
Memristive Accelerator for Extreme Scale Linear Solvers
Isaac Richter1, Kamil Pas1, Xiaochen Guo1, Ravi Patel1, Ji Liu2, Engin Ipek1,2, and

Eby G. Friedman1

1Department of Electrical and Computer Engineering 2Department of Computer Science

University of Rochester
Rochester, New York, 14627, USA

Email Contact: ipek@cs.rochester.edu

Abstract: Scientists model physical phenomena by means of
computer simulations that typically require iteratively solving
large systems of linear equations. We discuss a novel method
of solving these systems by exploiting recently developed mem-
ristor technology. The proposed approach results in a 1500×
improvement in computational runtime, and an 8 .5× reduc-
tion in energy as compared with existing solvers.

Keywords: computer architecture; supercomputing; VLSI
circuits; architecture-circuit interactions.

Introduction
Computer models of physical systems are a vital part of
modern scientific and engineering research and development.
Large scale computational models of the Earth’s weather, cli-
mate, and geological activity; models of nuclear weapons;
astronomical models of galaxies; and even macroeconomic
models require immense computing resources. These simu-
lations run on thousands of processors for several months at
a time, utilizing tens or hundreds of millions of CPU hours
before reaching a solution [1]. A 2010 report on exascale
computing by the U.S. Department of Energy concludes that
“computational modeling, simulation, prediction, and control
at exascale offer the prospect of transformative progress in
energy, national security, the environment, and our economy,
and for fundamental scientific questions.” [2] The same report
finds that “making the transition to exascale poses numerous
unavoidable scientific and technological challenges,” while a
2008 report by the U.S. National Academy of Engineering
identifies “engineering the tools of scientific discovery” [3] as
one of 14 grand challenges in engineering for the 21st century.

Complex physical models are often described in the form of
systems of partial differential equations. The most common
way to solve these systems is to discretize these expressions
by transforming the continuous differential equations into dis-
crete difference equations that serve as an approximation of the
original system. The resulting difference equations are written
as a large, sparse linear system, which is subsequently solved
using iterative techniques [4] such as conjugate gradient, suc-
cessive over-relaxation, or adaptive multi-grid. These itera-
tive solvers first estimate the solution, and proceed to improve
upon that estimate in a sequence of steps. Each successive
step generates a closer approximation than the previous step,
ultimately producing an answer sufficiently close to the exact
solution. The process of modeling the physical world using
numerical methods is illustrated in Figure 1.

Key Idea: To obtain the currents and voltages in a large re-
sistive network, the network can be converted, using Kirch-
hoff’s laws, into a system of linear equations. Given known
resistor values and voltage or current inputs, solving the
system provides the remaining unknowns. The reverse is
also true: given a system of linear equations, it is possi-
ble to conceive of a resistor network that provides the solu-
tion to that linear system. Unfortunately, constructing physi-
cal networks with accurate programmable resistances requires
substantial area. Utilizing memristors in a crosspoint ar-
ray to solve a system of linear expressions is proposed here.
Memristors offer the ability to construct a dense, continu-
ously programmable, and reasonably accurate resistor net-
work. The network produces a fast and accurate solution
as an initial starting point for a (conventional) digital solver.

Program 
Accelerator 
(with A & b)

Find 
Approximate 

x

Stopping 
Conditions 

Met? No

Perform 
Analog 
Iteration

Yes
Transfer 

estimated x to 
digital solver

Perform 
Digital 

Iteration
Done

Stopping 
Conditions 

Met?

Analog 
(in accelerator)

Digital 
(in CPU)

Data Transfer 
(CPU↔Accelerator)

Yes

No

Figure 1: Flowchart for operating an accelerator alongside existing digital methods to solve linear systems. The steps performed by
both the conventional and the proposed approaches are marked in gray. Steps exclusive to the approach proposed here are marked in
black. In the figure, A, x, and b correspond, respectively, to the matrix and vectors in the equation A~x = ~b.



The proximity of this initial estimate to the final answer has a
profound effect on the number of iterations that are required
to achieve convergence. As a result, using the output from the
accelerator as an initial guess in an iterative solver generally
results in convergence after significantly fewer iterations.

System Overview
An analog accelerator for solving linear systems is proposed
here. The accelerator is a discrete module that connects to an
existing bus (e.g., DDRx or PCIe), and communicates with a
conventional iterative solver running on a CPU. Results from
the accelerator seed the iterative solver to reduce the number
of iterations. The accelerator itself can also take the seed and
run an iterative method in hardware using a memristor-based
digital matrix-vector multiplication capability.

Vector Current 
Summation

Analog
Estimate

Coeff. Matrix A
in Analog

Coeff. Matrix A
in Binary Format

Vector b

Axkb - Axk

k = k + 1

Bitwise 
Multiply

dk

Vector Current 
Summation xk= xk-1+ dk

x0

Figure 2: Overview of proposed accelerator.

The accelerator consists of a programmable resistive cross-
point array, as well as drivers, sensors, and control logic. The
interface between the array and the rest of the system supports
memory mapped DMA transfers to and from the accelerator.
A control interface starts and interrupts calculations and deter-
mines status. Due to the slow speed of writes in a crosspoint
array (443 MB/s [5]), incoming data are buffered and back
pressure applied via the data bus to the DMA controller. The
process in which the data flows between the accelerator and a
conventional linear solver is illustrated in Figure 1.

Integration with existing solvers: Solvers for large, sparse
linear systems typically rely on iterative methods. These iter-
ative solvers generate exact results (for a given residual), but

may require months of processing time on a modern super-
computer cluster [6]. By utilizing an analog solver, an approx-
imate solution is produced in significantly less time and with
substantially less energy. This approximate solution is used
as an initial estimate in a conventional digital solver, thereby
eliminating many iterations and reducing computational time.

The accelerator operates in two modes. In the multiplication
mode, the accelerator multiplies matrix A with vector ~v to ob-
tain A~v. To achieve sufficiently high accuracy in the multipli-
cation mode, the computations are performed digitally, where
the memristors are used as digital switches. In the analog esti-
mation mode, the accelerator estimates the vector ~x inA~x = ~b.
In this mode, the memristors are treated as analog devices that
can be programmed over a continuous range, which for tanta-
lum oxide devices is between 70 Ω and 4 kΩ [7].

Operating Principles: The solver initiates the computation
by loading matrix A and the right hand side (RHS) vector ~b
into an accelerator. The accelerator operates in the estima-
tion mode to return an approximate solution ~x0 close to the
exact solution ~x?, in which the inaccuracies in ~x0 are due to
the quantization errors δ on A, source errors in ~b, and sensing
errors on ~x. If ~x0 satisfies accuracy requirements, it is imme-
diately returned. Otherwise, the estimate is refined on the ac-
celerator and the improved version is returned. Either way, the
solver reaches the stopping criterion earlier due to the initial
estimate.

Among the sources of error that cause inaccuracies in the ini-
tial estimate, the quantization error δ is constant after program-
ming the matrix A. In contrast, the source and sensing errors
are due to thermal and voltage noise, and hence fluctuate. Two
copies of the coefficient matrix A are programmed into the
memristive arrays: for the analog estimation mode, memris-
tors are treated as analog storage, whereas the multiplication
mode requires each bit of the coefficients to be programmed
as a binary state. The accelerator iteratively refines the initial
estimate ~x0 by leveraging both the analog estimation and the
multiplication modes to compensate for quantization error δ in
A, and to minimize the source and sensing errors, as shown
in Algorithm 1. At every refinement iteration, the accelerator
computes the residual of the previous iteration and estimates

Algorithm 1 Analog iterative refinement (A is the coefficient ma-
trix, δ is the quantization error matrix of A,~b is the right-hand side
vector, and ~x0 is an initial estimate of the solution).

function INTERATIVEANALOGREFINE(A, δ,~b, ~x0)
k ← 0
do

k ← k + 1
~rk−1 ← ~b− BitwiseMultiply(A, ~xk−1)
~dk ← AnalogEstimate(A+ δ, ~rk−1)

~xk ← ~xk−1 + ~dk
while ‖~dk‖/‖~xk‖ > Threshold
return ~xk



the solution of the linear system (A+ δ)~dk = ~rk−1, where ~dk
compensates for the error on ~xk−1. The new estimate ~xk is
produced by adding ~dk to ~xk−1. Note that in the analog esti-
mation mode, the source and sensing errors are proportional,
respectively, to the RHS vector ~r and the estimate ~d, since the
RHS vector is scaled to match the representation range of the
current source.

Data Transfer to/from the Accelerator: The crosspoint ar-
ray is initialized by communicating the contents of the matrix
A into the accelerator via memory mapped writes. Upon re-
ceipt of the data, the programming circuit sets the resistance
of the crosspoint cells. To avoid the performance penalty of
individually programming each cell, bulk-erase and bulk-load
methods can be used to reduce programming time. Once the
array is programmed, the accelerator is configured for either
the multiplication or the estimation mode of operation. The
voltage and current sources are programmed based on the con-
tents of ~x and~b. Similar to the initial matrix, these data are sent
to the accelerator via the memory mapped interface. Once pro-
gramming is complete, the results of the resistive network are
converted by a set of analog-to-digital converters (ADCs) into
binary data. A control/status channel is used by the driver to
poll for readiness, or to receive an interrupt when the output
data are available for reading.

Integrated Circuit Topology: Due to circuit-level chal-
lenges when programming large memristive crosspoint ar-
rays, the crosspoint arrays are limited to 1,000 rows by
1,000 columns [8]. Analog crossbar circuits combine multiple

Figure 3: A memristive system containing multiple blocks commu-
nicating through programmable interconnect.

crosspoint arrays, analog drivers, and sensors (see Figure 3).
This approach also leverages sparsity to block the matrices,
requiring only the non-zero blocks to be programmed into
the memristor arrays. Higher memory utilization is therefore
achieved, making the system more likely to fit within a single
accelerator.

Results
Initial results on the performance and energy characteristics of
this proposed memristor-based linear accelerator are presented
in this section.

Circuit Performance: A test case using 1,000× 1,000 arrays
has been simulated to determine the computational speedup.
Assuming a GDDR5 memory bandwidth of 176 Gbps, a
CMOS GPU requires approximately 786 µs for every itera-
tion1. With the proposed approach, an analog array requires
6.2 µs per iteration—a greater than two orders of magnitude
speedup. For a modern GPU accelerator with a 225 W power
budget and a peak performance of 5 Tflops/s [9], the energy
consumption to perform this computation is 622 mJ. Analog
computation of the same application with the proposed accel-
erator array expends 73 mJ, 11.7% of the total energy of the
GPU-based computation. The bulk of the energy savings is
due to the reduced number of iterations in the analog array as
compared to the number of iterations needed in a completely
digital system. The delay for the computation is 55.4 µs—a
1559× speedup in GPU solution time.

Capacity: Large scale scientific applications involve sparse
matrices with hundreds of millions of rows and columns. Su-
percomputers with millions of cores map and solve problems
of this magnitude. In contrast, the analog approach proposed
here utilizes memristor crosspoint arrays that reduce system
complexity to several integrated circuits. Consider, for exam-
ple, a CPU on a compute node with a 150 Watt power budget.
In the same power envelope, more than 16 arrays can be sup-
ported on a single die. Assuming a 22 nm CMOS technology
and a die size of 5 mm × 5 mm, the area occupied by the
crosspoint array is 0.07 mm2, less than 0.3% of the die area,
and capable of handling 32 million entries on a single inte-
grated circuit. Assuming that the remaining 99.4% of the die
area is dedicated to peripheral and interface circuitry, 32,000
circuits would be required to compute a problem with one hun-
dred million rows and one hundred million columns. For com-
parison, a modern high performance supercomputer typically
utilizes hundreds of thousands to millions of cores [2].

Convergence: The performance of the proposed hardware
has been assessed against a random synthetically generated
symmetric positive definite test matrix with 10,000 rows and

1Based on a Nvidia Tesla K10 limited by 320 GBps peak memory band-
width using two channels



1E-08

1E-06

1E-04

1E-02

1E+00

1E+02

0 10 20 30 40 50 60 70 80 90 100 110

R
e

la
ti

v
e

 R
e

si
d

u
a

l

I te rations

CG Proposed

Figure 4: Residual reached at each iteration for synthetic matrices
solved via conventional floating point CG and via analog iterative
refinement

62.8 × 106 non-zero entries2. For the purposes of this assess-
ment, the analog hardware is assumed to have 13-bit digiti-
zation (in the ADCs and DACs). The drivers are assumed
to exhibit 5% variance, and the sensors are assumed to ex-
hibit a 20 µV RMS sensing noise for a 5 µs sensing time [10].
The memristors are programmed to within 1% of the requested
value. Although 1% tolerance of the programmable resistors
may seem high, recent results have shown controllability of
memristive resistance to within a few percent [7]. This ca-
pability is expected to improve as memristor technology ma-
tures. For the digital bit-plane fixed-point operation used by
the matrix-vector multiplication, 32-bit capability is assumed.

Results of the analog accelerator are compared to those re-
sults obtained by running the conjugate gradient method (CG)
on conventional digital floating point hardware. CG requires
one matrix vector multiplication per iteration. CG can be run
on the accelerator using the fixed-point matrix-vector mode.
Depending upon the input data, the memristor-accelerated CG
converges to the same residual as a conventional floating point
CG with 10% or fewer additional iterations.

Running CG on the accelerator, however, does not exploit the
capability of the accelerator to generate solution vector esti-
mates. The analog iterative refinement algorithm uses one ma-
trix vector multiplication and one analog solution estimation
per iteration. Analog iterative refinement is unsuitable for con-
ventional hardware due to the time required to approximately
solve a linear system during each iteration. On the accelera-
tor, however, generating the approximate solution is fast. The
iterations are therefore not prohibitively lengthy.

As shown in Figure 4, analog iterative refinement can reach
a target residual with 14× fewer iterations than conventional
CG. Given the parallel operation of the arrays, each iteration
is performed rapidly. The test matrix only needs eight itera-
tions of analog iterative refinement to reach the same residual
that requires 110 iterations of CG. This example corresponds
to 73.3 mJ and 55 µs for the proposed hardware as compared

2The test matrix is generated from A = preA × preAT + Im, where
preA is a random sparse matrix with 100 non-zeros per row. The values for
preA are sampled from a standard normal distribution.

with 622 mJ and 86 ms on a GPU. This result is an improve-
ment of 1500× in time, and 8.5× in energy.

Conclusions
Analog accelerators provide an interesting alternative to tradi-
tional digital math. A resistive crosspoint array can provide
an approximate solution as a seed to digital iterative meth-
ods, resulting in as much as a 14× reduction in the number
of iterations. This reduction in the number of iterations and
the proposed architecture directly translates to an 8.5× energy
savings and a 1500× reduction in runtime, supporting more
detailed simulation experiments that can generate new insights
into numerous scientific disciplines.

Acknowledgments
This work was supported by NSF awards 1217418, 1054179,
and 1329374. Author Guo is supported by an IBM fellowship.

References
1. M. Boylan-Kolchin, “Cosmology: A Virtual Universe,”

Nature, Vol. 509, No. 7499, pp. 170–171, 2014.

2. US Department of Energy, The Opportunities and
Challenges of Exascale Computing, 2010.

3. National Academy of Engineering, Grand Challenges for
Engineering, 2008.

4. Y. Saad, Iterative Methods for Sparse Linear Systems:
Second Edition, Society for Industrial and Applied
Mathematics, 2003.

5. A. Kawahara, R. Azuma, Y. Ikeda, K. Kawai, Y. Katoh,
et al., “An 8Mb Multi-Layered Cross-Point ReRAM
Macro with 443MB/s Write Throughput,” In Solid-State
Circuits Conference Digest of Technical Papers (ISSCC),
2012 IEEE International, pp. 432–434. 2012.

6. E. Gibney, “Model Universe recreates evolution of the
cosmos,” Nature, May 2014.

7. F. Miao, W. Yi, I. Goldfarb, J. J. Yang, M.-X. Zhang,
et al., “Continuous Electrical Tuning of the Chemical
Composition of TaOx-Based Memristors,” ACS nano,
Vol. 6, No. 3, pp. 2312–2318, 2012.

8. J. Liang, S. Yeh, S. S. Wong, and H.-S. P. Wong, “Effect
of Wordline/Bitline Scaling on the Performance, Energy
Consumption, and Reliability of Cross-Point Memory
Array,” ACM Journal on Emerging Technologies in
Computing Systems (JETC), Vol. 9, No. 1, pp. 1–14,
2013.

9. Nvidia, Tesla K10 GPU Accelerator Board Specification,
BD-06280-001_v07, November, 2012.

10. M. B. Leslie and R. J. Baker, “Noise-shaping sense
amplifier for MRAM cross-point arrays,” Solid-State
Circuits, IEEE Journal of , Vol. 41, No. 3, pp. 699–704,
2006.


