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Abstract— Based on a Fourier series analysis, an analytic interconnect
model is presented which is suitable for periodic signals, such as a clock
signal. In this model, the far end time domain waveform is approximated
by the summation of several sinusoids. Closed form solutions of the 50%
delay are provided when the fifth and higher harmonics are ignored. The
model is applied to distributed interconnect trees and multiple coupled
interconnects. Good accuracy is observed between the model and SPICE
simulations. The computational complexity of the model is linear with
the number of harmonics.

I. INTRODUCTION

In deep submicrometer integrated circuits, interconnect delay dom-
inates the gate delay. Furthermore, wire inductances can no longer
be ignored due to higher signal frequencies and longer wire lengths.
Accurate and efficient RLC interconnect models are therefore critical
in the design of high performance integrated circuits.

Based on modified Bessel functions, expressions characterizing
the transient response of an RLC interconnect have been rigorously
developed in [1]. These results, however, are highly complicated and
not suitable for an exploratory design process. In order to produce
a more efficient solution, the transfer function of the interconnect is
truncated and approximated with a few dominant poles, for example,
two poles in [2], and four poles in [3]. Four pole expressions
are highly accurate, however, no closed form solution has been
developed [3]. In all of these models, a step input is assumed and
no initial conditions are considered. For a periodic input, if the
output signal cannot converge to Vdd or 0 within half a period, initial
conditions need to be considered. Furthermore, on-chip interconnect
often has complicated structures, such as distributed RLC trees and
buses. Interconnect models should have the ability to characterize
these types of structures.

Fourier analysis has been widely used in RF circuit simulation,
where it is named harmonic balance [4]. In this paper, Fourier
series analysis is applied to digital integrated circuits to model the
interconnect behavior. The model is suitable for periodic signals, such
as a clock signal. Since the solution is the steady state response,
initial conditions are considered. The paper is organized as follows.
In section II, the Fourier series-based interconnect model for a
single line is presented. In section III, the model is applied to
interconnect trees and coupled transmission lines, and the results
from the proposed model are compared with SPICE. Finally, some
conclusions are offered in Section IV.
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Fig. 1. Equivalent circuit model of a distributed RLC interconnect.

II. SINGLE INTERCONNECT MODEL

A classical interconnect model is shown in Fig. 1. The interconnect
is represented by a distributed RLC transmission line, where l is the
interconnect length, and R, L, C are the resistance, inductance, and
capacitance per unit length, respectively. The driver is linearized as
a voltage source Vin serially connected with a driver resistance Rd.
The load of the interconnect is modeled as a capacitor Cl.

From the ABCD parameters [5] of a transmission line, the transfer
function from Vin to the far end of a line is

H(s) =
1

(1 + RdCls) cosh θ + (Rd/Zc + ZcCls) sinh θ
, (1)

where θ = l
√

(R + sL)sC and Zc =
√

(R + sL)/sC. Since
(1) includes hyperbolic functions of the complex frequency s, it is
difficult to obtain the time domain solution through an inverse Laplace
transform. In order to simplify the problem, the denominator of the
transfer function is expanded into an infinite series. By truncating
this series, the transfer function is approximated by a few dominant
poles [2], [3]. A distributed RLC line can also be modeled by lumped
elements through moment matching [6].

In Fig. 2, the transfer function of some existing models [2],
[3], [6] are compared with the exact transfer function described in
(1). In this example, the interconnect parameters are l = 2 mm,
R = 8.829 mΩ/µm, L = 1.538 pH/µm, and C = 0.18 fF/µm.
The driver resistance and load capacitance are Rd = 30 Ω and
Cl = 50 fF, respectively. As illustrated in Fig. 2, a simple L–type
lumped model produces the poorest approximation. A two pole model
can be accurate up to 5 GHz. A non-uniform two stage L–type lumped
model and a four pole model increase the accuracy range to about
7 GHz, however, no closed form solutions for these two models have
been reported.

In previous models, the excitation signal is modeled as a step or
ramp function, and most of the effort is focused on approximating
the transfer function. For a periodic signal, the input signal can be
approximated by truncating the Fourier series while maintaining the
exact transfer function. The Fourier series representation of a typical
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Fig. 2. The amplitude transfer function of different models of an RLC
interconnect.
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Fig. 3. Comparison of the time domain response of Fb3 and Fb5 with SPICE.

on-chip periodic signal with period T and transition time τ is

Vin(t) =
Vdd

2
+

∑
m=1,3,...

Am sin(mω0t + φm), (2)

φm = −mω0τ

2
, (3)

Am =
2TVdd

τm2π2
|sin φm| , (4)

where ω0 = 2π/T is the basis angular frequency, and Am and φm

are the amplitude and phase of the mth order harmonic, respectively.
Since Am decreases quadratically with m, Vin(t) can be approx-
imated by the first several harmonics [7]. The transfer function at
each frequency ω can be represented as H(jω) = A(ω)ejβ(ω). From
(1), the gain of the DC component is H(0) = 1. The far end output
voltage can be obtained as

Vout(t) =
Vdd

2
+

∑
m=1,3,...

A′
m sin(mω0t + φ′

m), (5)

where A′
m = AmA(mω0) and φ′

m = φm + β(mω0). Vout(t) can
also be approximated by the first several harmonics. In this paper, the
Fourier series-based models are referred to as Fb3 and Fb5, with the
largest harmonic order number of three and five, respectively. The
results from Fb3 and Fb5 are compared with SPICE in Fig. 3. In the
SPICE simulation, the interconnect line is divided into 200 segments
and each segment is represented by an L–type lumped model. As
shown in Fig. 3, two harmonics (Fb3) are sufficient to provide a good
approximation of the output voltage waveform for this example.

The 50% delay can be solved numerically from (5). In this paper,
the 50% delay is assumed to be less than T/2 − τ/2 (valid in most
practical cases). For Fb3, since only two harmonics are considered,
a closed form solution is available. In this case,

Vout(t) ≈ Vdd

2
+ A′

1 sin(ω0t + φ′
1) + A′

3 sin(3ω0t + φ′
3). (6)

To determine the 50% delay, (6) is set to Vdd/2. By applying the
multiple-angle formulae, a third order trigonometric expression can
be obtained,

a3x
3 + a2x

2 + a1x + a0 = 0, (7)

where x = tan(ω0t) and

a0 = A′
1 sin φ′

1 + A′
3 sin φ′

3, (8)

a1 = A′
1 cos φ′

1 + 3A′
3 cos φ′

3, (9)

a2 = A′
1 sin φ′

1 − 3A′
3 sin φ′

3, (10)

a3 = A′
1 cos φ′

1 − A′
3 cos φ′

3. (11)

A third order expression has either one or three real roots, and a
closed form solution exists [8]. If (7) has only one real root x0, the
output waveform crosses Vdd/2 only once from low-to-high during
the first half of a period, and the 50% delay can be expressed as

td =
arctan x0

ω0
− τ

2
. (12)

The value of arctan x0 is in the range of [0, π]. If (7) has three real
roots, the output waveform crosses Vdd/2 three times during the first
half of the period, which means the undershoot point is lower than
Vdd/2. In this case, the output waveform is not shaped like a square
wave and can no longer represent logic values.

By setting dVout/dt to zero, the time when the overshoots and
undershoots occur can be obtained in the same way as the 50% delay.
With these times, the solution of the overshoots and undershoots can
be directly determined.

The accuracy of the proposed model depends upon the frequency
spectrum of the far end response. For highly LC dominant intercon-
nect, resonance frequencies exist, as shown in Fig. 2. The high order
harmonics close to these resonance frequencies are amplified, and the
model becomes less accurate. With the signal frequency increasing,
the first several harmonics also approach the resonance frequencies
and are amplified. The ratio between the harmonics included in the
model and the harmonics which are neglected increases, making the
proposed model more accurate. The accuracy of the model can be
improved by including additional harmonics, and higher order (fifth,
seventh, . . . ) equations should be solved. Since only real roots are of
interest, some efficient root-finding algorithms can be used, such as
the Newton-Raphson method.

III. APPLICATION EXAMPLES

The solution for a single distributed RLC line can be readily
extended to interconnect trees and multiple coupled interconnects.

A. Distributed interconnect trees

Interconnect trees are widely used in digital integrated circuits,
such as clock distribution networks. An example of a distributed
RLC tree is shown in Fig. 4, where lx and Cx are the normalized
reference length and capacitance, respectively. All of the branches in
the tree are represented by distributed RLC lines.

For a transmission line of length l with load ZL at the far end, the
input impedance seen from the near end is

Zin = Zc
ZL + Zc tanh θ

Zc + ZL tanh θ
, (13)
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Fig. 4. A distributed RLC tree.

where θ and Zc are defined in section II. When a node has
multiple fanout, the load impedance seen at this node is the parallel
combination of the input impedance of the downstream branches. The
transfer function from N0 to a certain node Ni is the product of the
transfer function of all of the branches along the unique path from
N0 to Ni. The transfer function of a single branch can be obtained
by replacing Rd by 0 and Cls by 1/ZL in (1),

H(s) =
1

cosh θ + (Zc/ZL) sinh θ
. (14)

The transfer function from the voltage source to a certain node Ni,
therefore, is

Hi(s) =
ZL,0

Rd + ZL,0

∏
k

1

cosh θk + (Zc,k/ZL,k) sinh θk
, (15)

where ZL,0 is the input impedance seen from N0, and k is the
index covering each branch in the path from N0 to Ni. From this
analysis, the computational complexity required to determine the time
domain response is linear with the size of the tree and the number
of harmonics.

The branches in the tree shown in Fig. 4 can have different parasitic
interconnect impedances. For simplicity, the branches are assumed to
be the same width, 6 µm. Ground wires are placed at each side of
the signal line as shields. The width of the shield wire is 10 µm
and the space between the shield and the clock line is 6 µm. The
interconnect parameters of such a structure are R = 3.9 mΩ/µm,
L = 0.43 pH/µm, and C = 0.36 fF/µm.

A 2 GHz clock signal with τ = 50 ps is applied at the input of
the tree. The 50% delay at node N5 and N7 is listed in Table I
for a range of circuit parameters. To drive the interconnect tree with
a high frequency signal, the driver resistance has to be sufficiently
small. Results from the two pole model [2] and the equivalent Elmore
delay model [9] are, for comparison, also listed.

The methods presented in [2] and [9] have similar accuracy and
complexity, since both of these models are based on second order
approximations. As listed in Table I, Fb3 and Fb5 produce higher
accuracy, for this example, than the second order approximations.
The average error of Fb5 is only 3%. The accuracy of the Fourier
series based model can be enhanced to capture the fine details of
the waveform by including additional harmonics, and there are no
stability and numerical problems such as suffered by AWE [10].

B. Multiconductor Systems

For multiple transmission lines, the interconnect parameters per
unit length can be represented by matrices R, L, and C. All of
these matrices are symmetric with the dimension N × N , where N
is the number of lines. From the Telegrapher equations of N coupled

TABLE I
50% DELAY AT NODES N5 AND N7 FROM Fb3 AND Fb5 AS COMPARED

WITH THE RESULTS FROM SPICE AND SECOND ORDER MODELS.

lx Rd Cx Node SPICE [2] [9] Fb3 Fb5
(mm) (Ω) (fF) (ps) (ps) (ps) (ps) (ps)
0.2 10 20 N5 13.1 10.3 10.2 9.0 10.3
0.2 10 20 N7 11.6 14.0 13.8 10.6 11.2
0.2 10 500 N5 35.5 50.0 49.1 49.0 37.1
0.2 10 500 N7 59.9 60.8 58.6 60.1 60.0
0.2 30 20 N5 23.9 23.6 23.5 25.1 24.1
0.2 30 20 N7 23.5 25.6 25.4 25.7 24.5
0.2 30 100 N5 42.7 40.0 39.8 43.2 42.1
0.2 30 100 N7 39.4 43.1 42.5 44.1 41.2
1 10 20 N5 41.3 54.3 52.2 37.0 40.8
1 10 20 N7 75.8 79.7 75.1 77.5 75.3
1 10 100 N5 51.3 63.3 60.4 49.9 52.4
1 10 100 N7 89.6 93.0 86.9 89.6 89.2
1 20 20 N5 49.2 71.3 68.6 48.4 48.3
1 20 20 N7 86.4 96.1 89.4 90.6 88.1
1 20 100 N5 57.4 85.1 81.7 57.7 58.8
1 20 100 N7 104.1 114.0 105.4 103.4 102.9

Maximum Error 48% 42% 38% 21%
Average Error 18% 15% 8% 3%

transmission lines, the voltage vector V and current vector I have
the following relationship in the frequency domain,

∂

∂x

(
V
I

)
= −

(
0 Z
Y 0

) (
V
I

)
, (16)

where Z = R + sL and Y = sC.
The matrix ZY for a practical system is always diagonaliz-

able [11], i.e., ZY = MQM −1, where Q is a diagonal matrix with
eigenvalues of ZY as the diagonal elements, and matrix M has the
corresponding eigenvectors of ZY as the columns. Decoupling (16)
can be achieved by applying a modal analysis [11], [12],

∂

∂x

(
V̂

Î

)
= −

(
0 Ẑ

Ŷ 0

) (
V̂

Î

)
, (17)

where V̂ = M−1V , Î = M T I , Ẑ = M−1Z(M T )−1, and
Ŷ = M T Y M . Since Z and Y are symmetric, Ẑ and Ŷ are
both diagonal [12]. The N coupled interconnect lines, therefore, are
decoupled into N independent lines. The characteristic impedance
matrix Ẑc and the propagation coefficient matrix γ̂ of the decoupled

system are Ẑc =
√

ẐŶ
−1

= diag(Ẑc,1, Ẑc,2, . . . , Ẑc,N ) and

γ̂ =
√

ẐŶ = diag(γ̂1, γ̂2, . . . , γ̂N ), respectively.
This decoupling method has been extended to drivers and loads

in [8] and [13] for two and more interconnects. These extensions,
however, are only suitable for identical lines with identical drivers
and loads. Furthermore, the inductance matrix in [13] is obtained as
L = C−1/v2, where v is the speed of light in a dielectric. This
expression is valid only for a homogeneous dielectric with an ideal
ground for the current return path. With these constraints, the practical
generality of these models is greatly limited.

The ABCD matrices of the decoupled transmission lines are [5]
Âp = diag (cosh γ̂k), B̂p = diag (Ẑc,k sinh γ̂k), Ĉp =
diag (sinh γ̂k/Ẑc,k), and D̂p = diag (cosh γ̂k), where k =
1, 2, . . . , N . The boundary conditions of the N coupled lines are

V d = V in − RdId, (18)

Ir = sC lV r, (19)

where Rd and C l are, respectively, the driver resistance matrix and
load capacitance matrix, both of which are diagonal. The subscript
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Fig. 5. Geometric characteristics of a five line system.

d and r represent the driver side (or near end) and receiver side (or
far end), respectively. After some mathematical simplification, the
transfer function matrix is

H = (RdCp + sRdDpC l + Ap + sBpC l)
−1. (20)

The ABCD matrices of the coupled transmission lines are

Ap = MÂpM−1, (21)

Bp = MB̂pM T , (22)

Cp = (M T )−1ĈpM−1, (23)

Dp = (M T )−1ÂpM T . (24)

In general, M is a matrix function of s and cannot be expressed
in closed form [11]. Furthermore, the matrix inverse operation in
(20) does not permit an analytic expression (or an analytic low order
approximation) of the transfer function to be obtained. Conventional
inverse Laplace transform based methods [1]–[3], which assume a
step or ramp input, can no longer be used. The proposed model, which
assumes a periodic input signal, remains valid, since the solution of
(20) is only required at certain discrete frequencies (e.g., the harmonic
frequencies of the input signal), and can be solved numerically at each
frequency. When N is less than five, closed form solutions exist [13]
to calculate M and Q. For larger N , numerical methods have to
be used, and the computing complexity increases. When s = 0, H
becomes an identity matrix. Since no approximation is made in this
derivation, (20) is the exact transfer function of a coupled multi-
conductor system. Upon obtaining the transfer coefficient at each
harmonic frequency, the output signal can be determined in the same
way as in (5). In this multiconductor model, no constraints are made
on the interconnect parameters, making the solution of general use.

The physical geometry of a five line system is shown in Fig. 5.
Ground lines are placed on each side of the signal lines to provide
current return paths. Without loss of generality, capacitive coupling
is assumed to exist only between adjacent lines and R is assumed
to be diagonal. In this example, the driver and load are Rd =
diag(50, 30, 40, 50, 30) Ω, and C l = diag(50, 100, 80, 80, 50) fF,
respectively. Only one aggressor is considered and the multi-
aggressor problem can be solved by applying superposition. The
maximum crosstalk noise determined by the Fourier series-based
model is compared with SPICE in Table II. In the experiments,
line 1 is the aggressor, and all of the other lines are quiet victims
(represented as V2 to V5 in Table II). As shown in Table II, Fb3
provides limited accuracy in multi-conductor systems. This result
is not surprising, since the magnitude of the transfer function of
the victims is small at low frequencies (zero at DC). Thus, the
high frequency components are comparable or greater than the low
frequency components at the output, and are therefore not negligible.
By including one additional harmonic, Fb5 provides greater accuracy,
exhibiting an average error of 8.4%. Note that the proposed model
is more accurate for nearby victims.

IV. CONCLUSIONS

By exploiting a Fourier series representation of a typical on-chip
signal, an analytic time-domain solution for an RLC interconnect is

TABLE II
COMPARISON OF THE MAXIMUM CROSSTALK NOISE OF Fb3 AND Fb5

WITH SPICE SIMULATIONS. THE INPUT SIGNAL PARAMETERS ARE

T = 500 ps, τ = 50 ps, AND Vdd = 1.5 volts.

l Victim SPICE Fb3 Fb5
(mm) (mV) (mV) % Error (mV) % Error

V2 155.9 131.4 15.7 151.9 2.6
2 V3 67.6 48.9 27.7 69.8 3.3

V4 54.6 39.3 28.0 57.5 5.3
V5 40.6 26.8 34.0 40.9 0.7
V2 190.5 197.0 3.4 195.2 2.5

4 V3 68.8 73.4 6.7 62.0 9.9
V4 60.3 54.4 9.8 54.0 10.4
V5 48.2 38.4 20.3 34.7 28.0
V2 188.8 201.8 6.9 192.4 1.9

6 V3 110.6 79.6 28.0 99.0 10.5
V4 95.0 66.7 29.8 87.4 8.0
V5 74.0 43.9 40.7 60.9 17.7

shown to be an effective modeling strategy. Closed form solutions
of the 50% delay are presented. The model is applied to distributed
interconnect trees and multiple coupled interconnects, the transfer
functions of which are exact. Good accuracy is observed between
the proposed model and SPICE simulations.

REFERENCES

[1] J. A. Davis and J. D. Meindl, “Compact Distributed RLC Interconnect
Models–Part I: Single Line Transient, Time Delay, and Overshoot
Expressions,” IEEE Transactions on Electron Devices, Vol. 47, No.
11, pp. 2068–2077, November 2000.

[2] A. B. Kahng and S. Muddu, “An Analytical Delay Model for RLC
Interconnects,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, Vol. 16, No. 12, pp. 1507–1514, December
1997.

[3] K. Banerjee and A. Mehrotra, “Accurate Analysis of On-Chip Inductance
Effects and Implications for Optimal Repeater Insertion and Technology
Scaling,” Proceedings of the IEEE Symposium on VLSI Circuits, pp.
195–198, June 2001.

[4] K. S. Kundert, “Introduction to RF Simulation and Its Application,”
IEEE Journal of Solid-State Circuits, Vol. 34, No. 9, pp. 1298–1319,
September 1999.

[5] L. N. Dworsky, Modern Transmission Line Theory And Applications,
John Wiley & Sons, NY, 1979.

[6] A. B. Kahng and S. Muddu, “Optimal Equivalent Circuits for Intercon-
nect Delay Calculations Using Moments,” Proceedings of the European
Design Automation Conference, pp. 164–169, September 1994.

[7] K. T. Tang and E. G. Friedman, “Lumped Versus Distributed RC
and RLC Interconnect Impedance,” Proceedings of the IEEE Midwest
Symposium on Circuits and Systems, pp. 136–139, August 2000.

[8] L. Yin and L. He, “An Efficient Analytical Model of Coupled On-
Chip RLC Interconnects,” Proceedings of the IEEE Design Automation
Conference – Asian and South Pacific, pp. 385–390, January 2001.

[9] Y. Ismail, E. G. Friedman, and J. L. Neves, “Equivalent Elmore Delay
for RLC Trees,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 19, No. 1, pp. 83–97, January
2000.

[10] L. T. Pillage and R. A. Rohrer, “Asymptotic Waveform Evaluation for
Timing Analysis,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 9, No. 4, pp. 352–366, April 1990.

[11] S. Lin and E. Kuh, “Transient Simulation of Lossy Interconnects Based
on the Recursive Convolution Formulation,” IEEE Transactions on
Circuits and System, Vol. 39, No. 11, pp. 879–892, November 1992.

[12] F. Romeo and M. Santomauro, “Time-Domain Simulation of N Coupled
Transmission Lines,” IEEE Transactions on Microwave Theory and
Technology, Vol. 35, No. 2, pp. 131–137, February 1987.

[13] J. Chen and L. He, “A Decoupling Method for Analysis of Coupled
RLC Interconnects,” Proceedings of the ACM Great Lakes Symposium
on VLSI, pp. 41–46, April 2002.

4129


	MAIN MENU
	Front Matter
	Table of Contents
	Session Chair Index
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

