms, one can generalize to stresses with more complex
time dependence using Fourier transforms. That may not
be true for hysteresis even within definition. Please note,
therefore, that the following is limited to sinusoidal,
steady state stresses and strains.

Think of modeling clay as a purely hysteretic me-
dium. Pretend that it is sheared in direct proportion to
the stress applied. Once strained, it remains strained.
There are no elastic forces to return it to its original state.
In fact, the very concept of strain becomes arbitrary. If we
approach the object again, in what sense is it more
‘‘strained’’ than it was when we first changed its shape?
With problems like this, it is not surprising that specialists
in the field find the classic model of hysteresis to be
acausal (Crandall 1963, 1970; Muravskii 2004).

In the medical realm, you have only to see the inden-
tations in your skin after removing tight-fitting clothing
to be convinced that strain in tissue depends on its past
history, as well as on the stress to which it is currently
exposed. Pathology recognizes two forms of edema,
qn (33) with p 5 0.2, mb1 5 10 kPa, mb2 5 0.02 Pa s and
5 20 Pa s.



Fig. 15. Real (solid squares) and imaginary (open circles) parts
of the complex shear stiffness of a 4% gelatin gel with a pH of
5.6 after 30 min of aging (Bot et al. 1997). The data were fitted
by eqn (35) using four relaxing elements of comparable magni-

tudes and evenly spaced in the observed frequency range.
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pitting and non-pitting. In the former, poking the region
with a finger produces a long-lasting indentation. To
extend the relaxation example that we introduced above
(and to challenge your imagination), consider this possi-
bility. In either form of edema, excess intra- and intercel-
lular fluid accumulates in the tissue. In the extreme of
pitting edema, perhaps the intercellular spaces become
so constrained that they act more as valves than narrow
pathways. Once strained, the tissue remains strained until
forces from one source or another open the valves and re-
turn the fluid to its former location.

There is little doubt that the kind of response
described here exists in many forms and that it is qualita-
tively different from rate-dependent loss mechanisms.
The challenge is finding realistic physical models to
describe it.

The prime characteristic that sets hysteresis apart
from other mechanisms is a frequency-independent phase
shift between a cause and an effect. There are a number of
conclusions that follow from that assumption. These are
Fig. 16. Addition of hysteresis to the viscoelastic model. Our
symbol for hysteresis should not suggest that it is equivalent
to sliding friction, although there may be some properties in

common.
all idealizations, but have implications about the useful-
ness of models of hysteresis.

First, in the absence of consensus, we need to define
hysteresis carefully. There are two obvious possibilities:
either we can say that hysteresis is a constant,
frequency-independent phase lag of the strain relative
to the applied stress (specifically, if the shear stress is
T 5 T0cos ðutÞ5Re½T0ejut� the shear strain is
S5 S0cos ðut2fÞ5Re½S0ejðut2fÞ�), or we can define
hysteresis as constant loss per cycle. The second defini-
tion, in principle, is less restrictive.

Whereas eqn (2) is useful in the formulation of the
wave equation, the definitions of hysteresis above clearly
recognize stress as the independent variable. Instead of
eqn (2), we need its inverse:

S
0

5 c21
0
0

$T
0

(36)

If we restrict our interests to purely transverse stresses
(off-diagonal elements of the stress tensor), we have sim-
ple scalar equations of the form

S5
T0 cos ðutÞ

2m
(37)

and these equations serve our purpose in the investigation
of the properties of hysteresis.

To include losses, we acknowledge that the shear
modulus is complex and that the elements may be fre-
quency dependent, m 5m 11jm3 , where m3 will be the
hysteresis modulus to distinguish it from viscosity, which
we have called m2.

S5Re

	
T0e

jut

2ðm11jm3Þ


5

T0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

11m2
3Þ

p cosðut2fÞ (38)

where f 5 arctan (m3/m1).
Thus far, we have not characterized the frequency

dependence of the shear modulus. The shear stiffness
and the absorption resulting from hysteresis, in princi-
ple, are independent properties of material. It is diffi-
cult to imagine mechanisms that would make the
frequency dependences of these independent parame-
ters identical. Certainly, the simplest way to ensure a
frequency-independent f is to make both m3 and m1 in-
dependent of frequency. That, in turn, says that the ratio
of amplitudes of the strain/stress is independent of
frequency.

The energy per unit volume associated with a small
change in strain is

dE5 TdS5 T
dS

dt
dt (39)
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2uT2
0 cosðutÞsinðut2fÞ
dE5
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

11m2
3Þ

p dt (40)

And the energy lost per cycle is

E5

ð2p
u

0

2uT2
0 cosðutÞsinðut2fÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

11m2
3Þ

p dt

5
pT2

0 sinðfÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

11m2
3Þ

p 5
pT2

0m3

2ðm2
11m2

3Þ

(41)

or

E5 2pS20m3 (42)

where S0 5
T0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm 2

1
1m 2

3
Þ

p . Expressed in terms of strain, we

have constant loss per cycle independent of frequency
as long as the hysteresis modulus is a simple constant.
The real part of the shear modulus can be arbitrary. Its
value at any instant of time or at any frequency, as well
as the magnitude of the stress, will affect S0 and the phase
between stress and strain. However, if we want, in addi-
tion, to have a frequency-independent phase lag, a com-
mon definition of hysteresis, both parameters will need
to be constants independent of frequency.

With the understanding that the input is harmonic
and steady state, we can compare wave propagation in a
hysteretic medium with that in a viscoelastic medium.
In this case, instead of eqn (36), eqn (2) becomes

T12 5 ðm11jm3ÞS12 (43)

So the propagation constant

k5 b2ja5
u

c
2ja5

uffiffiffiffiffiffiffiffiffiffi
m11jm3

r

q (44)

From this we obtain

b5u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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11m2

3

p
s 2

66412
0
BB@11
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3
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1

r
1
CCA
3
775

1=2

(45)

The wave speed is independent of frequency

c5
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(46)

and the absorption coefficient is directly proportional to
the first power of frequency, that is, a constant loss per
cycle.
a5u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1ffiffiffiffiffiffiffiffiffiffi
11

m2
3

m2
1

r
1
CCA
3
775

1=2

5
u

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 1ffiffiffiffiffiffiffi

11
m2
3

m2
1

r
11 1ffiffiffiffiffiffiffi

11
m2
3

m2
1

r

vuuuuuuuut
(47)

For m1..m3,

c/

ffiffiffiffiffi
m1

r

r
(48)

and
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u

2c

m3

m1

(49)

For m1,,m3,

c/

ffiffiffiffiffiffiffi
2m3

r

s
(50)
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ffiffiffiffiffiffiffi
r

2m3

r
5

u

c
(51)

and

al/2p (52)

Mason (Mason and McSkimin 1947; Mason 1950)
may have been the first to use this model in connection
with ultrasound propagation. However, the basic idea as
it applies to lumped mechanical elements goes back at
least another decade, and in mechanical engineering,
the quantity m 5 m1 1 jm3 has gone under the names
‘‘linear structural damping,’’ ‘‘hysteretic damper’’ and
‘‘ideal hysteretic damper.’’ Makris (1997), in a relatively
recent discussion, continues the use of this model.
Although it grossly oversimplifies the full non-linear de-
tails of the stress-strain phenomenon, the Mason model
captures two fundamental characteristics that set hystere-
sis apart from other loss mechanisms. First, loss per cycle
is independent of the rate or frequency at which changes
occur. This leads to an absorption that is proportional to
the first power of frequency. Second, wave speed or phase
velocity is dispersionless.

Mason’s model only hints at the effects that hystere-
sis may have on shear wave propagation. Among other
problems, it fails to deal with transients, particularly
becauseMason’smodel suggests that hysteresis is acausal.
The imaginary part of the Fourier transform of its impulse
response is even. Constant phase and the implications that
property has for response independent of frequency are
inconsistent with the basic Kramers-Kronig assumptions.



Fig. 17. Modeling clay as a hysteretic medium. On the left,
m1 5 0. When stress is removed, strain remains unchanged.
Only by applying oppositely directed stress does strain return
to its original state. On the right, m1 5 m3. When stress is
removed, the energy stored in the stiffness of the medium

returns the strain partially to its original state.
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In addition to being real and causal, Kramers-Kronig re-
quires that theCauchy integral converge at high frequency.
Being independent of frequencymakes that impossible. At
best, the hysteresis concept, defined as constant loss per
cycle, will be applicable only locally.

Returning to our modeling clay for a pure hysteretic
medium, if you apply a shear stress and the clay is
strained, it remains in that strained condition until you
apply a shear stress in the opposite direction. So, instead
of the smooth Lissajous figures predicted by eqn (43), we
probably have non-linear hysteresis loops more like those
in Figure 17. The precise nature of the hysteresis loop is
of secondary interest. Fundamental differences between
hysteresis and viscoelastic losses lie in the arbitrary na-
ture of strain in the former. We can halt the hysteresis
loop at any point and call that strain zero. Or we can
say that the strain has an arbitrary value before we apply
stress.

We clearly need a more sophisticated theoretical
descriptor. More important, however, is the need for
experimental studies, and those studies promise to be
challenging in part because it may be difficult to separate
the rate-dependent losses in tissues and phantoms from
those that are not.

There is little doubt that a hysteresis-like phenome-
non exists, and it would be surprising if it were not present
in tissue. Because hysteresis differs physically at a funda-
mental level from viscoelastic processes and relaxation,
finding clear evidence of hysteresis in tissues could
have clinical value. Determining the role (if any) of hys-
teresis in tissues may require innovative experimental
design.
CONCLUSIONS

The diagnostic value of ultrasound has come almost
entirely from its ability to produce high-resolution im-
ages. Knowledge of the physical mechanisms responsible
for the bulk elastic properties of tissues has been investi-
gated for possible diagnostic value with little success.
Perhaps this is so because there are only subtle differ-
ences in bulk stiffness among soft tissues and because
the absorption mechanisms take place largely at a molec-
ular level and involve complex and overlapping elements.

Elastography, in contrast, relies on the pronounced
differences in shear stiffness among tissues and their
abnormalities. Phenomenological descriptors of elastic
properties are useful as placeholders. However, there is
hope that models relating the physical characteristics of
tissues to their observed shear parameters will be more
informative. This review is merely a suggestion of the
potential that a serious program of physical modeling
might bring to clinical elastography.
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APPENDIX
SYMBOLS

a radius of a sphere
c0 low-frequency limit to the wave speed
cs shear wave speed
csf shear phase velocity, csf 5 u/b
cd dilatational wave speed

c
0
0

fourth-order stiffness tensor: subscript 1 for real stiffness,
subscript 2 for viscosity tensor

e!j unit spatial vector
fv volume fraction
Fb force density
h propagation constant for shear waves; h5b2ja
j 5

ffiffiffiffiffiffiffi
21

p
k propagation constant for compressional waves
l wavelength
p pressure
r radial position
S strain
t time
T stress
Tr trace of a second-order tensor
xj spatial coordinate
V volume (DV, change in volume)
a absorption coefficient
b real propagation constant
f azimuth position angle
k bulk modulus (k1, real bulk modulus; k2, bulk viscosity)
m shear modulus (m1, real shear modulus; m2, shear viscosity; m3,

hysteresis modulus)
q polar position angle
r density
t mean of dilatational stresses on an element of the medium
x particle displacement
u angular frequency u0 transition frequency, m1=m2 for simple

viscoelastic model
U rotation
V del operator: e!1

v
vx1
1 e!2

v
vx2
1 e!3

v
vx3
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