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ABSTRACT 

Clock skew variations adversely affect timing margins, limiting 
performance, reducing yield, and may also lead to functional 
faults. Non-tree clock distribution networks, such as meshes and 
crosslinks, are employed to reduce skew and also to mitigate skew 
variations. However, these networks incur an increase in dissipated 
power while consuming significant metal resources. Several 
methods have been proposed to trade off power and wires to 
reduce skew. In this paper, an efficient algorithm is presented to 
reduce skew variations rather than skew, and prioritize the 
algorithm for critical timing paths, since these paths are more 
sensitive to skew variations. The algorithm has been implemented 
for a standard 65 nm cell library using standard EDA tools, and 
has been tested on several benchmark circuits. As compared to 
other methods, experimental results show a 37% average reduction 
in metal consumption and 39% average reduction in power 
dissipation, while insignificantly increasing the maximum skew. 
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1. INTRODUCTION 
Non-tree clock distribution topologies (e.g., clock meshes) exhibit 
useful characteristics due to multi-path signal propagation created 
by routing redundancies [1–11]. These non-tree clock distribution 
networks are exploited to distribute the global clock signal over an 
integrated circuit, and exhibit high immunity to process, voltage, 
and temperature (PVT) variations, while tolerating non-uniform 
switching and an unbalanced distribution of the clocked elements. 
These networks achieve low and deterministic skew, low skew 
variations, and low jitter. Clock meshes also overcome late design 
changes while satisfying tight time-to-market deadlines [1]. Clock 

meshes constitute an effective alternative for distributing global 
clock signals, and are used in high performance microprocessors 
[1] such as the Power4 [2], Digital Alpha [3], Intel Pentium 4 [4], 
and Xeon [5].  

Nevertheless, non-tree clock distribution networks suffer certain 
drawbacks. These networks are composed of a large number of 
mesh nodes and unbalanced loads, making these networks difficult 
to analyze, optimize, and automate [6],[12],[13]. Routing 
redundancies require significant resources as compared to 
optimized tree-based clock distribution networks where point-to-
point routing is used [7]. Meshes dissipate higher power [12] due 
to the large capacitance incurred by the additional metal wires and 
drivers. Furthermore, clock gating is impractical in most mesh 
structures. Due to delay differences in the drivers, short-circuit 
current loops are generated across the redundant mesh paths [12]. 
Increasing process variations [14],[15] dissipate more power, since 
a more tolerant mesh structure dissipates higher power due to 
greater use of metal and driver oversizing [15]. Several proposals 
for optimizing non-tree distribution networks have been presented, 
employing either customized meshes [1–7] or automating the 
process of adding crosslinks to the clock tree to enhance tolerance 
and lower power [8],[9]. Yet other papers propose removing some 
edges from a mesh to reduce power while minimally increasing the 
skew [10],[11]. 

While most of these papers focus on skew variations, the approach 
proposed in this paper manages skew tolerance based on the 
criticality of the timing margins. The clocks driving a critical logic 
path are required to be more tolerant to skew variations to reduce 
the effect of skew on timing margins and cycle time. Those clocks 
that drive a non-critical logic path however must satisfy certain 
skew variations without affecting the cycle time [16]. By relaxing 
skew variation requirements in the non-critical paths, power 
savings can be achieved. The proposed method employs graph-
theoretic and geometric algorithms with quasi-linear run time. 
Using static timing analysis (STA), a physical floorplan, and 
process information, a non-uniform clock mesh which tolerates 
clock skew based on timing path criticality is generated. The 
proposed flow has been successfully tested on several testbench 
circuits. 

The rest of the paper is organized as follows. Non-tree clock 
distribution networks, skew constraints, constraint graphs, and 
clock skew uncertainty are reviewed in section 2. The motivation 
behind this work and a review of previous work on clock mesh 
synthesis and optimization are discussed in section 3. The timing–
driven variation–aware clock mesh synthesis problem and the 
proposed solution are presented along with a run time example in 
Section 4. The experimental method and results are described in 
section 5. Finally, this paper is concluded in section 6 with 
suggestions for future research directions. 
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2. CLOCK MESHES AND SKEW 
In this section, essential preliminaries are outlined. Specifically, in 
section 2.1, non-tree clock topologies, and in particular, clock 
meshes are described. In section 2.2, the concept of clock skew, 
skew uncertainty modeling and notation, and constraint graphs for 
representing synchronous circuits are reviewed. 

2.1 Clock Meshes 
Clock tree topologies provide a single path for each sink. For 
distant sinks, these paths are largely separate from each other. 
Each separate path suffers from delay uncertainty, resulting in 
skew uncertainty between two sinks. One approach to reduce 
variations is simply connecting nodes with a crosslink, hence, the 
connected nodes will have more than one path from the clock 
source, mutually compensating each path. This non-tree approach 
has been manually applied to the Pentium 4 microprocessor [4], 
where spines connect multi-clock nodes, as illustrated in Fig. 1(a). 
Automation of this method has been evaluated in several papers 
[8]. 

Since spines or crosslinks connect pairs of nodes and do not cover 
an entire floorplan (see Fig. 1(b)), metal grids driven by a top level 
clock driver which span several regions have been introduced. A 
mesh is a grid of horizontal and vertical metal wire segments, 
composed of interconnected mesh nodes. Typical mesh topologies 
consist of three parts: the mesh itself (usually uniform), an upper 
driving tree, and local interconnects connecting the clock sinks to 
the mesh, as shown in Fig. 1(c). A wide variety of mesh structures 
has been proposed. Non-uniform meshes [5],[10],[11] have been 
developed to save wire resources and power. Design automation 
and optimization of metal and power versus tolerance tradeoffs are 
discussed in [10],[11]. Mesh architectures differ in the locality of 
the mesh. A global mesh with local trees (MLT) [6] is a mesh fed 
from a global clock source with local trees distributing the clock to 
local regions (Fig. 1(d)), while a global tree with local meshes 
(TLM) [6] is a clock tree fed from a global clock source with a 
local mesh at each leaf (Fig. 1(e)). Other hybrid mesh-style 
structures are also possible. 

2.2 Skew constraints and uncertainty 
Synchronous circuits comprise data paths, where each data path 
consists of combinational logic located between two registers. A 
clock network connects the clock source to a collection of clock 
sinks S={s1,s2,…,sn}. Two registers are sequentially-adjacent if the 
registers are connected with a combinational data path [1], as 
illustrated in Fig. 2. The maximum permissible delay for a local 
data path bounded by two sequentially-adjacent registers is 
Pi,j

Delay,max=Tclock-tsetup-skewi,j
max where Tclock denotes the clock 

period, tsetup is the setup time of the bounding registers, and 
skewi,j

max denotes the maximum clock skew between two bounding 

registers [1]. The maximum clock skew skewi,j
max is the difference 

in the clock arrival time between two sequentially-adjacent 
registers. If di and dj are the delays (maximum or minimum) of the 
clock signals arriving at the registers i and j, respectively, the skew 
between two adjacent registers is skewi,j

max=maxi,j(|di-dj|). The 
clock skew is therefore bounded by the following maximum skew 

constraint, skewi,j≤Tclock-tsetup- P
i,j

Delay,max. 

Clock skew uncertainty: As technology scales, the effect of 
process variations on clock skew is aggravated [14],[15]. Clock 
skew can be modeled as composed of both deterministic and 
probabilistic elements [13],[18]. 

In this work, the following notation is employed. For two 
sequentially-adjacent registers i and j, the deterministic or nominal 
skew components is skewi,j

nom, and the maximum skew variation of 
the probabilistic component is δi,j

max. The mean of the skew 
between two sequentially-adjacent registers i and j is denoted by 
µi,j

skew and the standard deviation is denoted by σi,j
skew. A possible 

design target may require that, for instance, the maximum skew 
will be limited by skewi,j

max=µ
i,j

skew+3·σi,j
skew. 

Constraint graph: Synchronous circuits are represented as a 
directed multi-graph GC [1],[16],[17]. Each clock sink is 

represented by a vertex vi∈GCV, so that GCV = S. Each local data 
path located between two sequentially-adjacent clock sinks i and j 

is represented by a weighted edge ei,j∈GCE  connecting the two 

vertices vi and vj. The graph edges are therefore GCE={ei,j=vi~vj | 

Pi,j
Delay<∞, vi,vj∈GCV} (see Fig. 3). The edges can be weighted by 

any corresponding combinational data path property, such as 
delay, margin, and skew. Besides the edge weights, attributes can 
be attached to either edges or vertices. For vertices, any 
corresponding sink attribute can be used, such as the sink 
capacitance, location, clock delay, and data arrival time. 

Figure 1: Non-tree and mesh clock architectures: (a) Pentium 4 spine, (b) tree with crosslinks, (c) leaf level global mesh, (d) global mesh with local 

trees (MLT), and (e) global tree with local meshes (TLM) 

Figure 2: Sequentially-adjacent registers si and sj with skewi,j clock 

skew, bounding a combinational data path with propagation delay 

Pi,j
Delay. 

Figure 3: Mapping of constraint graph: (a) synchronous circuit and 

(b) corresponding constraint graph. 
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3. CLOCK MESH SYNTHESIS: 

MOTIVATION AND RELATED WORK 
Motivation for using timing information as a criterion for clock 
mesh syntheses is discussed in section 3.1. A review of previous 
clock mesh synthesis methods is presented in section 3.2. 

3.1 Motivation 
Aggressive process scaling increases the portion of clock skew as 
compared to the cycle time, reducing timing margins [14],[15]. 
Some approaches have been proposed to minimize clock skew, but 
these methods usually incur an increase in power consumption. 
Other methods exploit useful skew by scheduling clock skew to 
increase the maximum frequency [17]. These methods, however, 
suffer from increased clock skew uncertainty with process scaling. 
This issue limits circuit performance since timing margins are 
reduced [14],[15]. 

In order to overcome uncertainty in the clock arrival time caused 
by within-die variations, timing margins are provided. While poor 
margins reduce yield, extreme worst case margins can produce 
overdesigned circuits with increased power dissipation and 
resource consumption.  

In particular, the critical paths within a digital circuit are sensitive 
to skew variations. Hence, skew variations should be minimized, 
particularly in those clock paths that drive the critical paths. This 
method, however, is usually achieved at the expense of higher 
power dissipation [1]. This paper focuses on differential treatment 
of the clock and selective management of the skew. The more 
critical a path, the more sensitive the path is to skew variations and 
the greater the effort to reduce these skew variations [16]. Paths 
that are non-critical are assigned a lower effort to reduce skew 
variations. Path criticality prioritization is intended to save power 
since skew variations are not minimized on those paths that do not 
affect circuit speed. This approach is in contrast to skew 
optimization methods that aim to reduce maximum or nominal 
skew over an entire circuit. 

3.2 Related work 
The effect of increasing process variations is particularly 
pronounced in clock distribution networks, since skew variations 
strongly influence system performance and require careful 
treatment of minimum delays [14],[15]. Non-tree clock meshes, 
although useful in mitigating process variations, are difficult to 
analyze and automate due to the complex structure; most mesh 
clock networks are manually designed in high performance 
applications such as microprocessors [1–7]. Several approaches 
automate the clock mesh design process. Mesh sizing and, in 
particular, segment wire width sizing using network flow 
algorithms have been used to optimize nominal skew rather than 
skew variations [19]. Other methods start from a clock tree and 
incrementally add crosslinks among the tree nodes or leaves. 
Crosslinks are added between those nodes exhibiting high 
variation. The objective is to add the fewest number of crosslinks 
that can reduce the maximum or overall variations [8],[9]. Other 
approaches start with a fully uniform mesh, identify and remove 
redundant segments whose effect on variations is minimal by 
applying network theory techniques, thereby trading off variations 
with wire length. A set-cover problem is solved to obtain mesh 
pre-driver minimum buffers [10],[11]. The initial uniform grid is 
designed to ensure that metal redundancies within the grid satisfy 
target skew requirements [10]. 

4. TIMING–DRIVEN VARIATION–AWARE 

CLOCK MESH SYNTHESIS 
The timing-driven variation-aware nonunifrom clock mesh 
synthesis problem is presented in this section. The problem 
formulation and solution approach are presented in sections 4.1 
and 4.2, respectively. 

4.1 Problem statement 
The problem of managing skew variations can be formulated using 
the notations defined in Section 2.2: 

Inputs: Given a circuit connectivity and static timing analysis, 
including (1) a set of clock sinks S={s1,s2,…,sn}, (2) maximum 
skew constraints between each set of sequentially-adjacent 
registers si and sj, namely, the maximum permissible skew skewi,j, 
and (3) the relative tolerance parameter ξ, a user defined parameter 
denoting the upper bound of the maximum skew variation ratio 
over all maximum skew constraints allowed for all data paths, 

(∀ei,j ∈ GCE )  ξ ≥ δi,j
max /skewi,j.   (1) 

Problem Formulation: Construct a clock mesh with reduced wire 
length and power consumption that limits the fraction of the 
maximum skew variation over all maximum skew constraints by ξ 
for every combinational data path, as expressed by equation (1). 

The mesh density is the number of nodes connecting wire 
segments within the mesh. A uniform mesh consists of m 
horizontal segments and n vertical segment requiring n×m nodes. 

Higher levels of ξ lead to further reductions in clock skew 
variations at the expense of a denser mesh, longer wire length, and 
higher power consumption. ξ may be tuned by considering the 
tradeoff among power dissipation, metal consumption, and design 
robustness. 

4.2 Mesh construction algorithm 
The algorithm places multiple clock meshes over certain 
rectangular regions. The regions may partly overlap. The meshes 
may be of different densities. Each region covered by a mesh is 
associated with a specific maximum skew constraint, which 
determines the density of the corresponding mesh. The algorithm 
comprises four phases. 

Phase I: A constraint graph, as defined in Section 2.3 above, is 
derived from circuit connectivity information. See the example 
shown in Fig. 4. The vertices represent clock sinks and the edges 
represent data paths between vertices. The edge weight w(ei,j) 
represents the maximum skew constraint of the local data path 
represented by the edge ei,j, w(ei,j)=skewi,j. Each vertex can be 
assigned multiple attributes, such as the capacitance of the 
corresponding sink C(vi)=Capacitance(si) and the geometric 
location of the clock sinks of the vertex.  

 
Figure 4: Phase I, constraint graph construction: (a) synchronous 

circuit floorplan and connectivity with placed registers, (b) 

corresponding constraint graph; edge weights are the maximum allowed 

skew, and (c) vertex attributes and edge weights are the initial values 
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As the algorithm progresses, some vertices are merged, 
representing a geometric rectangular region containing multiple 
clock sinks. As the vertices are merged, the inner connectivity 
between the constituent sinks is ignored, and only the inter-vertex 
connectivity is preserved. The attributes of a vertex represent the 
properties of all sinks included in the vertex: the capacitance is the 
sum of all sink capacitances and the geometric location is replaced 
by a rectangular bounding box covering the physical location of all 
of the corresponding clock sinks.  

Misplaced registers, e.g., sequentially-adjacent registers bounding 
a critical timing path and placed diagonally apart, may cause 
undesired results. These cases are reported at an early stage, 
suggesting replacing interfering registers to avoid unnecessary 
design loops. 

Phase II: The rectangular regions satisfying certain skew 
requirements are identified. The algorithm iterates over an 
increasing threshold level. A vector T contains all pre-determined 
threshold values and defines basic time steps for mesh 
construction. At each iteration, each connected vertex is 
interconnected by edges with a weight below the current threshold 
and merged into a new vertex. A geometric bounding box covering 
all clock sinks within the same vertex is identified. The algorithm 

is described in Fig. 5. A threshold t∈T is selected, edges with 
weight less than the threshold are eliminated (step 1.2), the 
corresponding vertices are identified as a connected component 
(step 1.3), and these vertices are merged into one larger vertex 
(step 1.4.1). The skew constraint of this new vertex is the tightest 
skew constraint among all edges inside the corresponding 
connected component (step 1.4.2). The algorithm terminates when 
no threshold values remain in T, or only one vertex remains. A run 
time example of Phase II is shown in Fig. 6. The merge operation 
is performed by the subroutine shown in Fig. 7, as follows: The 
inner edges inside a connected component are removed and 
externally connected edges are connected to the new merged 
vertex (step 2). The attributes of all vertices inside the connected 
component are merged into the attributes of the corresponding new 
vertex. The capacitance is the sum of all inner capacitances (step 
3) and the bounding box bounds all inner sinks or inner bounding 
boxes (step 4). The merge operation is illustrated in Fig. 8. Note 
that this phase produces a set of possibly overlapping rectangular 
regions. 

Merge vertices procedure: 

Inputs:  
Output: 

G: Graph, V: Group of vertices to be merged 
Vmerge: Merged vertex with merged attributes 

MergeVertices(G,V) 

1. create new vertex vmerge 

2. foreach v∈V 

2.1. foreach e=v~v’ 

2.1.1. if v’∉V e=v’~vmerge 

2.2. remove v 

3. C(vmerge)=∑v∈VC(v) 

4. Bbox(vmerge)=[min(x0),min(y0),max(x1),max(y1)]| 

                                                        (x0,y0,x1,y1)=bbox(v), v∈V 

5. return vmerge 
Figure 7: Vertex merging algorithm (part of Phase II) 

Figure 8:  Merge example: (a) constraint graph, vertices are placed at 

the same place as the corresponding registers, (b) constraint graph 

after merge, and (c) values of attributes after merge 

Generate [skew,capacitance,bounding box] triplets 

 Inputs: 
 Output: 

GC: Constraints graph, T: Thresholds vector 
skewBbox stack, contains [skewucc,capucc,bboxucc] triplets, 
in ascending order by skew 

1. foreach t∈T 

1.1. GC
undirected=getUndirected(GC) 

1.2. foreach e∈GC
E 

1.2.1. if we<t   GC
undirected=GC

undirected/e 

1.3. UCC=getConnectedComponents(GC
undirected) 

1.4. foreach ucc∈UCC 

1.4.1. vmerge=mergeVertices(GC,ucc) 

1.4.2. skewucc=min(we|e=vi~vj, vi,vj∈ucc) 

1.4.3. bboxucc=bbox(vmerge)  

1.4.4. capucc=cap(vmerge) 

1.4.5. push(skewBbox, skewucc,capucc,bboxucc]) 
Figure 5: Phase II algorithm for generating [skew, cap., bounding box] 

triplets (mergeVertices() is shown in Fig. 7) 

 
Figure 6: Phase II execution example. Rows are iterations and columns are steps of the algorithm 
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The time complexity of Phase II is O(|S|). Extracting and merging 
all connected components requires O(|GC

V|+|GC
E|). The overall 

run time of phase II is therefore O(|T|·(|GC
V|+|GC

E|)). Since |T| is 
constant and the number of edges is of the same order as the 
number of vertices |GC

E|=O|GC
V|, the time complexity of phase II 

is O|GC
V|=O(|S|). 

Phase III: Partly overlapping rectangular skew regions are merged 
into polygons, and skew levels are assigned to the polygons. When 
two skew regions overlap, the tighter skew constraint prevails and 
is inherited by the resulting polygon, as illustrated in Fig. 9. The 
input [skew, capacitance, bounding box] triplets are sorted in 
ascending order of skew. Iteratively, a triplet with a tighter skew 
constraint is removed from the input stack (step 2.1). The circuit 
floorplan is filled with non-overlapping skew regions (steps 2.2 
and 2.3) and polygon shaped skew regions are constructed from 
overlapping regions. A run time example of Phase III is shown in 
Fig. 10. 

Polygon union and intersection operations can be performed in 
O(n·log(n)) steps using a segmented tree data structure [20], where 
n is the total number of polygon segments. This complexity is the 
same order as the number of vertices n=O(|GC

V|)=O(|S|), and the 
run-time of this phase is therefore quasi-linear, O(|S|·log(|S|)). 

Final Phase IV: A clock mesh is designed for each of the non-
overlapping skew polygons. Each mesh should satisfy the skew 

requirement of the polygon. If the maximum allowed skew for a 
specific region is skewmax, the maximum allowed variation is   
skewmax < ξ·skewmax. The skew variation is inversely proportional 
to the mesh density. The density of each mesh is therefore tuned to 
match the required skew variation. Skew as a function of mesh 
density has also been discussed in [10]. Optimized pre-drivers are 
placed by solving a set-covers problem [10],[11].  

The overall run time for the entire algorithm is quasi-linear in the 
number of clock sinks: O(|S|·log(|S|)). An example output of the 
algorithm is illustrated in Fig. 11. 

5. EXPERIMENTAL RESULTS 
In order to verify the capability of the proposed method to reduce 
power and wire length consumed by the mesh architecture, and 
compare these capabilities to previous methods, several 
experiments have been conducted. These experiments are 
described and the results are discussed in sections 5.1 and 5.2, 
respectively. 

5.1 Flow and design environment 
The proposed algorithm has been implemented in Perl and TCL. 
Experiments have been performed on several circuits from the 
ISCAS89 sequential benchmark suite. These benchmark circuits 
have been designed using the Virage Logic standard cell logic 
library with a 65 nm process operating at a 1 GHz frequency. RTL 
representations of the benchmark circuits have been synthesized 
into a netlist using Synopsys Design Compiler Ultra (DC Ultra) 
and placed and routed by Cadence SoC Encounter™ RTL-to-
GDSII System. A TCL hook procedure is used to construct the 
constraint graphs, which are imported into a XML database. The 
proposed algorithm generates mesh and pre-driver locations. The 
Cadence SoC Encounter constructs the final physical layout. 
Results are analyzed using Cadence Virtuoso UltraSim Full-Chip 
Simulator, a transistor-level FastSPICE circuit simulator. 

5.2 Results 
The results of applying the proposed algorithm to several 
benchmark circuits are listed in Table 1. The first two columns list 
the benchmark name and number of registers. The following three 
columns list, respectively, the total wire length, power 
consumption, and maximum skew. The experimental parameter ξ 
is varied around a typical value. The experiment evaluates the 

Generate [skew,capacitance,polygon] triplets: 

Inputs: 
Output: 

[skew,capacitance,bbox] triplets from phase II 
skewPolygon stack, containing 
[skew,capacitance,polygon] triplets 

1. covered=Ø 

2. while skewBbox≠Ø 

2.1. [skew,cap.,bbox]= pop(reversed((skewBbox)) 

2.2. polygon=coveredc∩bbox  

2.3. covered=covered∪bbox 

2.4. push(skewPolygon, [skew,capacitance,polygon]) 

Figure 9: Generating [skew,cap.,polygon] triplets (part of Phase III) 

 

Figure 11: Example of the proposed mesh 

Figure 10: Phase III execution example. Rows are iterations and 

columns are steps of the algorithm 

Table 1: Results of the proposed algorithm as compared with other approaches [10], [11] 

Testcase #Sinks 

 

Wire Length (um) Power (mw) Maximum skew (ps) 

ξ  = 1.1 ξ  = 1.0 ξ  = 0.9 [10] [11] ξ  = 1.1 ξ  = 1.0 ξ  = 0.9 [10] [11] ξ  = 1.1 ξ  = 1.0 ξ  = 0.9 [10] [11] 

s9234 135 12490 13376 13857 33610 27177 5.03 5.27 6.8 8 6.7 113.7 93.7 82.5 163.9 124.1 

s5378 165 20149 20839 22165 31009 24911 4.57 4.84 4.92 6.7 6.72 128.3 106.2 94.1 204.16 128.06 

s13209 500 51220 51443 52834 82884 109538 11.8 12.59 12.91 20.6 23.8 132.1 111.4 91.8 62.33 95.81 

s15850 566 44535 45628 45735 84055 100778 13.32 13.93 14.72 22 23.8 126 102.1 85.5 94 106.64 

s38584 1426 164224 166274 165372 256567 262528 42.36 41.18 43.55 65.2 60.9 150.2 131.1 104.6 182.28 130.7 

s35932 1728 237513 239342 241680 349432 321293 43.14 44.25 41.83 73.5 74.3 153.6 124.6 107.2 108.5 134.65 

Average 753.3 88355.2 89483.7 90273.8 139593 141038 20 20.3 20.8 32.7 32.7 134 111.5 94.3 135.9 120 
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relationship among the metal resources, power consumption, and 
relative skew tolerance parameter ξ. The maximum skew is 
compared with other methods, and, as expected, a larger ξ 
increases wire length and power consumption but reduces 
maximum skew (see Fig. 12). Comparing these results to the 
methods proposed in [10],[11], a typical value of ξ = 1 improves 
the wire length and power dissipation with an insignificant 
increase in maximum skew, as depicted in Fig. 13. As compared to 
[10] and [11], the proposed method achieves a 37% average 
reduction in metal consumption and a 39% average reduction in 
power dissipation. These results demonstrate that managing skew 
tolerance by wisely prioritizing critical paths saves significant 
metal resources and dissipates less power as compared to 
traditional methods. 

6. CONCLUSIONS 
An efficient graph-theoretic and geometric quasi-linear algorithm 
for managing clock skew tolerance is presented in this paper. Skew 
variations are managed while considering the criticality of the 
timing of each data path. An algorithm and flow for planning and 
synthesizing non-uniform clock meshes are integrated with current 
CAD tools and demonstrated on a 65 nm CMOS process and cell 
library. Experimental results on a set of benchmark circuits exhibit 
a 37% average decrease in metal wire length and a 39% average 
decrease in power dissipation with an insignificant increase in 
maximum skew as compared to existing methods. 

Future improvements of the algorithm should be considered. Other 
parameters, e.g., metal width and layer, could be integrated into 
the optimization process. Since constraint graph extraction is 
computationally expensive, registers at the same local region could 
be clustered into one node before extraction. Rather than a global 
mesh that directly drives the clock sinks, a hybrid clock mesh 
topology may be employed, e.g., a global mesh with local trees 

(MLT) [6]. The algorithm presented here can be adapted to 
automate the crosslink insertion process [8]. Rather than inserting 
crosslinks to reduce maximum variations, the crosslinks could be 
inserted according to the criticality of the individual data paths. 
The algorithm presented here targets a mesh for zero-skew; useful 
skew may also be considered.  
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Figure 12:  Power and maximum skew vs. relative skew tolerance 

parameter ξ 
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Figure 13:  Proposed method with ξ = 1 vs. [10] and [11]: (a) wire 

length, (b) power, and (c) maximum skew 
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