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ABSTRACT 
Orthogonal variable spreading factor (OVSF) codes are standard 

in third generation UMTS cellular systems. The efficient generation 
of these codes is essential for reducing the area and power of 
wireless transceivers. In this paper, the basic properties of this 
family of codes are analyzed from an RTL perspective and two 
efficient hardware code generators are proposed. Tradeoffs and 
design solutions as well as low power considerations are discussed. 
These results represent the first reported implementation of an 
OVSF code generator.1* 
 

Categories and Subject Descriptors 
B.5.1  [RTL Implementation] Design: Arithmetic and Logic Units  
B.6.0  [Logic Design]   General  
B.7.m [Integrated circuits]   Miscellaneous  
 

General Terms: Design 
 

Keywords:  OVSF codes, CDMA, VLSI, 3GPP, UMTS, WCDMA 

1. INTRODUCTION 
Modern CDMA cellular systems employ spread spectrum 

technology to provide multiuser access. In particular, direct 
sequence spread spectrum has been adopted for improved spectral 
efficiency, ease of digital implementation, and soft capacity limit. 
Each user employs a noiselike wideband signal occupying the 
entire allocated frequency band for as long as necessary. In this 
way, each user contributes to the background noise affecting all 
other users. This additional interference limits the overall system 
capacity but because time and bandwidth resources are virtually 
unlimited, the resulting capacity is significantly greater than in 
conventional cellular systems. In the UMTS (Universal Mobile 
Telecommunication System) wireless standard, part of the Third 
Generation Partnership Project (3GPP), the spectrum spreading 
applied to the symbols in the physical channels consists of two 
operations [1]. The first is the channelization operation, which 
transforms every data symbol into a number of chips, thereby 
increasing the signal bandwidth. The number of chips per data 
symbol is called the spreading factor (SF). The channelization 
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OVSF codes achieve orthogonality between a user’s different 
physical channels. The second operation is the scrambling 
operation, where a scrambling code is applied to the spread signal 
in order to distinguish signals from asynchronous users. With 
channelization, data symbols on the in-phase (I) and quadrature-
phase (Q) branches are independently multiplied with an 
orthogonal variable spreading factor (OVSF) code. One control 
channel and up to six data channels can be simultaneously 
transmitted. The real-valued chip streams on the I- and Q-branches 
are combined and treated as a complex-valued stream of chips. 
With the scrambling operation, the resultant complex signal is 
multiplied by a complex-valued scrambling code. 

An overview of the 3GPP standard defining the OVSF codes is 
presented in section 2. The generation of OVSF codes for 3GPP 
systems is considered from an RTL perspective in section 3. Two 
alternative techniques for designing a hardware OVSF code 
generator are proposed in sections 4 and 5. The first technique, 
described in section 4, refers to a standalone logic circuit achieving 
the target function. A more efficient approach is discussed in 
section 5, which requires, however, a change in the system software 
to support a logic circuit of reduced complexity. Power dissipation 
issues are discussed in section 6. Results from the synthesis of the 
proposed code generator are reported in section 7 and some related 
system level issues are discussed in section 8. Final remarks are 
offered in section 9 to conclude the paper.  

2. OVSF CODES IN THE 3GPP STANDARD 
OVSF codes are defined in the 3GPP standard [1] by the code 

tree shown in Fig. 1. A channelization code Cch,SF,N is uniquely 
described by two numbers: the spreading factor SF in the range     
[4 - 512] = [22 - 29], and the identification (ID) number N ∈ [0,    
SF – 1]. Each level in the code tree defines channelization codes of 
length SF as shown in Fig. 1.  

The control channel is spread by code C256,0, which consists of 
256 logic zeros. When only one data channel is transmitted, data 
channel1 is spread by code CSF,k where SF is the spreading factor 
and k = SF / 4. When more than one data channel is transmitted, all 
of the data channels have a spreading factor equal to 4. Data 
channeln is spread by the code C4,k, where k = 1 if n ∈ {1, 2}, k = 3 
if n ∈ {3, 4}, and k = 2 if n ∈ {5, 6}. 

 

SF =  1  SF  =  2 SF  =  4 

C ch,1 ,0  =  (1) 

C ch,2 ,0  =  (1 ,1) 

C ch,2 ,1  =  (1 ,-1 )

C ch,4,0  = (1 ,1 ,1 ,1 ) 

C ch,4 ,1  =  (1 ,1 ,-1 ,-1 ) 

C ch,4 ,2  =  (1 ,-1 ,1 ,-1 ) 

C ch,4 ,3  =  (1 ,-1 ,-1 ,1 ) 

Fig. 1: Code tree of Orthogonal Variable Spreading Factor  
(OVSF) codes [1] 
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3. RTL PERSPECTIVE ON OVSF CODES 

The generation of the OVSF channelization codes is defined in 
the 3GPP standard [1] by three matrix expressions. The direct 
implementation of these matrix operations requires a significant 
amount of resources which is convenient only for a software 
realization based on a microcontroller or a digital signal processor. 
In order to design an efficient hardware generator for this family of 
codes, specific properties of OVSF codes are discussed in this 
section. 

The chip sequence is specified in the binary set {+1, –1}, while 
digital CMOS logic operates on the set {0, 1}. The mapping {“+1” 
→ “logic 0”} and {“–1” → “logic 1”} is therefore adopted as a 
convention. The spreading codes serve as control signals for a 
complex ±1 multiplier [2]. In the remainder of the paper, circuits 
issues are discussed with logic levels of 0 and 1. 

The binary representation of the ID number describes the 
trajectory of the code generation along the OVSF code tree shown 
in Fig. 1: a logic 0 for the upper branch or a logic 1 for the lower 
branch. This property is illustrated by the following example: 

Example: Suppose the channelization code C8,5 is required. 
SF = 810 = 10002 
N   = 510 = 01012 = n3n2n1n0 

The trajectory of code C8,5 is defined as follows:  
Stage 1 – a single root, always 0 
Stage 2 – lower branch, controlled by n2 

Stage 3 – upper branch, controlled by n1 
Stage 4 – lower branch, controlled by n0 

The individual code chips are controlled by corresponding bits 
in the ID number, as listed in Table 1. The OVSF chips can 
therefore be produced by a XOR operation over certain bits of the 
code ID number. The participation of a specific bit in the XOR 
operation is periodic in time and can be controlled by a binary 
counter as listed in Table 2.  

Based on observations of the data listed in Tables 1 and 2, a 
logic level architecture of an OVSF code generator is shown in Fig. 
2. The least significant bit (LSB) of the counter enables the MSB of 
N, bit n2, to be included in the XOR operation. The MSB of the 
counter controls n0, which is the LSB of N.  

The 3GPP standard, however, specifies that the code generator 
should be capable of producing codes with a variable spreading 

factor over the range SF = 4 to 512. The issue is how best to match 
the number N and the binary counter in reverse order for different 
spreading factors. Two techniques are suggested to accomplish this 
objective: 

1. Design a special counter, counting incrementally from 0 to 
SF – 1. b8 is always the MSB, while the LSB is specified by 
the variable spreading factor SF and is bx, where x = 
log2SFmax – log2SF. In the aforementioned example, the 
counter has six dummy bits (always at 0) and three active 
bits. The MSB b8 controls bit n0 of the ID register, and bit b6 
is the LSB of the counter, which controls bit n2.  

2. Shift the code ID number such that the MSB of N is always 
enabled by the LSB of the counter. In this case, a regular 
binary counter is required to count between 0 and SFmax – 1.  

In the following sections, the advantages and drawbacks of both 
techniques are described and corresponding logic circuits are 
proposed. 

4. TECHNIQUE 1: DESIGN OF A SPECIAL COUNTER  

The design of a special counter requires less additional 
hardware than a circuit that directly implements the proposed 
second scheme. An SF register, holding the required spreading 
factor, controls the counter cycle, while the ID register controls the 
specific OVSF code. This separation of the high level parameters 
SF and N provides modularity of the circuit blocks when multiple 
OVSF codes are generated. A circuit solution for the counter is 
proposed in Fig. 3. The LSB of the counter is specified by the only 
bit of the SF register, which is logic 1. The count is from left to 
right, where b8 is always the MSB.  

Table1: Generation of channelization code C8,5 

First generated chip       Last generated chip 

C8,5  = 0 1 0 1 1 0 1 0 

 
↑ 

n3 = 0 
always 

↑ 
n3 ⊕ n2 = 

n2 

↑ 
n3 ⊕ n1 = 

n1 

↑ 
n3 ⊕ n2 ⊕ n1 = 

 n2 ⊕ n1 

↑ 
n3 ⊕ n0 = 

n0 

↑ 
n3 ⊕ n2 ⊕ n0  

= n2 ⊕ n0 

↑ 
n3 ⊕ n1 ⊕ n0 = 

n1 ⊕ n0 

↑ 
n3 ⊕ n2 ⊕ n1 ⊕ n0 = 

n2 ⊕ n1 ⊕  n0 

Table 2: Time counter and 
XOR operations producing the OVSF code chips 

Binary counter Operation 
000 0 
001 n2 
010 n1 
011 n2  ⊕    n1 
100                                 n0 
101 n2  ⊕                n0 
110 n1 ⊕   n0 
111 n2  ⊕    n1 ⊕   n0 

Chip rate 
counter 

  n8    n7     n6     n5    n4     n3    n2     n1     n0 

b0     b1     b2     b3    b4     b5    b6     b7     b8 

OVSF code ID register 

fchip
clock

reset

fchip / SF

OVSF 
code 
chips 

⊕

MSB 

MSB 

Fig. 2: OVSF code generator 

…
.. 
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The gate level schematics shown in Figs. 2 and 3 provide a 
general framework, amenable to logic optimization. The logic 
function can be preserved if all AND gates are replaced by more 
efficient (in CMOS) NAND gates. OR gates are replaced by NOR 
gates. The nine-input XOR tree is optimized for area, as the delay 
is not a critical factor for this application.  

5. TECHNIQUE 2: MANAGING THE ID NUMBER  
An alternative technique for realizing the variable spreading 

factor codes is to manage the code number loaded in the ID 
register. The MSB is always n8 and controlled by the LSB of a 
regular binary counter 0 : (SFmax – 1). The code number is shifted 
such that the LSB is ny, where y = log2SFmax – log2SF.  

A significant amount of additional logic circuitry is required to 
produce a variable shift (dependent on the SF) of the code number 
before insertion into the ID register. The information characterizing 
the spreading factor and ID number of all of the required codes is 
determined at the system level. The problem of varying the 
spreading factors can be efficiently resolved by system software 
when saving the ID numbers in global memory. The logic shift 
operations can be conveniently performed in software. Once the ID 
numbers are saved in the appropriate format, the numbers are 
downloaded into the ID register. The circuit shown in Fig. 2 uses a 
regular binary counter. This approach is illustrated by a few 
examples shown in Fig. 4, which complements the circuit 
illustrated in Fig. 2. 

The stored values represent information describing the 
spreading factor and code ID number required to generate the code. 
As shown in Fig. 4, these values do not define a single code. The 

generated chip sequences are identical for codes CSF,N, C2SF,2N, 
C4SF,4N, etc. These code sequences differ only by the length (SF, 
2SF, 4SF, etc.), but this parameter is only important for the 
sampling moment of the despreading matched filter. The code 
generator continuously produces chips from the required codes. 

6. POWER DISSIPATION 
The power consumed by the circuit changes dynamically 

according to the OVSF code being generated. The fewer the 
nonzero bits in the ID register, the less activity in the entire circuit, 
thereby minimizing power. The effect of a variable counter cycle 
on the power consumption is described in this section. This analysis 
refers to the first technique (described in section 4 and illustrated in 
Figs. 2 and 3), where the counter cycle is controlled by a variable 
spreading factor. 

The switching activity is maximum when the code CSFmax,Nmax = 
C512,511 is generated because the counter clock cycle is also 
maximum and all of the bits of the ID register are logic one. 
Alternatively, to generate C4,2, SF = 24 and  N = 2, the counter 
shifts from 0 to 3, and only one of the AND gates shown in Fig. 2 
switches, consuming less power. Minimum power is consumed by 
the circuit when C512,1 is generated. In this case, the single nonzero 
bit in the ID register is enabled by the most significant counter bit 
(with the lowest switching activity). Static leakage power is 
negligible in the target CMOS technologies and circuit densities. 

The power consumed by the code generator is the sum of the 
power consumed by the individual blocks. In order to estimate the 
power dissipation, the switching activity of each individual block is 
determined. The initial loading of the SF and ID registers is not 
considered. The switching activity of the flip flops in a B-bit binary 
counter (counting from 0 to   2B – 1) is listed in Table 3. 

The combined switching activity of all stages over one counter 
cycle is the sum of a geometric progression with the first term       
a1 = 2 and quotient q = 2, 

( )122
q1

q1
aS B

B

1B −=
−

−=  .                  (1) 

The switching activity of the counter over Fchip clock cycles is 

( ) chipB

B
B

N

chip
counter F2

2

12
122

2

F
A ⋅−=−⋅=    .                 (2) 

The switching activity in a binary counter varies between Fchip 
and 2Fchip, approaching the maximum as B increases. Based on this 
observation and a probabilistic analysis, the switching activity 
bounds are derived for all blocks. Based on the gate level power 
dissipation per MHz for the target 0.18 µm CMOS technology [3], 
minimum and maximum power dissipation bounds are estimated. 
Power estimates for the first technique, realized by the circuits 
shown in Figs. 2 and 3, are listed in Table 4. All of the data are 
reported per MHz. The target technology library is discussed in the 
following section. 

This analysis refers to the general case of any variable cycle 
counter and is particularly applicable to the circuits shown in Figs. 

Table 3: Switching activity in an N-bit counter 

Bit position B – 1 B – 2  … 2 1 0 

Switching 
 activity over one cycle

21 22 … 2B – 2 2B – 1 2B 

  n8     n7     n6     n5    n4     n3     n2     n1     n0 

 

System memory Generated OVSF codes 

100000000 C4,2 or C8,4 or C16,8 or … 

110000000 C4,3 or C8,6 or C16,12 or … 

111000000 C8,7 or C16,14 or C32,28 or … 

101000000 C8,5 or C16,10 or C32,20 or … 
111100000 C16,15 or C32,30 or C64,60 or … 

…  

Code ID register (from Fig. 2) 

Fig. 4: Realization of variable spreading factor  
by shifting the ID code number at the system level 

SF 
register 

fchip 

fchip / SF 

     s9           s8         ...          s3                s2          0      0 

MSB 

FF8 

D 

rs

Q

Q 

b8 

…… 

Fig. 3: Chip rate counter from 0 to SF – 1  
with variable location of the LSB 
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2 and 3. As discussed in section 5, the hardware required for the 
implementation of the second technique is limited to the circuit 
shown in Fig. 2. The switching activity of the counter is maximum 
since the maximum cycle of SFmax = 512 is used. Significant power 
and area savings, however, are realized since the SF register and 
the control circuit for the counting cycle are not required. The 
power dissipation is dependent on the OVSF code and, particularly, 
on the number and location of the nonzero bits in the ID register.  

7. LOGIC SYNTHESIS 
The chip duration for UMTS systems is defined in [1] as  

ns260
1084.3

1

F

1
T

6
chip

chip ≈
⋅

==    .                    (3) 

Since the critical path delay of the proposed circuit is significantly 
smaller than Tchip, the primary optimization criteria for the logic 
synthesis process are area and power, which are well correlated. A 
sample code generator is synthesized in Cadence Ambit Buildgates 
using an Artisan Components standard cell library in 0.18 µm 
CMOS technology with a supply voltage of 1.8 volts [3]. For the 
first technique, the total area occupied by the circuits shown in 
Figs. 2 and 3 is 2100 µm2 with about 85% of the area occupied by 
the three registers. Eliminating the cycle control circuit shown in 
Fig. 3, the code generator based on the second technique occupies 
approximately 1400 µm2

. The critical path delay in both cases is 
about 1 ns, such that a large number of OVSF codes can be 
produced by a single generator. 

The power dissipation of the circuit varies with the required 
code as discussed in the previous section. For a 0.18 µm 
technology, the power dissipation is approximately 1 mW for the 
first technique, assuming a standard chip rate clock of 3.84 
Mchips/sec. Accounting for the reduced number of logic gates, the 
second technique shown in Fig. 2 consumes about 0.9 mW. 

8. SYSTEM LEVEL CONSIDERATIONS 
The OVSF code generator proposed in this paper can be 

applied to a number of different systems. Such systems include a 
UMTS mobile terminal supporting up to six data channels or a base 
station receiver processing the incoming signals from K mobile 
users. System level tradeoffs are considered together with the 

overall transmitter/receiver architecture. Different channelization 
codes can be generated by sharing hardware. The proposed solution 
produces significant savings in area and power since all 
channelization codes for a single user (up to six) or multiple users 
can be generated by a single circuit.  

One code generator can serve both the receiver and transmitter 
of a mobile terminal. As defined in the 3GPP standard [1], there is 
either one code with a spreading factor in the range 4 to 512, or 
there are several orthogonal codes but with SF fixed at 4. Both 
techniques described in sections 4 and 5 can be applied. However, 
considering the relatively small size of the transceiver circuit and 
the importance of power dissipation and silicon area in portable 
applications, the second technique is preferable. In certain cases, 
however, a standalone solution such as the first technique can be 
applicable when there is no control over the requirements of the 
system software.  

System specifications are different for a base station receiver, 
where many codes of different spreading factors are required. The 
software flexibility of the second solution is preferable due to the 
reduced hardware complexity. The power efficiency of the 
switching codes is enhanced as only the ID register is loaded. The 
required change in system software significantly reduces the area 
and power of all of the code generators in the base station.  

Generally, the second technique described in section 5 offers a 
better solution with increased power and area efficiency. This 
method also provides more flexibility for dynamically changing the 
generated code with minimum overhead in switching activity. A 
change in the higher level system software is required, however, for 
a shift operation before the code ID number is saved. Alternatively, 
if such a requirement cannot be realized, the first solution, 
discussed in section 4, can be used to design the OVSF code 
generator. The additional hardware is the primary disadvantage of 
the first technique. 

9. CONCLUSIONS 
The generation of orthogonal variable spreading factor codes 

for third generation wireless systems is discussed in this paper and 
two efficient solutions are proposed. The simplicity and flexibility 
of the proposed circuits allow for significant area and power 
savings since all of the channelization codes for a single user (up to 
six) or multiple users can be produced by a single code generator. 
This flexibility is essential for UMTS transceivers, since signals of 
variable content and data rate requirements can be transmitted or 
received by changing the number and spreading factors of the 
channelization codes as specified by the 3GPP standard. 
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Table 4: Power dissipation in OVSF generator blocks  
per MHz of the chip clock rate 

Artisan Components standard cell library in 0.18 µm CMOS technology [3]

Switching 
activity 

Power / MHz 
[nW / MHz] Block 

Min Max 

Gate Power 
[nW / MHz] 

0.18 µm  Min Max 

Counter 1.5 2 50 75 100 

SF NAND2 1 15 15 15 

SF NOR2 1.5 2 15 22 30 

ID NAND2 1.5 2 15 22 30 

XOR block 2.5 3 40 100 120 

Entire code generator    234 295 
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