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Equivalent Elmore Delay forRLCTrees
Yehea I. Ismail, Eby G. Friedman, Fellow, IEEE, and José L. Neves

Abstract—Closed-form solutions for the 50% delay, rise time,
overshoots, and settling time of signals in an tree are
presented. These solutions have the same accuracy characteristics
of the Elmore delay for trees and preserves the simplicity
and recursive characteristics of the Elmore delay. Specifically,
the complexity of calculating the time domain responses at all
the nodes of an tree is linearly proportional to the number
of branches in the tree and the solutions are always stable. The
closed-form expressions introduced here consider all damping
conditions of an circuit including the underdamped re-
sponse, which is not considered by the Elmore delay due to the
nonmonotone nature of the response. The continuous analytical
nature of the solutions makes these expressions suitable for design
methodologies and optimization techniques. Also, the solutions
have significantly improved accuracy as compared to the Elmore
delay for an overdamped response. The solutions introduced here
for trees can be practically used for the same purposes that
the Elmore delay is used for trees.

Index Terms—Delay, inductance, interconnect,RLC, simulation,
tree, VLSI.

I. INTRODUCTION

I T has become well accepted that interconnect delay domi-
nates gate delay in current deep submicrometer very large

scale integration (VLSI) circuits [1]–[9]. With the continuous
scaling of technology and increased die area, this situation is
becoming worse. In order to properly design complex circuits,
more accurate interconnect models and signal propagation char-
acterization are required. Initially, interconnect has been mod-
eled as a single lumped capacitance in the analysis of the per-
formance of on-chip interconnects. Currently, models are
used for high-resistance nets and capacitive models are used for
less resistive interconnect [10], [11]. However, inductance is be-
coming more important with faster on-chip rise times and longer
wire lengths. Wide wires are frequently encountered in clock
distribution networks and in upper metal layers. These wires are
low-resistive wires that can exhibit significant inductive effects.
Furthermore, performance requirements are pushing the intro-
duction of new materials for low-resistance interconnect [12].
Inductance is therefore becoming an integral element in VLSI
design methodologies, see, e.g., [6], [13], and [14].
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An interconnect line in a VLSI circuit is in general a tree
rather than a single line. Thus, the process of characterizing
signal waveforms in tree structured interconnect is of primary
importance. One of the more popular delay models used within
industry for trees is the Elmore delay model [15], [16]. De-
spite not being highly accurate, the Elmore delay is widely used
by industry for fast delay estimation. With IC’s composed of
tens of millions of gates it is often impractical to use highly ac-
curate, time consuming methods to evaluate the delay at each
node in the circuit. The Elmore delay model is therefore used
to quickly estimate the relative delays of different paths in the
circuit, permitting more exhaustive simulations to be performed
for only the critical paths. Also, the Elmore delay is widely used
as a delay model for the synthesis of VLSI circuits such as buffer
insertion in trees and wire sizing [17]–[28]. The wide use
of the Elmore delay as a basis for design methodologies is pri-
marily because the Elmore delay has a high degree offidelity
[17]: an optimal or near-optimal solution achieved by a design
methodology based on the Elmore delay is also near-optimal
based on a more accurate (e.g., SPICE-computed [24]) delay
for routing constructions [25] and wire sizing optimization [23].
Simulations [26] have shown that the clock skew derived under
the Elmore delay model has a high correlation with SPICE-de-
rived skew data.

The popularity of the Elmore delay is mainly due to the ex-
istence of a simple tractable formula for the delay [29] that has
recursive properties [27], making the calculation of the circuit
delays highly efficient even in large circuits. No formula for
delay calculation has been determined for trees that main-
tains all the characteristics of the Elmore delay. The absence
of an equivalent delay model for trees is primarily due
to the fact that the Elmore delay does not cover nonmonotone
responses [15] which can occur in circuits. The work de-
scribed in [30] uses the first and second moments to characterize
the response of trees. However, the solutions in [30] are
composed of three different formulae for the cases of real, com-
plex, and multiple poles and there are no closed-form solutions
for the moments of a tree that can be directly incorporated into
the delay model. Furthermore, the solutions in [30] only char-
acterize a step input response and do not characterize the over-
shoots and settling time of an underdamped response. The focus
of this paper is therefore the introduction of a simple tractable
delay formula for trees that preserves the useful charac-
teristics of the Elmore delay model while maintaining the same
accuracy characteristics. The rise time of the signals in an
tree is also characterized as well as the overshoots and the set-
tling time (for an underdamped response).

This paper is organized as follows. A background for cal-
culating the delay in and trees is provided in Sec-
tion II. In Section III, an equivalent second-order approxima-
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tion of an tree is developed. Closed-form solutions for the
50% delay, rise time, overshoots, and settling time of the sig-
nals within an tree are introduced in Section IV. Accuracy
characterization of the proposed delay model is presented in
Section V. Finally, some conclusions are offered in Section VI.
The algorithmic complexity of the proposed delay model is de-
scribed in the Appendix.

II. BACKGROUND

In 1948, Elmore [15] introduced a general approach for calcu-
lating the propagation delay of a linear system given its transfer
function. If the transfer function of the system is the nor-
malized transfer function is which can be gen-
erally described as

(1)

where and are real and For a monotone response,
all the poles of should be real and for a stable system all the
poles should lie on the negative real axis. The unit step response
of the normalized transfer function is In the time
domain the transient unit step response has a final value of
one and is monotonically increasing as shown in Fig. 1(a).

Elmore proceeded from the observation that the time domain
unit step response has the characteristics of the integral of a
probability function since it has a final value of one and is mono-
tonically increasing which makes the area under equal to
one and makes always positive. Thus, Elmore defined the
50% propagation delay [the time where is equal to 0.5] as

(2)

which is the centroid of the area under By noting that
for a step input is simply the transfer function can be
expressed as

(3)

Thus, if the normalized transfer function is expanded in the
powers of the 50% delay can be determined directly as the co-
efficient of From (1), the propagation delay is
which is the definition of the Elmore delay [15].

In 1987, Wyatt [16] used the relationships thatand are
given by

and (4)

respectively, where and are the poles and zeros of the
transfer function, respectively. Thus, Wyatt treated

as the reciprocal of the dominant pole (the pole that has the
smallest absolute value) of the system. This approximation is
accurate for systems that can be modeled by a single dominant

Fig. 1. Step response of a normalized monotone transfer function. (a) Step
response. (b) Impulse response (which equals the time derivative of the step
response).

Fig. 2. SimpleRC circuit.

pole and has no low-frequency zeros near the dominant pole.
Using this approximation, the step response of the system is

(5)

which indicates a 50% propagation delay equal to 0.693
rather than as anticipated by Elmore. For example, the
simple circuit shown in Fig. 2 has the transfer function

(6)

Thus, according to Elmore the propagation delay isand ac-
cording to Wyatt the propagation delay is 0.693 Note that
Wyatt’s solution is exact for this simple circuit and a step input
signal. In general, Wyatt’s solution is more accurate than El-
more’s solution. Wyatt’s approximation is usually still referred
to as the Elmore delay.

What has made the Elmore (and Wyatt) delay particularly ap-
pealing for trees is the introduction of a simple closed-form
solution for the time constant [29]. For the tree shown
in Fig. 3, the time constant at node is

(7)

where is an index that covers each capacitor in the circuit and
is the common resistance from the input to the nodesand
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Fig. 3. RLC tree.

For example, for the tree shown in Fig. 3,
and Wyatt
approximates the transfer function at node i of an tree by a
first-order (single-pole) transfer function given by

(8)

This first-order approximation matches the first moment of the
transfer function at node but approximates the higher-order
moments by

(9)

as can be seen in the expansion of (8)

(10)

This single pole first-order approximation of the transfer
function can be inaccurate in certain cases where arbitrary
initial conditions can create a low-frequency zero, thereby
violating one of Wyatt’s assumptions [31]. For this reason,
Horowitz approximates the capacitor voltage with a two pole
one zero transfer function by matching boundary conditions
[32]. Pillage extended this concept by introducing asymptotic
wave evaluation (AWE), which depends on matching the
first moments of the transfer function [33]–[35] rather than
only the first moment as Wyatt and Elmore did. This concept
allows arbitrary accuracy by including additional moments.
The normalized transfer function can be expanded in the
powers of as

(11)

where is the th moment of the transfer function [33]. The
first moments of the transfer function include the informa-
tion needed to calculate the first q poles and the residues of
these poles. Numerical methods have been developed [34]–[37]
to efficiently calculate the moments, poles, and residues. Also,
model-order reduction techniques based on the state-space rep-
resentation of an network have been used to calculate
the transient response of signals within the tree such as: pade

Fig. 4. SimpleRLC circuit.

via lanczos (PVL) [38], matrix pade via lanczos (MPVL) [39],
arnoldi algorithm [40], block arnoldi algorithm [41], passive re-
duced-order interconnect macromodeling algorithm (PRIMA)
[42], [43], and SyPVL Algorithm [44]. However, the Elmore
(Wyatt) delay is still widely used within industry since it is com-
putationally faster to evaluate and always leads to stable solu-
tions. Also, due to the existence of a closed-form tractable so-
lution, the Elmore delay is amenable to synthesis and VLSI-
oriented design methodologies. Asymptotic wave evaluation is
mainly used in analyzing those networks that require high ac-
curacy and covers both monotone and nonmonotone responses.
In [45], the first and second moments are used to evaluate the
delay of a VLSI interconnect. However, no closed-form solution
is described for trees.

III. SECOND-ORDERAPPROXIMATION FOR TREES

As mentioned previously, the Elmore (Wyatt) delay does not
properly characterize networks due to the possibility of
a nonmonotone response of an network. To illustrate this
point, consider the simple single -section circuit depicted
in Fig. 4. This circuit has a second-order transfer function that
can be characterized by

(12)

Note that the coefficient of is which does not include
the inductance This coefficient of the Elmore time constant
(and thus the Wyatt approximation) does not depend on the in-
ductance. However, inductance can have a significant effect on
the response of the circuit. To better observe the effects of in-
ductance, the transfer function of the circuit can be reconfigured
as

(13)

where

(14)

(15)

The poles of the transfer function are

(16)

Note that ifζ is less than one, the poles are complex and oscil-
lations occur in the response which violates the monotone re-
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sponse condition of the Elmore delay. In this case, the response
is underdamped and overshoots occur. Ifζ is greater than one,
the poles are real and the response is an overdamped response.
If ζ is equal to one, the response is a critically damped response.
ζ is called the damping factor of the system. From (14), as the
inductance increases,ζ decreases which violates the assumption
of a monotonic response.

At least a second-order approximation is required to char-
acterize a nonmonotone response, because a nonmonotone re-
sponse involves complex poles which appear in conjugate pairs
in a real system. Thus, a second-order system such as (13) can
be used to approximate a system with a nonmonotone response.
It is therefore necessary to determineζ and in order to make
the second-order approximation as accurate as possible as com-
pared to the exact transfer function. The transfer function in (13)
can be expanded in powers ofwhere the first two moments of
the transfer function are equated to the first two moments of the
system, and The expansion of the transfer function in
(13) is

(17)

The parameters that characterize the second-order approxima-
tion of a nonmonotonic system,ζ and can be calculated in
terms of the moments of the nonmonotonic system and are

(18)

(19)

Hence, for a system with a nonmonotonic response a second-
order approximation can be found if the first and second mo-
ments of the system are known.

For the general tree shown in Fig. 5, the voltage drop
at any node as compared to the input voltage is

(20)

If the input is a unit impulse, is equal to 1.0 and the
voltages at the nodes of the tree are the unit impulse responses
of these nodes. Thus, the normalized transfer function at
node is given by and is

(21)

The first and second moments at nodecan be derived from

(22)

(23)

Fig. 5. GeneralRLC tree.

Differentiating (21) with respect toand substituting

(24)

(25)

Note that and since
Thus, the first and

second moments of a general tree at node are

(26)

(27)

Since the Elmore (Wyatt) model approximates the first term
in by a similar approximation is used here.
Thus, the second moment is approximated by

(28)

Substituting the first and second moments of a general
tree into (18), and that characterize a second-order ap-
proximation of the transfer function at nodeare

(29)
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(30)

Note the analogy with and for a single section in
(14) and (15). The time constants and are replaced
by the summations of the equivalent time constants in the tree.
Note also that (29) and (30) becomes (14) and (15), respectively,
for a single section. This second-order approximation has the
same accuracy characteristics as that of the Elmore (Wyatt) ap-
proximation for an tree. The accuracy characteristics of this
second-order approximation is discussed in Section V.

IV. SIGNAL CHARACTERIZATION IN TREES FOR ASTEP

INPUT

The second-order approximation of the transfer function of
an tree at node described by (13), (29) and (30) can be
used to determine the time domain signal at nodefor an ar-
bitrary input. The Laplace transform of the input is multiplied
by the second-order approximate transfer function. The inverse
Laplace transform is calculated for the resulting expression to
determine the time domain signal. After determining an expres-
sion that describes the time domain signal at nodeof an
tree, an iterative method is applied to calculate the primary pa-
rameters that characterize the time domain response such as the
50% propagation delay and the 90% rise time. However, for the
special case of a step input, these parameters can be calculated
directly without applying the aforementioned procedure due to
the mathematical nature of the time domain signal.

For a step input and a supply voltage of , the time domain
response at nodederived from the second-order approximation
is

(31)

The rise time is defined here as the time for the signal to rise
from 10% to 90% of the final value. Also, the overshoots and
the settling time for the case of an underdamped response are
characterized. In the step response in (31), note that time is al-
ways multiplied by Thus, if the time is scaled by , the
step response at nodewith a supply voltage of volts be-
comes a function of only one variableand is

(32)

where is the time scaled response at nodeand is time
scaled by The time scaled 50% delay and rise time can be
calculated by equating to 0.5 0.1 and 0.9
respectively. The time scaled 50% delay at nodeand the rise
time are only functions of one variable The 50% delay and
the rise time calculated for several values ofare plotted as
functions of in Fig. 6. A curve fitting method is applied to
characterize the time scaled 50% delay and rise time as func-
tions of and these functions are

(33)

(34)

where and are the time scaled 50% delay and rise time
at node respectively. The 50% delay and rise time at node
can be determined by dividing and by and are

(35)

(36)
Note that the 50% delay and the rise time at nodecan be de-
scribed as

(37)

(38)

For large (low inductance effects), these solutions become
the Elmore (Wyatt) approximation of the 50% delay and the
rise time for an tree at node This relationship between
(37) and (38) for large and the Elmore (Wyatt) delay demon-
strates that the general solutions for the 50% delay and the rise
time introduced here include the Elmore (Wyatt) delay for the
special case of an tree. Note also that the general solutions
introduced here include all types of responses (underdamped
nonmonotone, critically damped, and overdamped) in one con-
tinuous equation, which is useful in applications such as buffer
insertion, wire sizing, and other VLSI-based design, synthesis,
and analysis methodologies.

For the case of an underdamped nonmonotone response when
(see Fig. 7), overshoots and undershoots occur which

must also be characterized. Also, another parameter can be used
to characterize nonmonotone responses and is defined as the
time when the oscillations about the steady state are smaller
than of the steady state value. This parameter is usually called
the settling time and is typically chosen to be 0.1 [47]. The
value of the maximum or minimum oscillations can be found by
differentiating (31) with respect to time and equating the result
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Fig. 6. The time scaled 50% delay and rise time,t andt ; versus� : (33) and (34) are also shown.

to zero. The values for the maximum or minimum oscillations
at node as a percentage of the final value are given by

(39)

where represents the maximum overshoots forodd and
minimum undershoots for even at node The time at which
the th overshoot occurs at nodeis

(40)

The settling time can be calculated by equating to to
determine which represents the first overshoot that is less than

times the steady state value. The time of this overshoot is the
settling time and can be calculated by substituting n calculated
from in (41). Thus, the settling time at nodeis

(41)

For is

(42)

V. ACCURACY CHARACTERIZATION OF THE SECOND-ORDER

APPROXIMATION

The accuracy characteristics of the second-order approxima-
tion introduced in Section III are discussed and explained in this
section. The effect of the signal applied at the input of the tree on
the accuracy of the second-order approximation is discussed in
Section V-A. The effects of the unbalance in impedances within
the tree and the branching factor for balanced trees are discussed
in Sections V-B and V-C, respectively. The effect of the depth
of the tree is discussed in Section V-D. The effect of the posi-
tion with respect to the source of the node at which the response
is evaluated is presented in Section V-E. Finally, the effect of
higher-order oscillations in the response is discussed in Section
V-F. In general, the approximation introduced here for
trees has the same accuracy characteristics as that of the Elmore
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Fig. 7. Characterization of an underdamped response.V is the supply voltage.x is the ratio of the final value which bounds the oscillations for the response
to be considered settled. The timest ; t ; � � � are the times at which the overshoots and undershoots occur.t is the settling time.

(Wyatt) delay for trees. Expression (35) in Section IV is
used to calculate the propagation delay throughout this section.

A. Effect of the Input Waveform Shape

As mentioned in Section IV, the second-order approximation
introduced in this paper in (13), (29) and (30) can be used to cal-
culate the time domain response of an arbitrary input signal. The
error of the time domain response calculated using the second-
order approximation as compared to AS/X [46] simulations is
dependent on the characteristic of the input signal. More specif-
ically, the calculated time domain response becomes more ac-
curate as the rise time of the input signal increases. To illustrate
this behavior, an exponential input signal of the form

(43)

is applied to the second-order approximation where is the
unit step function, is the supply voltage, and the 90% rise
time of the input signal is 2.3 is the time constant of the
exponential in (27). Note that an exponential signal more accu-
rately characterizes the signals in VLSI circuits as compared to
a ramp input signal. The time domain response at nodeof an

tree for this exponential input is

(44)

where

(45)

Fig. 8. An example of anRLC tree.

(46)

and

(47)

is

(48)

This closed-form time domain solution is evaluated for output
of the tree shown in Fig. 8 and is compared to AS/X

[46] simulations in Fig. 9. Note in Fig. 9 that as the rise time of
the input signal increases as compared to the calculated
time domain response becomes more accurate. This relationship
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Fig. 9. Simulations of the time domain response for outputO of the tree shown in Fig. 8 as compared to the closed-form solution in (43) for different input rise
times.

is intuitive since the closed-form solution accurately captures
the characteristics of the input signal. As the input rise time in-
creases as compared to the time constants of the impedances
within the tree, the dependence of the output response
on the input signal increases as compared to the dependence
on the characteristics of the tree. Hence, the output re-
sponse becomes more accurate when the response is dominated
by the input characteristics, which are accurately captured by
the closed-form solution. Thus, an argument can be made that
the time domain response calculated using the second-order ap-
proximation introduced here is largest for a step input (which
has a zero rise time).

B. Effect of Unbalanced Impedances within the Tree

A balanced tree is a tree where the impedances of the
sections that constitute each level are equal, making the paths
to all the sinks identical. For example, the tree shown in Fig. 5
is balanced if the sections, 2 and 3, which constitute the
second level of the tree are identical and the sections, 4,
5, 6, and 7, which constitute the third level are identical. If the
tree in Fig. 5 is not balanced, the transfer function at any of the
sinks (nodes 4, 5, 6, or 7) is of order 14 since the tree has seven
capacitors and seven inductors. The transfer function at any of
the sinks has six of the 14 zeros (the total number of zeros is
always equal to the total number of poles) at infinity since there
are three shunt capacitors and three series inductors from the
input to each sink. The remaining eight zeros are finite zeros

Fig. 10. Equivalent ladder circuit of theRLC tree shown in Fig. 5 when the
tree is balanced.

making the order of the numerator eight. When the tree is bal-
anced, an exact calculation of the transfer function illustrates
that the eight finite zeros of the transfer function coincide with
eight of the poles. These eight poles and zeros cancel, leaving
the transfer function at the sinks only of order six with no fi-
nite zeros. To better interpret this behavior, note that nodes 2
and 3 can be shunted when the tree shown in Fig. 5 is balanced
due to symmetry without affecting the response at any node of
the tree. Also, nodes 4, 5, 6, and 7 can be shunted due to sym-
metry. Thus, the tree shown in Fig. 5 is equivalent to the
ladder circuit shown in Fig. 10 after calculating the equivalent
impedance of the parallel sections. This ladder circuit has
a transfer function of order six at the output with no finite zeros.
Note that if the tree has a fourth level, the eight sections
of that level correspond to one section in the equivalent
ladder circuit. In the fifth level, 16 sections correspond
to one section in the equivalent ladder circuit. Thus, the
number of poles of the transfer function at the sinks of a bal-
anced tree increases linearly with the number of levels in
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Fig. 11. AS/X simulations as compared to (31) for several values ofζ. The Elmore (Wyatt) solution is also shown. Results are for node 7 for the circuit shown
in Fig. 5.

the tree due to pole-zero cancellation. Note that no finite zeros
are added by increasing the number of levels. For an unbalanced

tree with a binary branching factor, the number of poles
and finite zeros at the sinks increases exponentially with the
number of levels in the tree. The second-order approximation
used here has two poles and no finite zeros and more accurately
approximates the transfer function of a balanced tree than
that of an unbalanced tree.

The closed-form solution is compared to AS/X [46] simula-
tions of the tree shown in Fig. 5 at output node 7. The simula-
tions are shown in Fig. 11 for a balanced tree with several values
of ζ (the equivalent damping factor at node 7) and a step input
which represents the highest error as discussed in subsection A.
The Elmore (Wyatt) solution is also shown for comparison. Note
the high accuracy that the solution exhibits as compared to the
AS/X simulations for the case of a balanced tree. The error in the
propagation delay is less than 4% for this balanced tree example.
The accuracy of the solution introduced here deteriorates as the
tree becomes more asymmetric. To quantify the error between
the closed-form solution introduced here and AS/X simulations,
simulations and analytic solutions of several asymmetric trees
are shown in Fig. 12 The parameterasymis introduced to quan-
tify the relative asymmetry of an tree. For example, when
asymis equal to two, the impedance of the left branch is always
twice the impedance of the right branch. The higherasym, the

greater the asymmetry of the tree. The error in the propagation
delay can reach 20% for highly asymmetric trees. The error in
the waveform shape is even higher as compared to AS/X simu-
lations. These characteristics, however, are also typical for the
Elmore (Wyatt) approximation for trees.

C. Effect of the Branching Factor for Balanced Trees

An tree with a binary branching factor andlevels has
branches. As shown in Section V-B, the tree is equivalent

to a ladder circuit with n sections if the tree is balanced
due to pole-zero cancellation. The second-order approximation
is more accurate for balanced trees because of this exponential
pole-zero cancellation. A tree with a general branching factor
and levels has branches. However, if the
tree is balanced, the tree is again equivalent to a ladder circuit
with sections. Thus, a higher number of zeros are can-
celed by poles by increasing the branching factor of a balanced
tree while keeping the number of sinks constant. For example,
a balanced tree with a binary branching factor driving 16 sinks
has five levels and is equivalent to a five-section ladder circuit. If
the same 16 sinks are driven by a balanced tree with a branching
factor equal to 16, the tree has only two levels and is equivalent
to a two-section ladder circuit. Thus, the second-order approxi-
mation more accurately describes an tree with a branching
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Fig. 12. AS/X simulations as compared to (31) for several asymmetric trees. Results are for node 7 for the circuit shown in Fig. 5.

factor equal to 16. AS/X simulations and the closed-form solu-
tion from (31) with a step input for the response at the sinks of
both trees are shown in Fig. 13. In this example, all of the
sections in the binary branching tree has

nH, and pF. All of the sections in the tree with a
branching factor of 16 has nH, and pF.
Note that the second-order approximation is less accurate in the
case of a tree with a binary branching factor.
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Fig. 13. AS/X simulations as compared to (31) for the response at the 16 sinks of a balanced tree. (a) The tree has a binary branching factor. (b) The tree has a
branching factor of 16.

Fig. 14. AS/X simulations as compared to (31); for several balanced trees with different depths.

D. Effect of the Depth of the Tree

The depth of a tree can be characterized by the number of
levels n of the tree. The accuracy of the solution decreases as
the number of levels in the tree increases since the order of the
transfer function at the sinks increases. The increased error due
to increasing the depth of the tree can be best observed for a
balanced tree since the error due to the unbalance overrides the
error due to the depth in an unbalanced tree. AS/X simulations
are compared to (31) in Fig. 14 for balanced trees with a dif-
ferent number of levels. Note that the error between AS/X and
the closed-form solution increases as the number of levels of the

tree increases. Note also that for a single line, the depth repre-
sents the number of sections of the line.

E. Effect of the Node Position

The error exhibited by the second-order approximation in-
creases as the position of the node at which the response is eval-
uated moves from the sinks toward the source. This behavior is
due to the extra finite zeros in the transfer function since there
are less capacitors and inductors in the path from the input to the
node at which the response is evaluated. Again, this effect is best
observed for a balanced tree. AS/X simulations are compared to
(31) in Fig. 15 at several positions of the five-level binary bal-
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Fig. 15. AS/X simulations as compared to (31) for a binary balanced tree for nodes at different levels within the tree.

anced tree described in Section V-C. Note that the error between
AS/X and the closed-form solution is least at the sinks which is
typically the location of greatest interest.

F. Effect of Second-Order Oscillations

As an tree becomes larger and as the number of levels
increase, high-frequency oscillations are superimposed over the
primary response. For example, in Fig. 16, the second-order ap-
proximation (31) of the response for a large tree is illus-
trated. Note the overshoots. AS/X simulations are also shown in
Fig. 16 and the actual signal oscillates around the second-order
approximation with a higher frequency as compared to the fre-
quency of the primary oscillations. The oscillations around the
low-frequency response characterized by (31) are second-order
oscillations. The second-order approximation introduced here
cannot accurately model the higher frequency harmonics of the
time domain response since it only has two poles. However, the
second-order approximation can be used effectively to estimate
the macro features of the response such as the propagation delay,
the rise time, and the primary overshoots. If the fine details of
the response are of interest, higher-order delay models can be
used such as AWE [33]–[35] at the expense of additional pro-
cessing time, numerical issues, and stability issues. Note that
the responses in the simulations presented in this section also
exhibit second-order oscillations. The second-order approxima-
tion successfully characterizes the dominant low-frequency re-
sponse.

Fig. 16. AS/X simulations as compared to (31) for a largeRLC tree.

VI. CONCLUSION

A general method to characterize the response of a linear
nonmonotone system that is equivalent to the Elmore delay is
presented. The generated delay expressions for an tree
have the same accuracy characteristics as the Elmore (Wyatt)
approximation for trees. Simple analytical expressions of
signals in an tree are provided for the 50% delay, the rise
time, overshoots, and settling time. These expressions consider
both monotone and nonmonotone signal responses. The delay
expressions are continuous and hence are useful for opti-
mization and synthesis in VLSI-based design methodologies.
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The second-order approximation introduced here is always
stable and can be used with arbitrary inputs. Furthermore, the
second-order approximation is computationally efficient since
the number of multiplication operations required to evaluate
the approximation at all of the nodes of an tree is linearly
proportional to the number of branches in the tree.

APPENDIX

COMPLEXITY OF THE SECOND-ORDERAPPROXIMATION

Referring to (13), (29), and (30), the second-order approxi-
mate transfer function at nodeis

(49)

Thus, evaluating this transfer function for all of the nodes of an
tree requires the calculation of the following two summa-

tions:

(50)

(51)

for all of the nodes of the tree. These two summations can
be rewritten as

(52)

(53)

where the summation indexoperates over all of the sec-
tions that belong to the path from the input to node and

is the resistance and inductance of section is the
total load capacitance seen by and For example, in Fig.
5,
This form of expressing the summations is convenient since it
has recursive properties [29], [48].

The summations in (52) and (53) of a tree rooted at section
are calculated in two steps. The first step is to calculate the

total load capacitance seen by each section. Pseudocode that
performs this task is described in Fig. 17.

The function is initially called by Cal_Cap_Loads and
recursively calculates the capacitive load at each section.
is the capacitance of the section The functions, left(w) and
right(w), return the left and right sections driven by respec-
tively. If no left (right) section is driven by left
(right If is a leaf, left and right

The time required to calculate the total capacitive loads is
proportional to the number of sections in the tree
and requires no multiplication operations. Note that a binary
branching factor is assumed without loss of generality since any

Fig. 17. Pseudocode for calculating the total load capacitance at each section.

Fig. 18. Pseudocode for calculating the delays at the sinks of anRLC tree.

general tree can be transformed into a binary tree by inserting
wires with zero impedances [27], [28].

The second step is to calculate and store the summations in
(52) and (53) at the nodes of the tree. The function performing
this task is described in Fig. 18. The function is initially called
by Cal_Summations and are the resistance
and inductance of section respectively. The computational
time required to calculate the summations is proportional to the
number of sections in the tree The total number of
multiplications required to evaluate the second-order approxi-
mation at all of the nodes of an tree is Alternatively,
the number of multiplications is equal to the order of the char-
acteristic equation describing the tree since the order of
an tree with sections is (each section
has an inductor and a capacitor).
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