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Abstract

This paper investigates retiming and clock skew schedul-
ing for improving the tolerance of synchronous circuits to
delay variations. It is shown that when both long and short
paths are considered, circuits optimized by the combined
application of the two techniques are more tolerant to de-
lay variations than when optimized by either of the two
techniques separately. A novel mixed-integer linear pro-
gramming formulation is given for simultaneous retiming
and clock scheduling with a target clock period and toler-
ance under setup and hold constraints. Experiments with
LGSynth93 and ISCAS89 benchmark circuits demonstrate
the effectiveness of the combined optimization. For half of
the test circuits, tolerance to delay variations increased by
at least 23% over the separate application of retiming and
clock scheduling. Moreover, for two thirds of the test cir-
cuits, maximum tolerance improved by at least 11%.

1. Introduction

Retiming is an architectural-level transformation that op-
timizes digital circuits by relocating their storage elements.
Clock scheduling adjusts the delays of the clock signals in
a circuit and can be used as an alternative to retiming. Sig-
nificant research has been devoted to each of the two op-
timizations separately. The investigation of the combined
application of these techniques has been limited, however.

This paper investigates the simultaneous application of
retiming and clock scheduling for increasing the tolerance
of a digital circuit’s timing to delay variations. These varia-
tions often present a fundamental constraint in the design
of high-performance circuits. Typically, there are three
sources of delay variations: process parameter variations,
temperature or environmental variations, and power sup-
ply variations. The creation of new design techniques and

methodologies that minimize the sensitivity of circuit tim-
ing to delay variations is of paramount importance for high-
performance design.

Two main analytical contributions are contained in this
paper. First, we give a set ofO(E2) constraints for the
problem of simultaneous retiming and clock scheduling to
achieve a target clock period and delay tolerance. Sec-
ond, we formulate the problem of simultaneous retiming
and clock scheduling under setup and hold constraints as a
mixed-integer linear program (MILP). A circuit with maxi-
mum tolerance to delay variations can be computed by per-
forming a binary search over the range of possible tolerance
values.

In experiments with benchmark circuits from the
LGSynth93 and ISCAS89 suites, simultaneous retiming
and clock scheduling resulted in significantly more tolerant
circuits than the independent application of the two opti-
mization techniques. For half of the circuits in our test suite,
maximum tolerance to delay variations improved by at least
23% over separate retiming or clock skew scheduling. For
about two thirds of the test circuits, maximum tolerance to
delay variations improved by at least 11%.

Retiming has been investigated for a variety of clocking
disciplines [7, 9, 10, 15], delay models [8, 16], and opti-
mization objectives [1, 4, 12, 14]. A linear programming
formulation of the clock scheduling problem was first de-
scribed in [5]. The combined application of retiming and
clock scheduling was discussed in [11]. A two-step pro-
cedure for maximizing the operating frequency of a syn-
chronous circuit by combining retiming with clock schedul-
ing was proposed in [2]. That work is concerned only with
setup violations, however, and does not explore the ex-
panded solution space resulting when both setup and hold
constraints are considered.

The main challenge with the integration of retiming and
clock scheduling is the formulation of the problem as a con-
junction of linear constraints. As is the case with other
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Figure 1. (a) Original and (b) retimed circuit.

retiming problems [8, 16], the co-existence of setup and
hold constraints introduces disjunctions among constraints.
Thus, the resulting solution space precludes the application
of powerful convex programming techniques. This paper
presents a mixed-integer linear program for simultaneous
retiming and clock scheduling that is derived by a combina-
tion of upper bounding and graph-theoretic techniques.

The remainder of this paper has eight sections. Sec-
tion 2 demonstrates the performance advantage of simul-
taneous retiming and clock scheduling. Background mate-
rial is given in Section 3. In Section 4, we give a shortest-
paths formulation for the problem of clock scheduling with
a target tolerance, a target clock period, and fixed register
locations. Section 5 presents necessary and sufficient con-
ditions for achieving correct timing when a circuit is opti-
mized by simultaneous retiming and clock scheduling un-
der setup and hold constraints. An alternative formulation
of these conditions in terms of an auxiliary graph is given
in Section 6. This formulation is used in Section 7 to de-
rive an equivalent mixed-integer linear program. Section 8
compares the results obtained by the separate application of
retiming and clock scheduling with those obtained by the si-
multaneous application of the two optimizations. Our con-
tributions are summarized in Section 9.

2. Motivation

The effectiveness of simultaneous retiming and clock
scheduling is demonstrated by the circuit in Figure 1. Each
vertex represents a block of combinational logic, and each
rectangle represents an edge-triggered register. Each pair
x=y denotes the maximum and minimum propagation de-
lay of the signals through the corresponding node. The
clock skew between the input/output registersi andk is as-
sumed to be zero. The setup and hold constraints along each
combinational path yield a range[x; y] of permissible clock

skews [13] for registerj. The permissible skew range ofj
is obtained by intersecting all these possible ranges.

Consider the original circuit in Figure 1(a). For a target
clock period of 12 time units, the intersection of the two
ranges is [-2,4]. When clock skew is zero, the permissible
range ofj is [-2,2], assuming symmetric clock delay vari-
ations. Thus the tolerance of this circuit is 4. When clock
signals arrive atj with a delays(j) = 1, however, the per-
missible range is [-2,4], and delay tolerance increases to 6.

Figure 1(b) shows a retimed version of the original cir-
cuit that is obtained by shiftingj forward. In this case, the
intersection of the two skew ranges is [-1,7]. When clock
skew is zero, the permissible range ofj is [-1,1], and the
tolerance drops to 2. When the arrival of the clock signals
at j is delayed bys(j) = 3, however, the permissible range
becomes [-1,7], and tolerance increases to 8. This value is
the maximum tolerance that can be achieved by simultane-
ous retiming and clock scheduling. Moreover, it cannot be
achieved by the separate application of the optimizations on
the original circuit.

An interesting observation in this example is that the de-
lay tolerance of the retimed circuit is smaller than that of
the original circuit when skews are zero. Nevertheless, the
retimed circuit exhibits maximum tolerance to delay varia-
tions when clock skews are nonzero.

3. Background

3.1. Circuit and Delay Model

An edge-triggered circuit is modeled as a directed multi-
graphG = hV;E; d; wi. The verticesV correspond to the
combinational logic elements in the circuit. Each vertex
v 2 V is associated with a nonnegative weightd(v) which
describes the propagation delay through the corresponding
logic block. Our results can be extended to include the case
where each logic block has a maximum propagation delay
dmax(v) and a minimum propagation delaydmin(v).

The directed edgesE of the graph model the intercon-
nections between the combinational blocks. Each edge
e 2 E corresponds to a wire that connects an output of a
combinational block to the input of another combinational
block, possibly through one or more globally clocked, edge-
triggered registers. For each edgee 2 E, the register count
of the corresponding wire is given by an integer, nonnega-
tive edge-weightw(e). In every directed cycle ofG, there
is an edge with a strictly positive register count.

3.2. Retiming

A retimingof an edge-triggered circuitG = hV;E; d; wi
is an integer-valued vertex-labelingr : V ! Z that denotes
a transformation of the original circuitG into a functionally
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Figure 2. Retiming a vertex v by r(v) = 1.

equivalent circuitGr = hV;E; d; wri. For each edgeu e
! v

in Gr, wr is defined by the equation

wr(e) = w(e) + r(v) � r(u) : (1)

The retiming transformation for a vertexv in V is shown in
Figure 2. The output ofv’s computation inGr is generated
r(v) clock cycles later than inG. The retimed circuitGr is
well-formedif for all edgese 2 E, we have

wr(e) � 0 : (2)

Equation (1) implies that for every vertex pairu; v in V ,
the change in the register count alonganypathu

p
; v de-

pends solely on its two endpoints:

wr(p) = w(p) + r(v) � r(u) ; (3)

wherew(p) =
P

e2pw(e). Thus, the maximum decrease

in the register count of any pathu
p
; v is

W (u; v) = min
n
w(p) : u

p
; v

o
: (4)

The only pathsu
p
; v that can become combinational (and

possibly lead to a timing violation) inGr are those for
whichw(p) = W (u; v) in G. For each of theO(V 2) vertex
pairsu; v in V , the quantities

D(u; v) = max
n
d(p) : u

p
; v; w(p) = W (u; v)

o
; (5)

�(u; v) = min
n
d(p) : u

p
; v; w(p) =W (u; v)

o
; (6)

whered(p) =
P

x2p d(x), represent the longest and short-
est propagation delays fromu to v, respectively, whenever
the retimed circuit includes a combinational path between
the two vertices. Therefore, the clock period of any retimed
circuitGr is always some element in theO(V 2)-size set of
D(u; v).

When only long paths are considered, a retimed circuit
that achieves a given clock periodc can be computed in
O(V E). A retimed circuit that achieves the minimum pos-
sible clock period can be computed inO(V E + V 2 lgV )
steps [9].

3.3. Clock Skew Scheduling

In synchronous circuits, clock signals provide a global
time reference that synchronizes the flow of data between
storage elements. These signals are delivered by a distribu-
tion network [6]. A variety of factors such as differences
in interconnect delay, parasitic impedances, and process pa-
rameters variations affect their arrival times at the storage
elements of the circuit. The difference between the arrival
times at two sequentially-adjacent registers is known as the
clock skew between these registers [6].

A clock scheduleof a circuitG = hV;E; d; wi is a real-
valued edge-labelings : E !R that gives the propagation
delay from the global clock source to each wiree in the
circuit. By adjusting these delays, timing violations can be
fixed (or created). For example, consider a combinational
pathu

p
; v which is bounded by registers on? e

! u and

v
e0

!?. If s(e) � s(e0), then the time available for the propa-
gation of signals frome to e0 decreases bys(e)�s(e0). Con-
versely, if s(e) � s(e0), then the available time increases
by s(e0) � s(e). These changes may introduce new critical
paths or eliminate existing ones. They may also introduce
or eliminate hold violations.

A linear programming framework for clock scheduling
was first presented in [5]. A graph-theoretic approach to
clock scheduling was subsequently described in [3]. In both
papers, the placement of the storage elements was assumed
to be fixed. Algorithms for scheduling local clocks to im-
prove the tolerance of a circuit to process parameter varia-
tions were presented in [13].

4. Clock Scheduling Constraints

This section gives a precise statement of the clock
scheduling problem with a given tolerance as a single-
source shortest-paths problem withO(E2) constraints.

The following theorem captures the timing conditions
that must be satisfied by a clock schedule that achieves a
target clock period. These conditions can be extended to
include nonzero setup and hold times. The proof of the the-
orem follows from [5].

Theorem 1 LetG = hV;E; d; wi be an edge-triggered cir-
cuit andc a given constant. Moreover, letsm : E ! R and
sM : E ! R be assignments of minimum and maximum
clock delays, respectively. Then,G is timed correctly if and

only if for every pair?
e
! u, v

e0

!? inE such thatw(e) � 1,
w(e0) � 1, andW (u; v) = 0, we have

�(u; v) + sm(e) � sM (e0) � 0 ; (7)

D(u; v) + sM (e) � sm(e0) � c : (8)



We can now express the clock scheduling problem with
a target clock period and tolerance as a shortest-paths
problem withO(E2) inequalities that can be computed in
O(E2) time and can be solved inO(E3) steps using the
Bellman-Ford single-source shortest-paths algorithm.

Theorem 2 LetG = hV;E; d; wi be an edge-triggered cir-
cuit. Moreover, letc andt be given real constants. Then,G
achieves a clock periodcwith tolerancet if and only if there
exist nonnegative functionssm : E ! R andsM : E ! R
such that for each edgeu

e
! v,

sm(e) � sM (e) � t ; (9)

and for every edge pair?
e
! u, v

e0

!? inE such thatw(e) �
1,w(e0) � 1, andW (u; v) = 0,

sM (e0) � sm(e) + �(u; v) ; (10)

sM (e) � sm(e0) + c �D(u; v) : (11)

For a target clock periodc, the maximum tolerance�s
can be determined by a binary search int. Givensm and
sM , the corresponding schedules with maximum tolerance
to symmetric delay variations is obtained by settings(e) =
(sm(e) + sM (e))=2 for all e in E.

5. Clock Scheduling and Retiming

The following theorem gives a set ofO(E2) constraints
for correct timing when clock scheduling and retiming are
applied simultaneously. Its correctness follows from Theo-
rem 2.

Theorem 3 LetG = hV;E; d; wi be a synchronous circuit,
and letc andt be given constants. Moreover, letr : V ! Z
be a retiming function, letsM : E ! R be an assignment of
maximum clock delays, and letsm : E ! R be an assign-
ment of minimum clock delays. Then the retimed circuitGr

is well-formed and achieves a clock periodc with tolerance
t if and only if for every edgeu

e
! v 2 E,

sm(e) � sM (e) � t ; (12)

w(e) + r(v) � r(u) � 0 ; (13)

and for every pair of edges?
e
! u; v

e
0

!? 2 E,

E(e; e0) > 0 ) (14)

Wr(u; v) � 1 or (wr(e) = 0 or wr(e
0) = 0) ;

whereE(e; e0) = D(u; v) + sM (e) � sm(e0) � c and
E(e; e0) = � (�(u; v) + sm(e) � sM (e0)) for the setup
and hold constraints, respectively.

For simplicity, the constraints of Theorem 3 assume zero
setup and hold times. Non-zero timesTsetup and Thold
can be included in a straightforward manner by setting
E(e; e0) > �Tsetup or E(e; e0) > �Thold , as appropri-
ate, in the left-hand side of the implication in Relation (14).
For a target clock periodc, the maximum tolerance�rs over
all retimings and clock schedules can be determined by a
binary search int.

6. Companion Graph

A companion graphG0 = hV 0; E0; w0i can be used to
transform the timing constraints from Theorem 3 into a
mixed-integer linear program. The construction ofG0 from
the circuit graphG is identical to that in [8]. Each edge
u

e
! v 2 E is segmented into two edges,u

e1! xuv and
xuv

e2! v, wherexuv is a dummy vertex. The edgee1 has
exactly one register when the corresponding edgee 2 E has
a positive register count and zero registers otherwise. Thus,
the register count ofe1 serves as anindex functionfor the
register count of the corresponding generating edgee 2 E.
The edgee2 carries the balance of the registers up tow(e).

In mathematical terms, the companion graphG0 =
hV 0; E0; w0i is defined as

V 0 = V [
n
xuv : u

e
! v 2 E

o
;

E0 =
n
u

e1! xuv; xuv
e2! v : u

e
! v 2 E

o
;

where for each edgeu e
! v 2 E,

w0(e1) = minf1; w(e)g ; and
w0(e2) = w(e) �minf1; w(e)g :

The following lemma recasts Theorem 3 in terms ofG0

and a corresponding retiming functionr0. Given r0, r(u)
can be obtained for everyu 2 V by settingr(u) = r0(u).

Lemma 4 Let G = hV;E; d; wi be a circuit graph, let
G0 = hV 0; E0; w0i be its corresponding companion graph,
and letc andt be given constants. Moreover, letr0 : V 0 !
Z be a retiming function, letsM : E ! R be an assignment
of maximum clock delays, and letsm : E !R be an assign-
ment of minimum clock delays. Then the retimed circuitGr

is well-formed and achieves a clock periodc with tolerance
t if and only if for every edgeu

e
! v 2 E, we have

sm(e) � sM (e)� t ; (15)

for every edgeu
e
! v 2 E0,

w0(e) + r0(v) � r0(u) � 0 ; (16)

for every edgeu
e1! xuv 2 E0,

w0(e1) + r0(xuv)� r0(u) � 1 ; (17)
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Figure 3. Solution space for Relation (20).

for every pair of edgesu
e1! xuv; xuv

e2! v 2 E,

w0(e2) + r0(v) � r0(xuv) �

F � (w0(e1) + r0(xuv) � r0(u)) ; (18)

whereF = maxfW (u; v) +W (v; u) : u; v 2 V g, and for

every pair of edges?
e
! u; v

e0

!? 2 E,

E(e; e0) > 0 ) (19)

Wr0 (u; v) � 1 or (wr0(e1) = 0 or wr0(e01) = 0)

whereE(e; e0) = D(u; v) + sM (e) � sm(e0) � c and
E(e; e0) = � (�(u; v) + sm(e) � sM (e0)) for the setup
and hold constraints, respectively.

Relation (19) is recast as an equivalent disjunction in the
following lemma.

Lemma 5 For every pair of edges?
e
! u; v

e0

!? 2 E,
Relation (19) is equivalent to the disjunction

E(e; e0) � 0 or w0

r0(e1) +w0

r0 (e01)�Wr0(u; v) � 1 ;
(20)

whereE(e; e0) = D(u; v) + sM (e) � sm(e0) � c and
E(e; e0) = � (�(u; v) + sm(e) � sM (e0)) for the setup
and hold constraints, respectively.

The solution space of Relation (20) is described by the
solid lines in Figure 3. This space is not convex and pre-
cludes the use of convex programming techniques.

7. Mixed-Integer Linear Program

This section presents a set ofO(E2) constraints that en-
sure correct timing under simultaneous retiming and clock
skew scheduling. These constraints are obtained by restrict-
ing the solution space of the constraints in Lemma 4 while

E(e,e')

Wr'(e1,e1')

EmaxEmin 0

2

Figure 4. Equivalent convex solution space.

maintaining their feasibility. The final constraints set com-
prises linear inequalities with integer and real unknowns.

The following lemma gives upper bounds on the quan-
tity w0

r0(e1) +w0

r0 (e01)�Wr0 (u; v) from Relation (20) that
restrict the solution space in the first and second quadrant.

Lemma 6 Let r0 : V 0 ! Z be a retiming function that
satisfies the conditions in Lemma 4. Then, for every pair of

edges?
e
! u; v

e0

!? 2 E,

w0

r0(e1) +w0

r0(e01) �Wr0 (u; v) � 2 ; (21)

w0

r0(e1) +w0

r0 (e01)�Wr0(u; v) � 2�
E(e; e0)

Emax(e; e0)
; (22)

whereEmax(e; e0) is an upper bound ofE(e; e0) that de-
pends on the maximum possible clock skew values, as they
are determined by the largest realizable chip die size.

The convex solution space derived from the bounds in
Lemma 6 is illustrated in Figure 4. The bold line segments
represent possible solutions. The shaded lines and points
denote the points of the original solution space that are now
excluded. The horizontal line in the second quadrant arises
from Inequality (21), and the sloped upper bound in the first
quadrant arises from Inequality (22). The two vertical lines
correspond to the bounds onE(e; e0).

Based on Lemmas 5 and 6, the simultaneous retiming
and clock scheduling problem can now be recast as a mixed-
integer linear program withO(E2) constraints.

Theorem 7 LetG = hV;E; d; wi be a synchronous circuit,
and letc andt be given constants. Moreover, letr : V ! Z
be a retiming function, letsM : E ! R be an assignment of
maximum clock delays, and letsm : E ! R be an assign-
ment of minimum clock delays. Then the retimed circuitGr

is well-formed and achieves a clock period�(Gr) � c with
tolerancet if and only if for every edgeu

e
! v 2 E,

sm(e) � sM (e)� t ; (23)



for every edgeu
e
! v 2 E0,

w0(e) + r0(v) � r0(u) � 0 ; (24)

for every edgeu
e1! xuv 2 E0,

w0(e1) + r0(xuv)� r0(u) � 1 ; (25)

for every pair of edgesu
e1! xuv; xuv

e2! v 2 E,

w0(e2) + r0(v) � r0(xuv) �

F � (w0(e1) + r0(xuv) � r0(u)) ; (26)

whereF = maxfW (u; v) +W (v; u) : u; v 2 V g, and for

every pair of edges?
e
! u; v

e0

!? 2 E,

E(e; e0) � Emax(e; e
0) ; (27)

E(e; e0) � Emin(e; e
0) ; (28)

w0

r0 (e1) + w0

r0(e01)�Wr0 (u; v) � 2 ; (29)

w0

r0(e1) + w0

r0(e01)�Wr0 (u; v) � 2�
E(e; e0)

Emax(e; e0)
; (30)

whereE(e; e0) = D(u; v) + sM (e) � sm(e0) � c and
E(e; e0) = � (�(u; v) + sm(e) � sM (e0)) for the setup
and hold constraints, respectively.

8. Experimental Results

This section presents results from the application of si-
multaneous retiming and clock scheduling on LGSynth93
and ISCAS89 benchmark circuits. Each test circuit was op-
timized to achieve maximum delay tolerance with a clock
period1:1 � cmin, wherecmin was the shortest clock pe-
riod of the original circuit. The following experimental
procedure was applied. Each circuit was optimized using
retiming, clock scheduling, and simultaneous retiming and
clock scheduling. An additional optimization heuristic was
applied, in which the original circuit was first retimed for
maximum tolerance with zero skew, and clock skews were
subsequently scheduled to increase tolerance further.

Our results are listed in Table 1. The first three columns
give the name and size of each test circuit. The fourth col-
umn gives the target clock period. The fifth column gives
the maximum tolerance� of the original circuit with zero
skew. The sixth column gives the maximum tolerance�s
of the original circuit after clock scheduling. (Retiming re-
sults are omitted, since clock scheduling always resulted in
circuits with greater tolerance.) The seventh column gives
the maximum tolerance�r;s achieved by applying the two
optimizations in sequence. The eighth column gives the rel-
ative improvement achieved over separate scheduling, and

the ninth column gives the runtime of the heuristic. The
tenth column gives the maximum tolerance�rs that was
achieved by simultaneous retiming and clock scheduling.
The relative improvements achieved over separate schedul-
ing are given in the eleventh column. The runtimes of the
combined optimization are listed in the last column.

Simultaneous retiming and clock scheduling improved
the tolerance of all test circuits and resulted in significant
improvements for most of them. For half of the circuits in
our test suite, relative improvements over scheduling were
at least 23%. For about two thirds of the circuits, improve-
ments exceeded 11%. Our sequential retiming and clock
scheduling heuristic improved the maximum tolerance of
most test circuits. For one quarter of the circuits, relative
improvements exceeded 10%. The runtime of this opti-
mization was comparable to scheduling. Our experiments
were performed on an Intel Pentium II with 128MB of main
memory. Our simultaneous retiming and clock scheduling
algorithm was terminated if no further improvements were
achieved for 10 hours of execution.

Gate delays were calculated using the formulaa + b �
(fanout + rand). The parametersa andb denote the in-
trinsic gate delay and the delay increment of a single gate
load, respectively. Their values were obtained from the li-
brary iwls93.mis2lib in the LGSynth93 benchmark.
The parameterrand was a uniformly distributed random
number that introduced variation to gate delays. The range
of rand was [-1,0] and [0,1] for minimum and maximum
propagation delays, respectively.

Our simultaneous retiming and clock scheduling algo-
rithm explores the solution space using a branch and bound
approach. During its execution, it maintains a permissible
range for the retiming value of each vertex. Once the retim-
ing function is fixed, the clock delays are computed using a
Bellman-Ford single-source shortest-paths algorithm. The
optimal tolerance is determined by iterating this algorithm
in a binary search. The overall complexity of our algorithm
is exponential in the worst case. When register mobility is
constrained by considering loops, however, the permissible
region of most vertices becomes very small.

9. Conclusion

This paper explores the application of retiming and clock
scheduling for maximizing the tolerance of synchronous
circuits to delay variations. When both long and short paths
are considered, we show that the combined optimization can
result in more delay tolerant circuits than if either of the
two optimizations is applied separately. Moreover, we give
a MILP formulation of the simultaneous retiming and clock
scheduling problem. Our experiments show that retiming
and clock scheduling can significantly increase the maxi-
mum tolerance of benchmark circuits to delay variations.



Circuit nodes edges c � �s �r;s �r;s=�s � 1 CPU (�r;s) �rs �rs=�s � 1 CPU (�rs)
(%) (sec) (%) (sec)

daio 17 30 2.91 0.00 0.76 0.76 0 0.1 0.79 4 1
dk27 24 254 3.74 0.21 0.59 0.64 8 0.4 0.64 8 265
tav 26 59 3.36 0.00 1.05 1.08 2 0.4 1.22 15 2

bbtas 31 87 3.78 0.20 0.46 0.63 39 0.9 0.63 39 6914
s208 37 112 4.67 0.00 1.64 1.67 2 1.5 1.67 2 29086

dk512 39 107 4.11 0.23 0.63 0.70 11 1.4 0.70 11 77313
dk17 40 114 4.69 0.26 0.52 0.58 0 1.4 0.60 3 6505
s420 46 177 5.67 0.00 1.67 1.76 5 4.4 2.28 36 53360
dk15 49 154 5.26 0.29 1.55 1.55 0 2.2 2.05 32 202
dk14 69 238 5.64 0.35 1.27 1.40 11 7.7 1.62 28 116412
ex4 70 207 5.83 0.00 0.66 0.70 7 7.2 0.83 26 38346
opus 71 242 8.53 0.47 2.11 2.11 0 10.1 2.69 27 7370
ex6 102 379 7.28 0.41 1.02 1.06 4 27.6 1.16 14 76091

dk16 120 567 8.89 0.49 1.38 1.38 0 133.0 1.45 5 12030
ex1 193 887 14.63 0.00 2.16 2.16 0 367.0 2.94 36 49821
s713 377 590 41.30 0.00 3.42 3.78 10 546.0 4.21 23 48871

Table 1. Tolerance to delay variations for original and optimized circuits.
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