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Abstract— The size of on-chip power distribution networks
is increasing with each technology generation. Accurate and
computationally efficient analysis of these power distribution
networks has therefore become increasingly challenging. High
performance power distribution networks are generally imple-
mented as a uniform mesh structure. The uniformity of these
power distribution networks can be exploited for fast, accurate
nodal analysis. A closed form expression is presented here for
determining the voltage at any arbitrary node in a power
distribution network. The error of the proposed method as
compared with SPICE is less than 0.2%. Since no iterations
are required, the proposed method significantly outperforms
previously proposed power grid analysis techniques in terms of
computational speed while exhibiting low error.

I. INTRODUCTION

The design of power distribution networks is highly chal-
lenging with each technology generation. Reduced supply
voltages and increased current demands have placed stringent
constraints on the design of high performance power distri-
bution networks [1]–[3]. Due to the resistive nature of the
power distribution network, the supply voltage delivered to the
load circuitry is lower than the supply voltage generated at the
output of the power supply. This voltage difference depends
upon both the characteristics of the power distribution network
and the current demand of the local load circuitry. The voltage
loss within the power distribution network degrades circuit
performance in terms of increased delay, delay uncertainty,
and signal skew [1].

Power distribution networks are generally modeled as a
uniform grid structure. In a uniform grid structure, the effective
impedance between any two arbitrary nodes depends upon the
distance between the two nodes and the impedance of the
power grid. The effective resistance between any two nodes
in a uniform grid structure has been considered by Venezian
in [4], where he formulated the resistance between any two
nodes in an infinite resistive grid. Since the voltage drop
at a node is a function of the resistance between that node
and the power supply, the effective resistance considering the
power supply voltage and load current characteristics supplies
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sufficient information to determine the voltage drop at any
particular node. In this paper, closed form expressions are
provided for fast P/G network analysis by exploiting this
effective resistance concept.

P/G distribution networks within modern integrated circuits
contain millions of nodes. Since the P/G network is a linear
network, formulation of the analysis process is straightforward.
The solution of this linear system, however, is infeasible due
to the large grid size. If the power distribution system has
N rows and N columns, the resulting conductance matrix to
solve this power distribution network is N2xN2. The size of
the conductance matrix therefore increases quadratically with
increasing power grid size. Due to the large size of these power
distribution networks, traditional linear solvers are incapable
of solving this large system in reasonable time [5]–[7].

Several methods have been proposed for efficient power grid
analysis; 1) reduce the size of the linear system, 2) iteratively
solve the linear system, and 3) apply advanced linear algebraic
techniques to exploit the sparse nature of the power grid. Con-
ventional interconnect model order reduction techniques [8]
are applicable for tree structured interconnects; however, these
structures are inappropriate for power distribution networks
which are generally mesh structured. The power grid can be
reduced to a simpler structure where this coarse structure is
later mapped into the original grid [3]. The power grid has
been optimized to minimize the IR drop at the grid center
in [9]. In [10], the power grid is partitioned into a number
of smaller parts where each partition is analyzed separately.
Random walk techniques are used to analyze the power grid
in [5] to iteratively solve the IR drop problem without comput-
ing large matrix operations. In [11], the power supply network
is analyzed using stochastic voltage prediction. Two efficient
iterative algorithms are proposed in [6] to compute the IR drop
within a power grid. Although these algorithms are faster than
conventional linear solvers, significant computational time is
required to iteratively solve these algorithms. A closed form
expression would solve this problem.

Uniform current loads are generally assumed in power
distribution networks to exploit symmetry in a linear system.
In [12], an IR drop analysis is described for a power grid
structure with semi-uniform current loads (e.g., uniform load
currents are assumed within each quadrant of the distribution
network). To the authors’ knowledge, no closed form expres-
sions exist that describe the voltage drop at any node within a
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Fig. 1. Infinite resistive mesh structure to model a power distribution network.

uniform power distribution network with non-uniform current
loads.

In this paper, closed form expressions for the IR drop
within a uniform power distribution grid with non-uniform
current loads are provided. The proposed method exploits the
impedance characteristics of the power distribution network
between the active circuit blocks to provide these closed form
expressions. Since no iterations are required to compute the
proposed closed form expressions at any node, the proposed
algorithm outperforms previously proposed techniques with
low error.

The rest of the paper is organized as follows. The power
grid model used in the analysis is described and the effective
resistance concept is explained in Section II. In Section III,
the proposed algorithms are reviewed. Simulation results are
provided in Section IV to evaluate the validity of the proposed
algorithms. Finally, the paper is concluded in Section V.

II. BACKGROUND

Power distribution networks are generally modeled as uni-
form grid structures. Due to the large size, the power grid
can be modeled as an infinite number of identical resistors
structured to form a square grid network. Depending upon
the grid structure and the operating frequency, inductances
in series with resistors and decoupling and intrinsic device
capacitances can be included within the power grid model [2].
Since only the DC voltage drop is of concern in this paper, the
power grid is modeled in this paper as a purely resistive grid
[6], as depicted in Fig. 1. All of the resistive sections have a
resistance R. Due to the large power grid size (i.e., tens of
thousands of nodes), the grid structure is treated as infinite.

Venezian in [4] considers the effective resistance between
any two arbitrary nodes within a uniform infinite grid structure
by exploiting the principle of superposition. Venezian devel-
oped an exact solution for the effective resistance between any
two nodes, N1(x1, y1) and N2(x2, y2), in an infinite grid as

Rm,n =
∫ π

0

(2 − e−|m|αcos(nβ) − e−|n|αcos(mβ))
sinh(α)

dβ.

(1)

TABLE I

VALIDITY OF THE effective resistance MODEL IN [4].

R1,0 R1,1 R3,4 R5,0 R10,10

Exact solution (1) 0.5 0.636 1.028 1.026 1.358
Approximation (2) 0.515 0.625 1.027 1.027 1.358
Error (%) 3 1.8 0.1 0.1 0

Venezian also provides a closed form approximation1 for (1)
as

Rm,n =
1
2π

∗ ln(n2 + m2) + 0.51469, (2)

where
m = |x1 − x2| and n = |y1 − y2|. (3)

α and β are used to rewrite Kirchhoff’s node equations as
difference equations. The interested reader is urged to read [4]
for a complete explanation.

The error with approximation (2) is less than 3% as
compared to the exact solution in (1). A few examples that
demonstrate the validity of (2) are listed in Table I. As
tabulated in Table I, the error quickly approaches zero with
increasing distance between two nodes.

III. CLOSED FORM EXPRESSIONS FOR NODAL ANALYSIS

IN A UNIFORM POWER GRID

Two algorithms are proposed in this paper to analyze
the voltage at any arbitrary node within a uniform power
distribution network:

• one power supply and one current load placed arbitrarily
within the distribution network.

• one power supply and multiple current loads placed
arbitrarily within the distribution network.

Since the distance between two nodes does not affect the com-
putational complexity of determining the effective resistance,
the computational complexity of the proposed algorithms
is independent of the size of the power grid. A primary
advantage of the proposed algorithms is that these algorithms
can determine the voltage at any node without determining the
voltage at adjacent nodes which may not be of interest.

A. One Power Supply and One Load Circuit

In this section, the voltage at an arbitrary node Node1,
shown in Fig. 2a, is determined when one power supply and
one current load exist within the power grid. The power grid
model shown in Fig. 2a reduces this system to an effective
resistance model, as illustrated in Fig. 2b. The effective
resistance between Nsupply and Node1, Node1 and Nload,
and Nsupply and Nload are denoted as Rsn, Rnl, and Rsl,
respectively. These resistances are determined from (2). The
voltage at Nload is

Vload = Vsupply − Iload ∗ Rsl. (4)

After determining the voltage at Nload (see Fig. 2b), the
voltage at Node1 can be found as follows. Assume that the

1The formula has been slightly modified from the original paper to produce
more accurate results.
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Fig. 2. Power distribution grid model a) one power supply connected at
(0,0) and one current load connected at (1,-2) and b) corresponding reduced
effective resistance model.

load current Iload flows from Nsupply to Nload along the path
Rsn - Node1 - Rnl. The voltage at Node1 VNode1 is

VNode1 = Vsupply − Iload ∗ Rsn (5)

or
VNode1 = Vload + Iload ∗ Rnl. (6)

Since the voltage at Node1 can be calculated with either (5)
or (6), the arithmetic mean of the voltages found by (5) and (6)
lowers the error. The voltage at Node1 is therefore

VNode1 = [Vsupply + Vload + Iload ∗ (Rnl − Rsn)]/2. (7)

Substituting (4) into (7), the voltage at Node1 is

VNode1 = [2 ∗ Vsupply + Iload ∗ (Rnl − Rsn − Rsl)]/2. (8)

An algorithm to determine the voltage at any arbitrary node
within a uniform power grid with one current load and one
voltage supply is summarized in Fig. 3 (Algorithm I).

One Power Supply and One Current Load
1. Given: Supply voltage (Vsupply), load current (Iload).

Locations of voltage supply (Nsupply),
current load (Nload), and Node1.

2. Calculate the effective resistances, (2), between
a) Nsupply and Node1, Rsn

b) Node1 and Nload, Rnl

c) Nsupply and Nload, Rsl.
3. Calculate the voltage at Nload, (4).
4. Calculate the voltage at Node1, VNode1 , (7).

Fig. 3. Algorithm I. Voltage at an arbitrary node within a power grid with
one power supply and one current load.

B. One Power Supply and Multiple Load Circuits

In this section, the voltage at an arbitrary node within a
power distribution network is determined when one power
supply and multiple current loads exist within a grid, as shown
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Fig. 4. Model of power distribution grid when one power supply is connected
to node (1,0) and multiple current loads model the load circuits connected at
various nodes within the power distribution grid.

in Fig. 4. Since the current loads are assumed to be ideal
current sources, the principle of superposition is applied to
provide a closed form expression for the IR voltage drop.
Superposition is possible since linear current loads are used to
model the active circuit structures. By applying superposition
to each individual current load, the voltage at Node1 is

VNode1 = Vsupply

− 1
2

n∑
i=1

[Iload(i) ∗ (Rsn + Rsl(i) − Rnl(i))], (9)

where n is the number of current loads, Iload(i) is the ith

current load, Rsl(i) is the effective resistance between Nsupply

and the ith current load, and Rnl(i) is the effective resistance
between Node1 and the ith current load within the power grid.
An algorithm to determine the voltage at any arbitrary node
with one voltage supply and multiple current loads connected
to a power distribution grid is provided in Fig. 5 (Algorithm
II).

One Power Supply and Multiple Current Loads
1. Given: Supply voltage (Vsupply), load currents (Iload(i)).

Locations of voltage supply (Nsupply),
current loads (Nload(i)), and Node1.

2. for each current load, Iload(i), do
3. Remove all other Iload(k) where k �=i,
4. Calculate the effective resistances, (2), between

a) Nsupply and Node1, Rsn

b) Node1 and Nload(i), Rnl(i)

c) Nsupply and Nload(i), Rsl(i).
5. Calculate the voltage at Nload(i), (4).
6. Calculate the voltage at Node1, Vnode1 , (9).

Fig. 5. Algorithm II. Voltage at arbitrary node Node1 within a power grid
with one power supply and multiple current loads, as shown in Fig 4.
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TABLE II

ERROR OF ALGORITHM I AS COMPARED TO SPICE. THE VOLTAGE

SUPPLY IS CONNECTED AT N3,3 (THE LIGHT-GREY BOX) AND THE LOAD

DEVICE IS CONNECTED AT N5,4 (THE DARK-GREY BOX). THE

MAXIMUM ERROR IS LESS THAN 0.2% OF THE SUPPLY VOLTAGE.

1 2 3 4 5 6 7 8

1 -0.12 -0.05 0.46 -0.27 -0.49 -0.26 -0.125 -0.15
2 -0.09 -0.55 0.79 0.152 -0.68 -0.37 -0.554 -0.14
3 0.33 0.62 0 1.13 -0.52 0.52 0 -0.26
4 -0.31 -0.83 0.21 -1.44 -0.31 -0.93 -0.64 -0.41
5 -0.25 -0.27 0.37 0.24 -1.10 0.24 -0.22 -0.38
6 -0.18 -0.04 0.18 -0.04 -0.77 -0.25 -0.18 -0.30
7 -0.13 -0.01 0 -0.23 -0.50 -0.36 -0.28 -0.30
8 -0.14 -0.04 -0.08 -0.27 -0.32 -0.34 -0.34 -0.34

IV. EXPERIMENTAL RESULTS

The validity of the proposed nodal voltage analysis in a
uniform power distribution grid is presented in this section.
The resistance between adjacent nodes is 1 Ω and the supply
voltage is 1 volt. The active devices are modeled as ideal
current loads. The current loads and the voltage supplies are
arbitrarily placed within the uniform power grid.

The validity of the proposed closed form expression for one
voltage supply and one current load is analyzed with a 1 volt
supply connected at N3,3 and the load sinking 100 mA at
N5,4. The maximum error is 1.44 mV, less than 0.2% of the
supply voltage. The error of the corresponding node voltages
as compared to SPICE is listed in Table II. The light-grey box
is the supply node and the dark-grey box is the node where
the current load is connected.

The nodal voltage analysis of a power grid with one voltage
supply and multiple current loads is evaluated when the
voltage supply is connected to N4,4 and four current loads
are randomly placed at N1,7, N2,3, N6,6, and N2,7. In this
case, each load sinks 25 mA from the power grid. The error
of Algorithm II as compared to SPICE for a 50×50 uniform
power grid is listed in Table III. The maximum error of the
proposed algorithm as compared to SPICE is 1.1 mV (less
than 0.2%).

V. CONCLUSIONS

Closed form expressions for the analysis of large uniform
power grids are provided in this paper. Two algorithms are
described for fast and accurate power grid analysis of modern
high complexity integrated circuits. Algorithm I determines
the voltage drop with one power supply and one current load
arbitrarily placed within the distribution grid. Algorithm II is
used for nodal analysis when one power supply and multiple
current loads exist within the power grid. The maximum
error of both algorithms is less than 0.2% of the power
supply voltage. Since the proposed algorithms use closed form
expressions rather than iteratively determining the voltage, the
computational runtime is significantly smaller than previously
proposed power grid analysis methods while exhibiting low

TABLE III

ERROR OF ALGORITHM II AS COMPARED TO SPICE. THE VOLTAGE

SUPPLY IS CONNECTED AT N4,4 (THE LIGHT-GREY BOX) AND THE LOAD

DEVICES ARE CONNECTED AT N1,7 , N2,3 , N6,6 , AND N2,7 (THE

DARK-GREY BOXES). THE MAXIMUM ERROR IS LESS THAN 0.2% OF

THE SUPPLY VOLTAGE.

1 2 3 4 5 6 7 8

1 -0.17 -0.24 -0.06 0.07 -0.16 -0.38 -0.19 -0.30
2 0.01 -0.40 -0.06 0.32 -0.20 -0.14 -0.36 -0.03
3 -0.23 -0.25 -0.80 0.60 -0.64 -0.25 -0.18 -0.02
4 0.28 0.11 0.76 0 0.69 0.18 0.05 0.02
5 0.01 -0.40 -0.64 0.75 -0.50 -0.42 -0.06 -0.04
6 0 -0.49 -0.08 0.28 -0.39 -0.31 -0.36 -0.23
7 -0.40 -0.25 -0.32 0.12 -0.04 -0.45 -0.07 -0.13
8 -0.05 -0.35 1.11 0.08 -0.02 -0.29 -0.16 -0.17

error. Another advantage is that the proposed methods compute
the voltage at any node within a power grid without determin-
ing the voltage at adjacent nodes. The proposed algorithm can
therefore be applied to localized power grid analysis.
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