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A number of imaging systems exhibit speckle, which is caused by the interaction of a coherent pulse

reflecting off of random reflectors. The limitations of these systems are quite serious because the

speckle phenomenon creates a pattern of nulls and peaks from subresolvable scatterers or targets that

are difficult to interpret. Another limitation of these pulse-echo imaging systems is that their resolu-

tion is dependent on the full spatial extent of the propagating pulse, usually several wavelengths in

the axial or propagating dimension and typically longer in the transverse direction. This limits the

spatial resolution to many multiples of the wavelength. This paper focuses on the particular case of

ultrasound B-scan imaging and develops an inverse filter solution that eliminates both the speckle

phenomenon and the poor resolution dependency on the pulse length and width to produce super-

resolution ultrasound (SURUS) images. The key to the inverse filter is the creation of pulse shapes

that have stable inverses. This is derived by use of the standard Z-transform and related properties.

Although the focus of this paper is on examples from ultrasound imaging systems, the results are ap-

plicable to other pulse-echo imaging systems that also can exhibit speckle statistics.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4714341]
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I. INTRODUCTION

At the heart of analytical models of pulse-echo imaging

is an integration on the product of the propagating pulse and

the reflectors or scatterers, over the location of the pulse at

some point in time (Macovski, 1983; Szabo, 2004; Prince

and Links, 2006). Under a number of approximations and

simplifications about attenuation and diffraction, the integra-

tion can be reduced to a convolution model (Macovski,

1983) such that the received echo e tð Þ is approximated by

e tð Þ ¼ A p tð Þs x; yð Þ � � � R x; y;
ct

2

� �n o
(1)

where A is an amplitude constant, p tð Þ is the propagating

pulse in the axial direction, s x; yð Þ is the beam width in the

transverse and elevational axes (and thus the beam pattern is

assumed to be a separable function), and R x; y; zð Þ is the

three-dimensional (3D) pattern of reflectors or scatterers.

The speed of sound is c, and with a round trip for the echo,

the axial distance z is replaced by ct=2 in the 3D convolution

represented by the symbol � � �. The problems of poor resolu-

tion and speckle can be understood as a direct result of this

convolution. The spatial resolution is set by the full spatial

extent of the propagating pulse in 3D that is typically many

multiples of a wavelength. However, in tissue, small scatterers

at the cellular level and microstructural level such as the arte-

rioles and capillaries will have a dimensions on the order of

10 microns, much smaller than typical pulse shapes (the

wavelength at 10 MHz is 150 microns, for example, and the

pulse length will be multiples of this). With many subresolv-

able scatterers interacting with a propagating pulse, the result-

ing echo will exhibit the random constructive and destructive

interference pattern known as speckle (Burckhardt, 1970;

George and Jain, 1973; George et al., 1976; Burckhardt,

1978; Wagner et al., 1983; Tuthill et al., 1988; Reynolds

et al., 1989). The problems with a visual interpretation of

speckle images are profound because the patterns of nulls and

peaks may or may not correspond to actual nulls or peaks of

the scatterers but rather to their summation over the positive

and negative portions of the propagating pulse. Furthermore,

the lesion detection problem is made more difficult by the

overlap of Rayleigh statistics from different distributions of a

lesion and a background (Sperry and Parker, 1991; Cramblitt

and Parker, 1999). Attempts to improve the situation include

speckle reduction algorithms (Bamber, 1993) and deconvolu-

tion approaches (Jensen, 1992; Alam et al., 1998; Haider

et al., 1998; Taxt and Frolova, 1999; Qinzhen et al., 2003;

Michailovich and Adam, 2004; Kerner and Porat, 2008; Shin

et al., 2010). Despite all these attempts, the typical medical

ultrasound image still retains the two characteristic elements

of: resolution limited by the pulse size and shape and speckle

statistics. There are reasons to suspect that this is an intracta-

ble problem. The spectrum of a typical pulse is a band-pass

signal, so the dc, very low frequency, and very high frequency

components of the reflectors are not captured. This limits the

amount of “whitening” or equalization that can be accom-

plished. From a 2D imaging point of view, the illumination of

k-space by a typical pulse is a discouragingly small area of

support, constraining the strategies for improving image qual-

ity while reducing speckle (Munson and Sanz, 1984).

This paper will demonstrate an approach to an inverse

filter solution with stabilized ultrasound pulses. Stabilized
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pulses, in this context, mean realizable continuous functions

in the axial and transverse directions that when sampled have

their Z-transform zeros lying within the unit circle. This cor-

responds to inverse filters that are stable because their poles

lie within the unit circle such that they are limited in time

with bounded output. By applying an exact, stable inverse fil-

ter, the final result is a very high resolution, subwavelength

solution to the distribution of scatterers that were previously

below the resolution of the ultrasound pulse and the imaging

system. The integration of random scatterers over the pulse

length and width is essentially disaggregated by the inverse

filter operation. Therefore, the two dominant and problematic

system effects of pulse length and speckle statistics are elimi-

nated, replaced by a more favorable and high resolution calcu-

lation of the distribution of scatterers within tissue. The

solution is exact within the framework of the convolution

model and sampled signals, yet is approximate in the sense

that the sampling frequency (as low as twice the center fre-

quency of the transmit pulse in some following examples)

will result in aliasing of components above the Nyquist fre-

quency. The solutions are also accurate with respect to the

physical reality to the extent that the convolution model is

FIG. 1. (Color online) A conventional pulse with a Gaussian envelope, sampled at twice the center frequency in (a). The zeros of the Z-transform of the

sampled pulse is shown in (b). Because some zeros lie in and around the unit circle, the inverse is unstable and unbounded.

FIG. 2. (Color online) An asymmetric pulse formed by multiplying the Gaussian envelope with a geometric series is shown in (a). The zeros of the Z-

transform are retracted into the unit circle as shown in (b). This leads to a stable inverse filter.
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accurate and the effect of noise is limited. The resulting

images are termed super-resolution ultrasound (SURUS)

images, as they are super-resolution ultrasound images.

FIG. 3. (Color online) Another asymmetric pulse with the form of a Gaus-

sian multiplied by the square root of t is shown in (a). The zeros of its Z-

transform are shown in (b) indicating the availability of a stable inverse filter

shown in (c).

FIG. 4. (Color online) An unmodulated asymmetric envelope proposed for

the transverse beampattern is shown in (a). Its Z-transform zeros are shown

in (b) and corresponding stable inverse filter in (c).
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II. THEORY

We begin with a discrete version of Eq. (1) with the

inclusion of noise. Without loss of generality, the 2D version

is given as

e n½ � ¼ p n½ �s m½ � � � R n;m½ � þ g n;m½ � (2)

where g[n,m] is additive noise.

The objective is to reconstruct the scatterers or reflectors

R[n,m]. For this, we turn to the Z-transform of p[n]. The

one-sided Z-transform of p[n] is given by (Oppenheim and

Schafer, 1975)

P zð Þ ¼
X1

0

p n½ �z�n: (3)

For a pulse of length N, the Z-transform is a polynomial of

order N-1, which can be factored into roots, giving zeros

of the Z-transform. The inverse filter, given by the transform

1/P(z), will convolve with p[n] to produce an impulse. How-

ever, it is clear that the reciprocal nature of P(z) and its

inverse filter transform implies that the zeros of the pulse

transform P(z) become the poles of the inverse filter. Gener-

ally, for a casual, right-handed system to be stable the poles

of the Z-transform must lie within the unit circle, and the

region of convergence includes the unit circle. This is analo-

gous to poles of a stable system lying in the left half plane

FIG. 5. A gray-scale plot of the two dimensional (2D) function that is sepa-

rable and asymmetric in both vertical and horizontal directions. The vertical

(axial) function is given by the function shown in Fig. 3(a), and the horizon-

tal (transverse) function is the function shown in Fig. 4(a).

FIG. 6. A set of random reflectors

with patches of zeros in the shape of

letters (a) undergoes 2D convolution

with the pulse of Fig. 5. The result-

ing speckle envelope is shown in

(b), and the letters “UR” are not visi-

ble due to the distribution of the

speckle statistics. After inverse fil-

tering in the vertical direction, the

results are improved in (c), and after

horizontal inverse filtering the final

result is given in (d); 5% rms white

noise was added to the convolution

result before inverse filtering, so the

operations are well conditioned in

the presence of modest additive

noise.
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for Laplace transforms. With poles on or outside the unit

circle, the impulse response of these systems would be unsta-

ble and unbounded.

Assuming that a stable inverse filter 1=P zð Þ can be

derived, with an impulse response of p�1 n½ �, then a convolu-

tion of the received echo with the inverse filter yields

p�1 n½ � � e n½ � ¼ p�1 n½ � � p n½ � � R n½ � þ p�1 n½ � � g n½ � (4)

where the one-dimensional form of Eq. (2) is used for sim-

plicity. Also, by definition

p�1 n½ � � p n½ � ¼ d n½ �; the discrete delta function; so (5)

p�1 n½ � � e n½ � ¼ d n½ � � R n½ � þ p�1 n½ � � g n½ �
¼ R n½ � þ p�1 n½ � � g n½ �: (6)

In the absence of noise, the use of the inverse filter yields R n½ �
exactly, a high resolution replica of the sampled scatter func-

tion. Given noise, the stability and frequency response of

p�1 n½ � must be considered to minimize the term p�1 n½ � � g n½ �.
Thus far we considered the general case of a one-

dimensional signal p[n] and its Z-transform. Because our

imaging pulse is two (or three) dimensional, we need to con-

sider a two (or three) dimensional Z-transform. However,

because the convolutional model has separable functions for

axial and transverse dimensions, then the 2D Z-transform

reduces to separable functions as well.

The problem, therefore, is to find and apply inverse fil-

ters for p n½ � and s m½ �. Unfortunately, the typical ultrasound

pulses used for imaging are functions that, when sampled,

have Z-transforms with many zeros on and outside of the

unit circle [see Michailovich and Adam (2004) for exam-

ples]. These produce inverse filters with poles outside of the

unit circle, leading to unstable filters. Further examples are

given in Sec. III.

One way to create stabilized pulses (meaning pulses

that, when sampled, posses stable inverse filters) is to multi-

ply p n½ � by the quantity bn, where b is a real number <1. In

the discrete world, if a right-sided sequence p n½ � with a

Z-transform P Zð Þ is multiplied by an exponential sequence

bn, then (Oppenheim and Schafer, 1975; Jackson, 1991)

Z bnp n½ �½ � ¼ P z=bð Þ: (7)

Thus the multiplication by a geometric series creates an

asymmetric pulse in the time domain with its Z-transform

zeros “retracted” into the unit circle depending on the factor

beta. A similar consideration applies to samples of the trans-

verse beam function s m½ �, and examples are provided in the

next section.

III. RESULTS

First, we examine a conventional pulse shape p t½ �, which

is modeled as a Gaussian envelope modulated by a cosine at

the center frequency of the transducer as shown in Fig. 1(a).

The continuous function is sampled at twice the center

frequency and 15 points are taken as p n½ �. The Z-transform

of this sampled pulse has numerous zeros on the unit circle

and a pair of conjugate zeros outside of the unit circle, as

seen in Fig. 1(b).

These zeros will become poles of the inverse filter and

signify an unstable, unbounded output result. Therefore this

class of typical pulse echo shape is not conducive to inverse

filters. However, by modifying the function with a geometric

series, a beta term in Eq. (7), the pulse can be made asym-

metric and the inverse transform is stabilized. As an

FIG. 7. (Color online) Histograms showing the probability density functions

for the original scatterers (a), the result of convolution with a pulse (b), and

after inverse filtering (c). The standard Rayleigh speckle statistics are dem-

onstrated in (b), whereas the original Gaussian statistics are restored in (c).
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example, the Gaussian function in Fig. 1(a) is multiplied by

0:7n, and the new function is shown in Fig. 2(a).

Now all the zeros of the transform lie within the unit

circle, as seen in Fig. 2(b). Accordingly, the inverse filter

will have poles within the unit circle and will have a

bounded input/bounded output impulse response of limited

duration.

In general, we have found that the formation of a stabi-

lized pulse is not restricted to the use of a bn type function;

rather this is illustrative of envelopes that have a sharp initial

rise and a more gradual fall-off from the peak. We call these

“asymmetric” envelopes or pulses, and these can be charac-

terized by a number of different analytic functions. One

example is a piecewise exponential rise with one time con-

stant and then an exponential fall with a longer time con-

stant. Another example for a pulse is a Gaussian function in

time multiplied by a sine or cosine, as in conventional modu-

lation, but with a step function at t ¼ 0 and multiplied by t,

p tð Þ ¼ sin xtþ uð Þ �
ffiffi
t
p
� e � t�sð Þ2=2r2½ � � UnitStep tð Þ: (8)

This produces an asymmetric envelope similar to a Ray-

leigh distribution function. When sampled at twice the mod-

ulation frequency and aligned to the peaks of the function,

the resulting sampled p n½ �, and its pole-zero diagram and its

inverse filter are shown in Fig. 3.

For the transverse beam pattern s xð Þ, we choose the

asymmetric function:

s xð Þ ¼ x � e �x2=2rx½ � � UnitStep xð Þ: (9)

The sampled version, s m½ � is given in Fig. 4, along with the

corresponding pole-zero diagram and the inverse filter result.

The rapid decay of this inverse filter, along with the inverse

of p n½ �, is quite beneficial to the suppression of noise.

The combined pulse p n½ �s m½ � in two dimensions is

shown in Fig. 5, and its non-symmetry is readily apparent.

This pulse is used to image a field of random scatterers,

with a pattern of letter-shaped nulls running through the field

[Fig. 6(a)]. The 2D pulse shape is approximately 12 samples

(vertical, axial) by 15 samples (horizontal, transverse) and

will at any position include approximately 180 sampled scat-

terers, resulting in fully developed speckle. The conventional

speckle pattern results [Fig. 6(b)] and the null characters can-

not be discerned. After convolution with axial (vertical) and

transverse (horizontal) inverse filters, the original pattern is

reproduced exactly except for the effects of 5% rms noise

added to the original signal before inverse filtering [Figs. 6(c)

and 6(d)]. In this example, the improvement in resolution

compared with conventional pulse echo is approximately a

factor of 12 in the axial and 15 in the transverse dimensions.

From the visual appearance, the speckle pattern has been

converted to a fine-grain scatterer map. Statistically, the

unfavorable Rayleigh statistics of speckle are converted into

the statistics of the original scatterers. This is demonstrated in

Fig. 7. Plotted are the histograms of the absolute value of the

original scatterers (a), the envelope of the echo demonstrating

Rayleigh statistics (b), and the absolute value of the echo after

filtering (c). The original Gaussian distribution of the scatter-

ers has been restored.

The effect of sampling rate is important, and a general

trend is illustrated in the following example. A pulse shape of

the form of Eq. (8) is sampled at exactly twice the modulation

frequency in Fig. 8 along with its pole-zero diagram, which

indicates the availability of a stable and useful inverse filter.

If the sampling rate is doubled as shown in Fig. 9(a), the

length of the sampled pulse doubles (increasing the com-

plexity of the solution for the zeros of the Z-transform and

then the inverse Z-transform), and the pole-zero diagram

[Fig. 9(b)] demonstrates a similar pattern to the previous

FIG. 8. (Color online) A sampled pulse (a) and its Z-transform zeros (b) indicating the availability of a stable inverse filter.
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example but with double the number of zeros and a shift to-

ward the unit circle.

Continuing along this direction, if we again double the

sampling frequency [Fig. 9(c)], then the poles double and

once again trend toward the unit circle [Fig. 9(d)].

The closest points to the unit circles will correspond to

peaks in the frequency response of the inverse filter, produc-

ing ringing, poor convergence, and in the limit, instability.

Thus, even within the convolution model framework, there

is a limit to the degree of superresolution that is achievable

with a given asymmetric pulse.

Another issue concerns the sensitivity of the superreso-

lution result to the exact parameters. In practice, even with a

well designed transmit pulse and beam, inhomogeneities and

fluctuations within the tissue will create distortions in the

propagating pulse. So a reconstruction that requires exact pa-

rameters would be limited in value. To test this, a convolu-

tion with a pulse is performed using one pulse shape and

then is inverse filtered using a different parameter. The pulse

p t½ � was chosen to be of the form of a Gaussian modulated

cosine multiplied by a bt where b ¼ 0:7. The inverse filter

for this was calculated assuming an incorrect b of 0.6, other

parameters and transverse beampattern remaining the same.

The original scatterers, speckle image, deconvolution in the

vertical direction, then full vertical and horizontal directions

are given in Fig. 10. While the inverse filter result is no lon-

ger a close match to the original scatterer pattern, the

UR-shaped voids can still be seen, thus a degree of superre-

solution is achieved without the use of exact parameters.

IV. DISCUSSION AND CONCLUSIONS

An inverse filter approach has been derived using the

Z-transform on stabilized but realizable pulses. Analogous

FIG. 9. (Color online) The same pulse sampled at twice the sampling rate of Fig. 8, shown in (a), and its Z-transform zeros in (b). A movement toward the

unit circle is evident. Another doubling of the sampling rate results in (c) and (d). The trend is toward the unit circle and instability.
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inverse filters may be derived using alternative approaches

(Fourier transform, Chirp-Z transform, and others), and other

functions besides bt can be utilized to produce stabilized

yet practicable pulse shapes. However, the use of the

Z-transform and the effect of the beta function in the trans-

form domain are fundamental and illustrative.

A major issue in the use of the inverse filter is the limit

of accuracy of the framework. There are a number of con-

tributing factors. The first is the accuracy of the convolu-

tional model compared to the physical world. In particular,

the separability of the pulse function into axial and trans-

verse functions is well accepted for the focal region but not

in the near field. However, the increasing use of multiple

focus zones and dynamic focus adjustments in imaging sys-

tems means that more zones within the image are likely to

be represented by a separable function. In the event that the

pulse cannot be decomposed into separable functions, a 2D

Z-transform can still be applied. Given a 2D pulse function

p n;m½ � with its 2D Z-transform P½z1; z2�, it can be shown that

the asymmetric principle applies in 2D. That is,

an � bm � p n;m½ � has the transform P½z1=a; z2=b� (Oppenheim

and Schafer, 1975). Thus proper asymmetric shaping of the

pulse can be used in both axial and transverse directions to

“retract” the zeros into the unit sphere in 2D for stability of

the 2D inverse filter. In practice, the difficulties caused by in-

homogeneous overlying tissues and attenuation will cause

the true pulse shape to deviate from the ideal. The results of

Fig. 10 demonstrate that there can be some improved resolu-

tion with this approach even when a model parameter is off

by over 10%. It remains to be seen how well the parameters

can be adjusted to account for tissue distortion over a range

of patients and organs.

A second issue is that of noise because the inverse filter

convolves with the additive noise to produce an unwanted

term. For inverse filters with poles very close to or on the unit

circle, there can be an amplification of the noise near the pole

frequencies. Thus the design of the inverse filter and limiting

or suppression of noise are important issues. A third factor is

the sampling rate, which in a naı̈ve view could be set very

high leading to arbitrarily fine resolution. This scheme is not

practical because higher sampling rates lead to larger polyno-

mials in the Z-transform, more difficult solutions of the poly-

nomial roots and inverses, and more poles in the inverse filter,

which will become more difficult to constrain within the unit

circle. Thus a practical upper limit will be reached; however,

the details are beyond the scope of this paper.

Can these asymmetric pulses be produced in practice?

In fact it is straightforward to show that the Fourier trans-

form of the conventional symmetric beamshapes, and those

of the asymmetric versions, are reasonably contained within

a similar support or bandwidth. That means that a transducer

of limited bandwidth can, with some modification of the

FIG. 10. The effect of inexact recon-

struction parameters. A region of

reflectors is shown in (a). Imaging

with a pulse using a geometric pa-

rameter of 0.7 yields a conventional

speckle image in (b). Reconstruction

with horizontal (exact) and vertical

(inexact, geometric parameter 0.6

used) are shown in (c) and (d),

respectively. The resulting inverse fil-

tered image is a reasonable recon-

struction of the original scatterers,

despite the use of an erroneous

model.
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excitation, produce either the symmetric or the asymmetric

(stabilized) version of p tð Þ. For the transverse beam pattern,

this means that an aperture with limited support can similarly

produce either the symmetric or the asymmetric (stabilized)

version of the beam pattern s xð Þ. As an example, consider

two functions of x, one a standard Gaussian and the other of

the form x times a Gaussian, as shown in Fig. 11(a). One is

clearly asymmetric, leading to a stable inverse filter. The

magnitude of the Fourier transform of both functions is

shown in Fig. 11(b). The asymmetric function, being more

narrow in the x domain, has a greater bandwidth in the trans-

form domain. An imaging system would require a somewhat

broader aperture or transducer excitation to achieve the

asymmetric function in the lateral or axial dimensions,

respectively. Thus there is some cost associated with realiz-

ing pulse shapes that are opportune for inverse filtering and

superresolution.

The result of employing stabilized pulses and their

inverse filters is highly beneficial for the imaging of small

reflectors or scatterers, and for low-contrast lesion detection

in B-scan imaging systems, because the dominant and prob-

lematic characteristics of resolution linked to pulse length,

and speckle statistics, are eliminated. Instead, resolution is

linked to the sampling frequency: for example twice the cen-

ter frequency of the transducer, leading to an improvement

of at least 6–10 in typical broadband system resolution, more

for narrowband systems. Furthermore, the statistics of the so-

lution to the inverse filter resemble the statistics of the actual

scatterer distribution as sampled at the desired sampling fre-

quency. This approach is tractable, can be implemented on

most scanning systems, and is adaptable to a wide variety of

specific transducers, bandwidths, and applications. Similar

considerations apply to other imaging schemes that employ

coherent pulses, including OCT systems, and some sonar, ra-

dar, and SAR pulse-echo systems.
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