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a b s t r a c t

Closed-form expressions and related algorithms for fast power grid analysis are proposed in this paper.

Four algorithms to determine the IR voltage drop at an arbitrary node are described when voltage

supplies and current loads are non-uniformly distributed throughout a power grid. Two techniques are

used to determine the effective impedance in a non-uniform and semi-uniform power grid. An effective

resistance model is proposed for semi-uniform power grids. The principle of spatial locality is exploited

to accelerate the proposed power grid analysis process. Since no iterations are required for the

proposed IR drop analysis, the proposed algorithms are over 60 and two times faster for smaller power

grids composed of less than five million nodes and over 175 and three times faster for larger power

grids composed of more than 25 million nodes as compared to, respectively, the random walk and

second order iterative methods. The proposed method exhibits less than 0.3% error.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

With reduced power supply levels in modern microprocessors,
IR drop analysis has become a crucial part of the circuit design
process since the performance of each individual circuit block
depends upon the voltage within the power distribution network
[1–3]. Efficient analysis of the IR drops, however, is a difficult task
due to the large physical dimensions of the power distribution
network and the complex global interactions among the loads.

The IR drop analysis process can be formulated as a linear
system with a conductance matrix modeling the power grid
impedance. This matrix is solved by assigning a source vector
for the voltage sources and another vector for the current loads.
Although the formulation of the IR drop analysis process is
straightforward, the solution of this linear system is infeasible
for a typical power distribution network due to the large size. For
example, if the power distribution system is composed of N rows
and N columns, the total number of nodes is N2, and the resulting
conductance matrix to solve this power distribution network
is N2

�N2 [4]. The size of the conductance matrix therefore
increases quadratically with increasing size of the power network.
Due to the large size of power distribution networks in modern
high complexity circuits, traditional linear solvers are incapable of
solving this large linear system in reasonable time.

Several methods have been proposed for efficient power grid
analysis; (1) reduce the size of the linear system, (2) iteratively
ll rights reserved.

),
solve the linear system, and (3) apply advanced linear algebraic
techniques to exploit the sparse nature of the power grid.
Conventional interconnect model order reduction techniques [5]
are applicable for tree structured interconnects; however, these
methods are inappropriate for mesh structured power distribu-
tion networks. The power grid can be reduced to a simpler
structure where this coarse structure is later mapped into the
original grid [2]. The power grid is optimized to minimize the IR

drop at the grid center in [6]. In [7], the power grid is partitioned
into a number of smaller parts where each partition is analyzed
separately. Random walk techniques are used to analyze a power grid
in [8] to iteratively solve the IR drop problem without computing
large matrix operations. In [9], the power supply network is analyzed
using stochastic voltage prediction. Efficient first and second order
iterative algorithms are proposed, respectively, in [4,10]. Although
these algorithms are faster than conventional linear solvers, sig-
nificant computational time is required to iteratively apply these
algorithms. An accurate closed-form expression would effectively
solve this problem.

Although the interactions between the power supplies and
load circuitry occur globally, these interactions are more promi-
nent among components in close proximity [1,11–13]. Within a
single integrated circuit (IC), a power supply connection in a
multi-voltage system on one side of an IC has little effect on a
circuit block at the other side of the IC. Alternatively, current
provided by a power network is generally distributed to nearby
circuit blocks. This phenomenon is due to the principle of spatial
locality [11]. With this principle, a power grid can be partitioned
to enhance the power grid analysis process.

Uniform current loads are generally assumed in power dis-
tribution networks to exploit symmetry in a linear system. In [14],
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an IR drop analysis algorithm is described for a power grid
structure with semi-uniform current loads (e.g., uniform load
currents are assumed within each quadrant of the distribution
network). Closed-form expressions for the maximum IR drop
are described in [15], assuming a uniform current distribution.
To the authors’ knowledge, the results published here are the first
closed-form expressions that describe the voltage drop at any
node in a power distribution network with non-uniform current
loads and non-uniform voltage supplies.

In this paper, closed-form expressions for estimating the IR

drop in a power grid with non-uniform current loads and non-
uniform voltage supplies are provided. The proposed method
exploits the impedance characteristics of the power distribution
network and the effective impedance among the active circuit
blocks to provide these closed-form expressions. The effective
resistance between two nodes in an infinite uniform resistive
network and non-uniform finite resistive network has been
considered by, respectively, Venezian [16] and Wu [17]. In this
paper, the closed-form expression in [16] is generalized to
consider semi-uniform power grids where the horizontal and
vertical resistances are different. Since no iterations are required
to compute the IR drop at any particular node, the proposed
algorithm outperforms previously proposed techniques with small
error. The principle of locality is also applied in this algorithm to
accelerate the analysis process.

The rest of the paper is organized as follows. The power
grid model is described and the effective resistance concept is
explained in Section 2. In Section 3, the proposed algorithm is
reviewed for different conditions. The principle of spatial locality
is further explained and exploited to accelerate the proposed
power grid analysis process in Section 4. Experimental results are
provided in Section 5. The paper is summarized in Section 6,
followed by a derivation of the closed-form expression for the
effective resistance in the Appendix.
2. Background

In this section, closed-form expressions for the IR voltage
drop are described that exploit the distance between the voltage
sources and current loads. The IR voltage drop at an arbitrary
node depends upon the distance among the voltage sources,
current loads, and analysis nodes. These distances are incorpo-
rated into the closed-form expressions by the concept of an
effective resistance since the effective resistance between any
two nodes in a uniform grid structure depends upon the eucli-
dean distance between these two nodes and the power grid
resistance. The concept of an effective resistance supports the
development of closed-form expressions for use within the power
grid analysis process.

A two layer power/ground network is shown in Fig. 1a where
the dark and light grey lines illustrate, respectively, the power
Fig. 1. Two layer orthogonal metal lines connected with vias; (a) two layer power and

respectively, with dark and light grey, (b) a two layer power distribution network, and
and ground lines. The power network and corresponding circuit
model are shown, respectively, in Fig. 1b and c. Since this paper
focuses on resistive voltage drop analysis, only a resistive network
is considered although inductance could easily be included.
Effective resistance models for two different power grids are
considered in this paper. First, the effective resistance in a non-
uniform power grid [17] is considered by utilizing Green’s func-
tion. The effective resistance between nodes m and n is

Rm,n ¼
XN

i ¼ 2

1

li
9cim�cin9, ð1Þ

where ki is the nonzero eigenvalues and wi ¼ ðci1
,ci2

, . . . ,ciN
Þ are

the orthonormal eigenvectors of the corresponding Kirchhoff matrix.
When the power distribution model consists of vertical and

horizontal lines with, respectively, resistances rv and rh, the
effective resistance is described by Venezian in [16] when rv¼rh.
In this work, a more general effective resistance model is proposed
where rh ¼ knrv, as illustrated in Fig. 1c. The assumption rh ¼ knrv is
a reasonable approximation in modern integrated circuits during
localized analysis of power grids [18–20].

An exact solution for the effective resistance between any two
points, N1ðx1,y1Þ and N2ðx2,y2Þ, is

Rx,y ¼
kr

p

Z p

0

2�e�9x9a cos yb
sinh a db ð2Þ

and the closed-form approximation for (2) is

Rx,y=r¼

ffiffiffi
k
p

2p nlnðx2þky2
Þþ3:44388�0:0033425k�

0:1975kðk�1Þ

p ,

ð3Þ

where

x¼ 9x1�x29, ð4Þ

y¼ 9y1�y29, ð5Þ

rv ¼ r, ð6Þ

rh ¼ knr: ð7Þ

a and b are used to rewrite Kirchhoff’s node equations as
difference equations satisfying kþ1¼ k cos bþcosh a and r is the
unit resistance. A derivation of the closed-form approximation of the
effective resistance is provided in the Appendix.

While (1) provides an exact solution for the effective resis-
tance in a non-uniform power grid, (3) provides an efficient
approximate solution for a semi-uniform power grid. The error
of (3) is less than 3%, as listed in Table 1 [16]. A few examples that
demonstrate the validity of (3) are listed in Table 1 when k¼1.
The error quickly approaches zero with increasing distance between
two points. For instance, the average error when determining all of
the resistances in a 50�50 grid is less than 0.01%. Power grids
in modern integrated circuits generally exhibit a locally uniform,
globally non-uniform structure. Eq. (3) can be used when the power
rvrh

(1,0) (2,0)(−2,0)

(1,1) (2,1)(0,1)

(0,2)(−2,2)

(0,0)

(2,2)(1,2)(−1,2)

(−1,1)

(−1,0)

(2,−1)(1,−1)(0,−1)(−1,−1)(−2,−1)

(2,−2)(1,−2)(0,−2)(−1,−2)(−2,−2)

ground distribution networks where the power and ground lines are illustrated,

(c) a resistive mesh model of the power distribution network.
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grid exhibits a semi-uniform structure to reduce the computational
time of the power grid analysis process. Alternatively, when the
power grid exhibits a non-uniform structure, (1) can be used to
determine the effective resistance. The runtime of the proposed
algorithm is, however, significantly slower for non-uniform power
grids. Since a partitioning based approach is utilized in this paper,
the runtime can be improved by utilizing (3) for uniform partitions
and (1) for non-uniform partitions.
3. Analytic IR drop analysis

Four different algorithms are described in this section to
determine the IR drop at an arbitrary node within a uniform
power grid:
�

Tab
Val

E

A

E

Fig
one
Algorithm I: One power supply and one current load placed
arbitrarily within the distribution network.

�
 Algorithm II: One power supply and multiple current loads

placed arbitrarily within the distribution network.

�
 Algorithm III: Multiple power supplies and one current load

placed arbitrarily within the distribution network.
le 1
idity of the effective resistance model.

R1,0 R1,1 R3,4 R5,0 R10,10

xact solution (2) 0.5 0.636 1.028 1.026 1.358

pproximation (3) 0.515 0.625 1.027 1.027 1.358

rror (%) 3 1.8 0.1 0.1 0

Vsupply

Vsupply

Vsupply

Vsupply

Iload

Vsupply

Iload

V

V

. 2. Simplified power grid models with (a) one voltage source and one current load,

current load, and (d) multiple voltage sources and multiple current loads.
�
 Algorithm IV: Multiple power supplies and multiple current
loads placed arbitrarily within the distribution network.

A simplified model to demonstrate these four cases is illu-
strated in Fig. 2. The voltage supplies and current loads are
illustrated as Vsupply and Iload. Algorithm I is the most basic algorithm
and is therefore used to explain the other three algorithms. Algo-
rithm IV is the complete algorithm which can be used in the analysis
of IR drops within practical power grids. The distance between two
nodes does not affect the computational complexity of determining
the effective resistance between these nodes. The computational
complexity of the proposed algorithms to determine the IR drop at
an arbitrary node does not therefore depend upon the size of the
power grid.

3.1. One power supply and one current load

In this section, the IR voltage drop at an arbitrary node Node1,
shown in Fig. 3a, is determined when one power supply and one
current load exist within the power grid. The power grid model,
shown in Fig. 3a, reduces to an effective resistance model to
determine the voltages at Nload and Node1, as illustrated, respec-
tively, in Fig. 3b and c. The effective resistance between Nsupply

and Node1, Node1 and Nload, and Nsupply and Nload is denoted,
respectively, as Rsn, Rnl, and Rsl. These effective resistances are
determined with either (1) or (3) depending upon the power grid
characteristics, as discussed in Section 2.

The voltage at Nload is

Vload ¼ Vsupply�IloadnRsl: ð8Þ

After determining the voltage at Nload (see Fig. 3a), the voltage at
Node1 can be found using the principle of superposition for the
Vsupply

Iload

Iload

Iload

Iloadsupply

Iload

IloadIload

supply

(b) one voltage source and multiple current loads, (c) multiple voltage sources and



Iload

Node1

Nload

Nsupply

Nload

Nsupply Node1

Rnl

Rsn

Nsupply NloadRsl

(2,−2)(1,−2)(0,−2)(−1,−2)

(2,−1)(1,−1)(0,−1)(−1,−1)

(2,0)(1,0)(0,0)(−1,0)

Vsupply

i
i

Fig. 3. Power distribution grid model: (a) one power supply connected at (0,0) and one current load connected at (1,�2), (b) corresponding reduced effective resistance

model between the power supply and the load, and (c) the effective resistance model to determine the voltage at an arbitrary node Node1 within the power grid.

Fig. 4. Algorithm I. IR voltage drop at an arbitrary node within a power grid with

one power supply and one current load.

Vsupply

Iload_1
Iload_2

Iload_3 Iload_4

Iload_5
Iload_6

Iload_7
Iload_8

Iload_9 Iload_11Iload_10

Node1

(2,2)(1,2)

(2,1)(1,1)

(2,0)(1,0)

(2,−1)(1,−1)

(2,−2)(1,−2)

(0,2)

(0,1)

(0,0)

(0,−1)

(0,−2)

(−1,2)

(−1,1)

(−1,0)

(−1,−1)

(−1,−2)

(−2,2)

(−2,1)

(−2,0)

(−2,−1)

(−2,−2)

Fig. 5. Model of power distribution grid when one power supply is connected to

node (1,0) and multiple current loads model the load circuits connected at various

nodes within the power distribution grid.
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effective resistance model illustrated in Fig. 3c

VNode1
¼ Vsupplyn

Rnl

RsnþRnl
þVloadn

Rsn

RsnþRnl
: ð9Þ

Assuming the current i, depicted in Fig. 3, is

i¼
Vsupply�Vload

RsnþRnl
ð10Þ

and substituting (10) into (9), the voltage at Node1 is

VNode1
¼ ½VsupplyþVloadþ inðRnl�RsnÞ�=2: ð11Þ

Assuming i¼ Iload and substituting (8) into (11), the voltage at
Node1 is

VNode1
¼ ½2nVsupplyþ IloadnðRnl�Rsn�RslÞ�=2: ð12Þ

The IR voltage drop at Node1 is equal to Vsupply�VNode1
. The IR

voltage drop can therefore be written as

IRNode1
¼ IloadnðRsnþRsl�RnlÞ=2: ð13Þ

Pseudo-code of the algorithm to determine the voltage at an
arbitrary node within a power grid with one current load and one
power supply is summarized in Fig. 4 (Algorithm I).

3.2. One power supply and multiple current loads

In this section, the IR voltage drop at an arbitrary node within
a power distribution network is determined when one power
supply and multiple current loads exist within a grid (see Fig. 5).
Since the current loads are assumed to be ideal current sources,
the principle of superposition is applied to provide a closed-form
expression for the IR voltage drop. Superposition is possible since
linear current loads are used to model the active circuit struc-
tures. By applying superposition for each individual current load,
the voltage at Node1 can be formulated as

VNode1
¼ Vsupply�

1

2

Xn

i ¼ 1

½IloadðiÞnðRsnþRslðiÞ�RnlðiÞÞ� ð14Þ

and the corresponding IR voltage drop at Node1 is

IRNode1
¼

1

2

Xn

i ¼ 1

½IloadðiÞnðRsnþRslðiÞ�RnlðiÞÞ�, ð15Þ
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where n is the number of current loads, IloadðiÞ is the ith current load,
RslðiÞ is the effective resistance between the Nsupply and the ith current
load, and RnlðiÞ is the effective resistance between Node1 and the ith
current load within the power grid. Pseudo-code of the algorithm to
determine the IR voltage drop at an arbitrary node when one voltage
supply and multiple current loads are connected to a power
distribution grid is provided in Fig. 6 (Algorithm II).
3.3. Multiple power supplies and one current load

In this section, the IR voltage drop at an arbitrary node within a
power distribution network is determined for multiple voltage
sources and one current load, as shown in Fig. 7a. In Section 3.2,
superposition is used to analyze the voltage drop contribution to
Node1 from each individual current load. In a system with multiple
voltage supplies, superposition cannot be applied in a straightfor-
ward manner to individually consider each voltage supply because
the voltage supplies are replaced with short circuit equivalents
whereas the current loads are replaced with open circuit equivalents.

The voltage supplies are replaced with equivalent current sources
to apply superposition. The current that each individual voltage
source contributes to the load depends upon the effective resistance
Fig. 6. Algorithm II. IR voltage drop at arbitrary node Node1 within a power grid

with one power supply and multiple current loads, as shown in Fig. 5.

Fig. 7. Power distribution grid model: (a) multiple power supplies are connected to sev

sources are replaced with an equivalent current source.
between NsupplyðiÞ and Nload. Since the location of the voltage supplies
and the current load is known a priori, the current delivered by these
equivalent current supplies is approximately

IsourceðiÞ ¼ Iloadn
GiPn

i ¼ 1 Gi

, ð16Þ

where IsourceðiÞ is the equivalent current source to replace the ith
voltage supply and Gi is the equivalent conductance between the ith
voltage supply and the current load. After all but one of the voltage
supplies are replaced with equivalent current sources, as illustrated
in Fig. 7b, the IR voltage drop problem becomes similar to the
problem discussed in Section 3.2 where the power grid has one
voltage supply and multiple current loads. The primary difference is
that the equivalent current sources supply current to the distribution
grid whereas, as described in Section 3.2, all of the current loads
demand current from the power grid.

The IR voltage drop at an arbitrary node Node1 in the power
grid with multiple voltage sources and one current load is

IRNode1
¼ IloadnðRsnð1Þ þRslð1Þ�RnlÞ=2

�
1

2

Xn

i ¼ 2

½IsupplyðiÞnðRsnð1Þ þRslðiÞ�RnlðiÞÞ� ð17Þ

and the voltage at Node1 is

VNode1
¼ Vsupplyð1Þ�IloadnðRsnð1Þ þRslð1Þ�RnlÞ=2

þ
1

2

Xn

i ¼ 2

½IsupplyðiÞnðRsnð1Þ þRslðiÞ�RnlðiÞÞ�: ð18Þ

Pseudo-code of the algorithm to determine the IR voltage drop at an
arbitrary node within a power grid with multiple voltage supplies
and one current load is summarized in Fig. 8 (Algorithm III).

3.4. Multiple power supplies and multiple current loads

In this section, the IR voltage drop at an arbitrary node within a
power distribution network is determined when multiple voltage
supplies and multiple current loads exist, as shown in Fig. 9a. To
determine the IR voltage drop for this system, superposition is
applied in two steps. First, the current that each individual voltage
eral nodes and a current load is connected at (0,0) and (b) all but one of the voltage
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supply contributes to each individual current load is determined by
removing all but one of the current loads and applying (16) to
determine the current contribution of each voltage supply to each
current load. After determining the individual current contributions,
the equivalent current source of a voltage supply is

IsourceðiÞ ¼
Xm

j ¼ 1

Isourceði,jÞ, ð19Þ

where m is the number of current loads, IsourceðiÞ is the equivalent
current source of the ith voltage supply, and Isourceði,jÞ is the current
contribution of the ith voltage supply to the jth current load. Since
the total current sourced by the voltage supplies is equal to the total
current sunk by the current sources, the following expression is
Fig. 8. Algorithm III. IR voltage drop at arbitrary node Node1 in a power grid with

multiple power supplies and one current load, as shown in Fig. 7(a).

Fig. 9. Power distribution grid model (a) multiple power supplies and current loads are

with an equivalent current source.
satisfied:

Xn

i ¼ 1

IsourceðiÞ ¼
Xm

j ¼ 1

IloadðjÞ: ð20Þ

All but one of the voltage supplies are replaced with an equivalent
current source, as illustrated in Fig. 9b. The IR voltage drop at an
arbitrary node within a power distribution network is

IRNode1
¼

1

2

Xm

i ¼ 1

½IloadðiÞnðRsnð1Þ þRslð1Þ�RnlÞ�

�
1

2

Xn

i ¼ 2

½IsupplyðiÞnðRsnð1Þ þRslðiÞ�RnlðiÞÞ� ð21Þ

and the corresponding voltage at Node1 is

VNode1
¼ Vsupplyð1Þ�

1

2

Xm

i ¼ 1

½IloadðiÞnðRsnð1Þ þRslð1Þ�RnlÞ�

þ
1

2

Xn

i ¼ 2

½IsupplyðiÞnðRsnð1Þ þRslðiÞ�RnlðiÞÞ�, ð22Þ

where m is the number of current loads and n is the number of
voltage supplies. Pseudo-code of the algorithm to determine the IR

voltage drop at an arbitrary node for multiple voltage supplies and
current loads is provided in Fig. 10 (Algorithm IV).
4. Locality in power grid analysis

Practical power grids in high performance integrated circuits
can be treated as locally uniform, globally non-uniform resistive
meshes. To apply these algorithms to the analysis of practical power
grids, the principle of spatial locality [1,11–13,21] is applied. This
principle for a resistive power grid is described in Section 4.1. The
effect of utilizing spatial locality on the power grid analysis process
is explained in Section 4.2. In Section 4.3, the principle of spatial
locality is exploited and integrated into this power grid analysis
method. The advantages of utilizing spatial locality in the power grid
connected to several nodes and (b) all but one of the voltage sources are replaced



Fig. 10. Algorithm IV. IR voltage drop at an arbitrary node Node1 within a power

grid with multiple power supplies and current loads, as shown in Fig. 9a.

1   ring

2    ring

3   ring

Power supply connection 

Current load 

st

nd

rd

L1

L2

V1
V2 V3 V4 V5 V6

V7 V8 V9 V10 V11 V12

V13 V14 V15 V16 V17 V18

V19
V20 V22 V23 V24

V25 V26 V27 V28 V29 V30

V31 V32 V33 V34 V35 V36

V21

Fig. 11. A portion of a typical power grid with C4 bumps illustrated with light dots

and load devices with dark dots. Most of the current sunk by the load devices, L1

and L2, is provided by the supply connections forming the first ring. Power supply

connections within the third ring contribute less than 1% of the total current to

these load devices.
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analysis process are also explored. An error correction technique is
introduced in Section 4.4.

4.1. Principle of spatial locality in a power grid

Flip-chip packages are widely used in high performance
integrated circuits, increasing the number of voltage supply
connections to the integrated circuit. Controlled collapse chip
connect (C4) bumps connect the integrated circuit to external
circuitry from the top side of the wafer using solder bumps.
A large number of power supply connections are therefore provided
to the power grid via these C4 bumps. Most of the current to the
load devices is provided from those power supply connections
in close proximity due to the smaller effective impedance. This
phenomenon can be explained using the principle of spatial locality
in a power grid [1,11–13].

A power grid for a flip-chip package with C4 connections is
illustrated in Fig. 11. To exemplify the principle of spatial locality
in a power grid, two current loads are connected to the power
grid, as depicted in Fig. 11, to analyze the current contributions
from each supply connection. With only one current load L1

connected to the power grid, the current contributed from each
of the C4 connections to L1 is as illustrated in Fig. 12. Most of the
current is provided by the close power supplies. The current
contribution of a supply connection decreases significantly with
distance. The current contribution from most of the supply
connections within the third ring is less than 1% of the total load
current. The current contribution from each supply connection is
also analyzed with only the current load L2 connected to the
power grid. More than 40% of the total current is provided by the
closest power supply connection, V21. The current contribution of
all of the connections is illustrated in Fig. 13. Most of the power
supply connections within the third ring contribute less than 1%
of the current to the load. When the load circuit is close to the
boundary of the power supply ring, the current provided by some
power supply connections within the outer ring can be higher
than the current contributed by the connections forming the
inner ring. For instance, since L2 is close to the first ring boundary,
the current contribution from V27 which is in the second ring is
higher than the current contributed by V16 which is in the first
ring. The reason is that V27 is physically closer to L2 than V16. The
principle of locality is therefore applicable to power grids with
multiple power supply connections such as flip-chip packages.
Locality can also be applied to power distribution networks with
tens of on-chip voltage regulators. In this case, most of the current
is supplied by the closest on-chip power supplies rather than the
closest C4 connections.

4.2. Effect of spatial locality on computational complexity

The computational complexity of the power grid analysis process
can be significantly reduced by introducing spatial locality since the
voltage fluctuations at a specific node are primarily determined by
the power grid impedance and placement of those supply connec-
tions in close proximity [11]. The complex global interactions among
distant circuit components, which typically have a negligible effect
on the IR drop, is not considered with spatial locality. Additionally,
the computational runtime of the power grid analysis process can be
significantly reduced with parallelization [22]. Since each partition is
analyzed individually in the proposed algorithm, parallelization of
the proposed algorithm is straightforward.

4.3. Exploiting spatial locality in the proposed method

An infinite grid is assumed in these algorithms when using (2)
to determine the effective resistance of a finite power grid. This
assumption introduces an approximation error to the proposed
power grid analysis process when evaluating small power grids.
When the size of the power grid increases, the introduced error
converges to zero. The maximum error for various grid sizes is



Fig. 12. Percent current provided to the current load L1 placed in the middle of a uniform power grid from the power supplies, as illustrated in Fig. 11. Note that most of

the current is provided by the power supplies within the closest two rings whereas the current provided by the power supplies within the third ring is less than 1% of the

total load current.

Fig. 13. Percent current provided to the current load L2 placed within a uniform power grid via the power supply connections, as illustrated in Fig. 11. Note that more than

40% of the current is provided by the closest power supply connection, V21. The current contribution of a supply connection is significantly smaller with distance.
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illustrated in Fig. 14. When the grid size is larger than 30�30, the
error is less than 0.5% of the supply voltage. Modern power grids
can contain more than a million nodes. The size of these grids
typically exceed 1000�1000, making the approximation error
effectively zero.

A power grid is divided into smaller partitions [11,13] to exploit
the principle of spatial locality. Each partition is analyzed individu-
ally and a complete solution is obtained by combining the results of
each partition. The ideal solution is obtained with only one partition
(i.e., no partitioning), thereby considering all of the interactions
among each power supply and load circuit. This approach suffers
from long computational time. The fastest solution is obtained when
the power grid is divided into the smallest possible partitions. This
analysis, however, can introduce significant error. A tradeoff in
partition size therefore exists between computational complexity
and accuracy.

For each partition, the error is smallest in the middle of the
partition and increases toward the boundaries. A partitioning
approach divides the power grid into several overlapping win-
dows where only the middle of each window is analyzed. The
boundaries of each partition overlap with the adjacent partitions.
This method of overlapping windows has been shown to be
effective in industrial power grids to accelerate the power grid
analysis process [11]. Some redundancy is introduced during the
analysis process which significantly reduces the error from applica-
tion of spatial locality. This partitioning approach is illustrated in
Fig. 15 where a flip-chip power grid with several C4 connections is
partitioned into four overlapping windows. Each window consists of
an analysis partition and an overlapping boundary. The size of each
partition and overlapping boundary is chosen sufficiently large to
minimize the error caused by the partitioning process. A tradeoff
therefore also exists between computational complexity and
induced error in the size of the overlapping boundary. When the
size of the overlapping boundary is sufficiently large, the effect of
the adjacent power grid partition is minimized. Alternatively, the
computational complexity of the analysis process decreases when
the size of the overlapping boundary is small. In this paper, the size
of each partition and the overlapping boundary is maintained larger
than 100�100 and 20, respectively, making the approximation
error less than 0.1%. The partitioning approach also considers the
locally uniform, globally non-uniform nature of the power grid. Each
partition is treated as a uniform power grid. Different partitions can
exhibit different impedance characteristics.

4.4. Error correction windows

Several error reduction techniques can be implemented within
this algorithm. One technique is the use of error correction
windows, as illustrated in Fig. 16, where the supply connections,
load circuits, error correction window, and analysis window are
shown, respectively, with a light dot, dark dot, light gray box, and
green box. Since the voltage at each supply connection is known
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a priori, the induced error at a supply connection is the difference
between the ideal supply voltage and the voltage determined
from this algorithm. This error is primarily introduced when
determining the current contribution of a power supply con-
nected to the power grid. A correlation exists between the error at
the supply connection node and the nodes within close proximity
of the power supply. The error is generally maximum at the
supply connection node and is lower with increasing distance
from the supply. An error correction window for each supply is
constructed based upon the error at the supply connection node.
By introducing this error correction technique, the maximum
error is reduced to less than 0.3% of the supply voltage, as
described in Section 5.
5. Experimental results

The validity of these algorithms to efficiently analyze a power
grid for several scenarios is presented in this section. The
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SPICE and the absolute error are shown, respectively, on the left and right axes.

Note that the error decreases significantly with increasing grid size.
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Fig. 15. Power grid divided into smaller partitions. Each partition
algorithms are implemented using MATLAB and the computations
are performed on a Unix workstation with a 3 GHz CPU and 10 GB
of RAM. The accuracy of Algorithms I, II, and III is compared with
SPICE simulations. For simplicity, the resistance between two
adjacent nodes in the power grid is assumed to be 1 O and the
voltage sources are assumed to be 1 V. The current loads are
between 1 mA and 100 mA.

The validity of the closed-form expression for one voltage supply
and one current load is analyzed with a 1 V supply connected at N3,3

and the load sinking 100 mA at N5,4. The maximum error is 1.44 mV,
less than 0.2% of the voltage at that node, as determined with SPICE.
The error of the corresponding node voltages as compared to SPICE
is listed in Table 2. The italicized value is the supply node and the
bold value is the node connected to the current load.

Nodal voltage analysis of a power grid with one voltage supply
and multiple current loads is evaluated when the voltage supply
is connected to N4,4 and four current loads are arbitrarily placed at
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Fig. 16. Partition of a resistive flip-chip power grid with supply connections and

load circuits denoted, respectively, with light and dark dots. The error correction

windows are shown with small gray boxes around each supply connection node.

(For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)



Table 4
Error of Algorithm III as compared to SPICE. Power supplies are connected at N1,2,

N6,8, and N8,1 (italic) and current load is connected at N5,4 (bold). The maximum

error is 1.41 mV (less than 0.2% of the the voltage, as determined with SPICE).

1 2 3 4 5 6 7 8

1 1.33 0.67 0.75 0.62 0.31 0.6 0.71 0

2 1.24 1.33 1.11 0.87 �0.07 0.54 0.23 0.63

3 1.21 0.49 0.83 1.41 �0.61 1.2 0.45 0.47

4 0.77 0.32 �0.09 �0.58 0.44 �0.63 �0.27 0.15

5 0.67 0.62 0.65 1.36 �0.62 1.42 0.62 0.35

6 0.74 0.69 0.7 0.62 �0.3 0.8 0.57 0.41

7 0.65 0.68 0.6 0.4 �0.15 0.78 0.27 0.42

8 0.68 0.7 0.6 0.68 0.71 0.34 0.87 0.72
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N1,7, N2,3, N6,6, and N2,7. In this case, each load sinks 25 mA from
the power grid. The error of Algorithm II as compared to SPICE is
listed in Table 3. The maximum error of the proposed algorithm
as compared to SPICE is 1.1 mV (less than 0.2%).

The validity of Algorithm III is analyzed with three voltage
supplies and a current load connected arbitrarily to the power grid.
The current load sinks 100 mA current and the voltage supplies are
1 V. The maximum voltage drop is less than 100 mV. The error of
Algorithm III as compared to SPICE is tabulated in Table 4. The
maximum error is 1.41 mV which is smaller than 0.2% of the
voltage, as determined with SPICE.

The complete algorithm, Algorithm IV, is validated for a larger
power grid with multiple voltage supplies and multiple current
loads arbitrarily placed within a 17�17 power grid. The results of
Algorithm IV are compared with SPICE and the error is tabulated
in Table 5. The current loads sink between 1 mA and 100 mA from
the grid and the voltage supplies are 1 V. The maximum error is
4.03 mV which is less than 0.5% of the voltage, as determined
with SPICE. When the error correction is applied to Algorithm IV,
the maximum error is reduced to 2.35 mV, which is less than 0.3%
as compared to SPICE simulations, as tabulated in Table 6. Note
that the nodes are shown in italic font if error correction has been
applied.

The computational complexity of the random walk technique
is O(LMN) [23] where N is the number of nodes without power
supply connections, L is the number of steps in a single walk,
and M is the number of walks to determine the voltage at a node.
The random walk method is faster for flip chip power grids as
compared to wire-bonded power grids or power grids with a
limited number of on-chip power supplies since M is significantly
larger. The computational complexity of the random walk method
can, however, be decreased with hierarchical methods [23,24],
although the property of locality is sacrificed.

Alternatively, the computational complexity of the proposed
method is linear with the size of the power grid. Since no
iterations are required (i.e., L¼1) and the voltage is determined
Table 2
Error of Algorithm I as compared to SPICE. The voltage supply is connected at N3,3

(italic) and the load device is connected at N5,4 (bold). The maximum error is less

than 0.2% of the supply voltage.

1 2 3 4 5 6 7 8

1 �0.12 �0.05 0.46 �0.27 �0.49 �0.26 �0.125 �0.15

2 �0.09 �0.55 0.79 0.152 �0.68 �0.37 �0.554 �0.14

3 0.33 0.62 0 1.13 �0.52 0.52 0 �0.26

4 �0.31 �0.83 0.21 �1.44 �0.31 �0.93 �0.64 �0.41

5 �0.25 �0.27 0.37 0.24 �1.10 0.24 �0.22 �0.38

6 �0.18 �0.04 0.18 �0.04 �0.77 �0.25 �0.18 �0.30

7 �0.13 �0.01 0 �0.23 �0.50 �0.36 �0.28 �0.30

8 �0.14 �0.04 �0.08 �0.27 �0.32 �0.34 �0.34 �0.34

Table 3
Error of Algorithm II as compared to SPICE. The voltage supply is connected at N4,4

(italic) and the load devices are connected at N1,7, N2,3, N6,6, and N7,2 (bold). The

maximum error is less than 0.2% of the supply voltage.

1 2 3 4 5 6 7 8

1 �0.17 �0.24 �0.06 0.07 �0.16 �0.38 �0.19 �0.30

2 0.01 �0.40 �0.06 0.32 �0.20 �0.14 �0.36 �0.03

3 �0.23 �0.25 �0.80 0.60 �0.64 �0.25 �0.18 �0.02

4 0.28 0.11 0.76 0 0.69 0.18 0.05 0.02

5 0.01 �0.40 �0.64 0.75 �0.50 �0.42 �0.06 �0.04

6 0 �0.49 �0.08 0.28 �0.39 �0.31 �0.36 �0.23

7 �0.40 �0.25 �0.32 0.12 �0.04 �0.45 �0.07 �0.13

8 �0.05 �0.35 1.11 0.08 �0.02 �0.29 �0.16 �0.17
with closed-form expressions (i.e., M¼1), the computational
complexity is O(N). Although converting the voltage sources to
equivalent current sources also requires computational effort, this
computational procedure is a one time process, and the additional
computational complexity is negligible. The computational com-
plexity also does not depend on the type of power grid (e.g.,
the same computational complexity for flip chip power grids,
wire-bonded power grids, and power grids with on-chip power
supplies).

To compare the computational runtime of this method with
previously proposed techniques, five differently sized circuits
with evenly distributed C4 bumps 25 nodes from each other are
considered. The runtime of the proposed algorithm is compared
with the random walk method in [8] and the second order
iterative method in [10], as shown in Table 7. The partition
size for all of the circuits when utilizing locality is larger than
100�100 to maintain an approximation error of less than 0.1%.
The random walk method is applied for 20,000 iterations on each
circuit to accurately determine the node voltages. The number of
iterations of the random walk and second order iterative methods
is chosen to maintain a maximum error of less than 5 mV as
compared to the results with 20,000 iterations. The error of the
proposed method is also less than 5 mV for each circuit. This
method with locality is over 60 and two times faster as compared
to the random walk and second order iterative methods, respec-
tively, for power grids smaller than five million nodes. For circuit
sizes greater than 25 million nodes (e.g., Circuits IV and V listed in
Table 7), the proposed algorithm with locality is over 175 times
and three times faster as compared to the random walk and
second order iterative methods, respectively. The runtime of the
random walk method depends strongly upon the number of power
supply connections. When the number of power supply connections
decreases, the computational runtime of the random walk method
dramatically increases. Alternatively, the computational runtime of
the proposed method is lower with fewer number of power supply
connections.
6. Conclusions

Closed-form expressions for fast IR voltage drop analysis of large
power grids with non-uniform current loads and voltage supplies
are proposed in this paper. A closed-form effective resistance model
for semi-uniform power grids is described. Four different algorithms
for multiple supply voltage and current load placement configura-
tions are presented. Since the proposed algorithms utilize closed-
form expressions, the runtime is significantly less than previously
proposed power grid analysis methods while exhibiting reasonable
error (i.e., less than 4.03 mV for Algorithm IV, an error of less than
0.5% as compared to SPICE). With the introduction of locality and
error correction windows, the error decreases to 2.35 mV, which is



Table 5
Error of Algorithm IV as compared to SPICE. Power supplies are connected at the corners (italic) and current loads are connected at various nodes (bold). The maximum

error is 4.03 mV (less than 0.5% of the voltage, as determined with SPICE). Error correction is not used in this example and the maximum error occurs at the supply

connection.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0 0.36 0.10 �0.25 �0.32 �0.43 �0.57 �0.53 �0.28 0.07 0.39 0.87 1.1 1.71 2.26 3.06 4.03

2 0.4 �0.52 �0.4 �0.29 �0.45 �0.67 �0.93 �1.15 �0.68 �0.18 0.22 0.65 1.08 1.43 1.76 1.87 3.3

3 0.18 �0.27 �0.39 �0.45 �0.58 �0.85 �1.31 �2.35 �1 �0.32 0.19 0.62 0.91 1.28 1.56 1.94 2.5

4 �0.12 �0.24 �0.36 �0.44 �0.49 �0.73 �1.09 �1.17 �0.64 �0.2 0.24 0.56 0.84 1.22 1.55 1.75 2.1

5 �0.2 �0.26 �0.31 �0.36 �0.42 �0.46 �0.93 �0.56 �0.25 0.01 0.28 0.55 0.89 1.19 1.42 1.65 1.83

6 �0.28 �0.3 �0.38 �0.38 �0.31 �0.07 �0.9 �0.01 �0.07 0.09 0.23 0.58 0.89 1.12 1.37 1.48 1.66

7 �0.33 �0.29 �0.31 �0.44 �0.56 �0.83 �0.27 �0.54 �0.17 0.14 0.2 0.69 0.93 1.12 1.25 1.44 1.61

8 �0.34 �0.3 �0.34 �0.22 �0.15 �0.11 �0.28 0.43 0.2 0.57 0.18 0.96 0.91 1.06 1.25 1.43 1.48

9 �0.36 �0.33 �0.35 �0.23 0.18 �0.4 0.03 0.11 �0.16 0.12 0.59 0.39 0.67 0.99 1.18 1.35 1.52

10 �0.46 �0.47 �0.4 �0.48 �0.54 �0.2 �0.46 0.15 �0.06 0.99 0.3 1.05 1 1.15 1.19 1.38 1.51

11 �0.44 �0.48 �0.36 �0.24 0.07 �0.62 0.05 �0.11 0.37 0.16 0.21 0.75 1.02 1.25 1.28 1.55 1.56

12 �0.48 �0.5 �0.35 �0.3 �0.14 �0.36 0.17 0.6 0.13 0.81 0.58 0.84 1.05 1.18 1.37 1.44 1.67

13 �0.55 �0.48 �0.48 �0.37 �0.27 �0.18 0.1 0.3 0.26 0.7 0.68 1.02 1.14 1.38 1.39 1.74 1.84

14 �0.6 �0.65 �0.64 �0.53 �0.24 �0.12 0.12 0.2 0.28 0.51 0.87 0.97 1.15 1.37 1.55 1.8 2.06

15 �0.7 �0.93 �0.77 �0.55 �0.25 �0.09 0.09 0.24 0.44 0.68 0.82 1.09 1.29 1.44 1.66 1.91 2.39

16 �0.95 �1.58 �0.94 �0.56 �0.32 �0.11 0.03 0.25 0.46 0.72 0.88 1.12 1.35 1.57 1.83 1.89 3.04

17 �2.49 �0.84 �0.46 �0.51 �0.16 �0.03 0.16 0.3 0.52 0.65 0.84 1.14 1.37 1.73 2.21 2.92 3.47

Table 6
Error of Algorithm IV with error correction windows as compared to SPICE. The nodes where error correction is applied is shown in italic font. The maximum error is

2.35 mV which is less than 0.3% of the voltage, as determined with SPICE. The location of the power supplies and current loads are denoted, respectively, as bold and

underine values.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0 0.36 0.1 �0.25 �0.32 �0.43 �0.57 �0.53 �0.28 0.07 �0.19 �0.28 �0.63 �0.59 �0.62 �0.39 0
2 0.4 �0.52 �0.4 �0.29 �0.45 �0.67 �0.93 �1.15 �0.68 �0.18 �0.36 �0.5 �0.65 �0.87 �1.12 �1.58 �0.15

3 0.18 �0.27 �0.39 �0.45 �0.58 �0.85 �1.31 �2.35 �1 �0.32 �0.39 �0.53 �0.82 �1.02 �1.32 �0.94 �0.38

4 �0.12 �0.24 �0.36 �0.44 �0.49 �0.73 �1.09 �1.17 �0.64 �0.2 �0.34 �0.59 �0.89 �1.08 �0.75 �0.55 �0.2

5 �0.2 �0.26 �0.31 �0.36 �0.42 �0.46 �0.93 �0.56 �0.25 0.01 �0.3 �0.6 �0.84 �0.54 �0.31 �0.08 0.1

6 �0.28 �0.3 �0.38 �0.38 �0.31 �0.07 �0.9 �0.01 �0.07 0.09 �0.35 �0.57 �0.26 �0.03 0.22 0.33 0.51

7 �0.33 �0.29 �0.31 �0.44 �0.56 �0.83 �0.27 �0.54 �0.17 0.14 �0.38 0.11 0.35 0.54 0.67 0.86 1.03

8 �0.34 �0.3 �0.34 0.22 �0.15 �0.11 �0.28 0.43 0.2 0.57 0.18 0.96 0.91 1.06 1.25 1.43 1.48

9 �0.36 �0.33 �0.35 �0.23 0.18 �0.4 0.03 0.11 �0.16 0.12 0.59 0.39 0.67 0.99 1.18 1.35 1.52

10 �0.46 �0.47 �0.4 �0.48 �0.54 �0.2 �0.46 0.15 �0.06 0.99 0.3 1.05 1 1.15 1.19 1.38 1.51

11 �0.08 �0.12 0 0.12 0.43 �0.26 0.41 �0.11 0.37 0.16 �0.29 0.25 0.52 0.75 0.78 1.05 1.06

12 0.23 0.21 0.36 0.41 0.57 0.35 0.53 0.6 0.13 0.81 0.08 �0.15 0.06 0.19 0.38 0.45 0.68

13 0.52 0.59 0.59 0.7 0.8 0.53 0.46 0.3 0.26 0.7 0.18 0.03 �0.35 �0.11 �0.1 0.25 0.35

14 0.82 0.77 0.78 0.89 0.83 0.59 0.48 0.2 0.28 0.51 0.37 �0.02 �0.34 �0.61 �0.43 �0.18 0.08

15 1.08 0.85 1.01 0.87 0.82 0.62 0.45 0.24 0.44 0.68 0.32 0.1 �0.2 �0.54 �0.82 �0.57 �0.09

16 1.18 0.55 0.84 0.86 0.75 0.6 0.39 0.25 0.46 0.72 0.38 0.13 �0.14 �0.41 �0.65 �1.08 0.07

17 0 1.29 1.32 0.91 0.91 0.68 0.52 0.3 0.52 0.65 0.34 0.15 �0.12 �0.25 �0.27 �0.05 0

Table 7
Runtime comparison.

#nodes Random

walk [8](min:sec)

Second order

iterative [10](min:sec)

Proposed algorithm

No partitioning (min:sec) Locality and error

correction (min:sec)

Circuit I 250 K 4:22 0:03 0:10 0:03

Circuit II 1 M 15:08 0:47 0:32 0:13

Circuit III 4 M 59:46 1:33 2:19 0:58

Circuit IV 25 M 1156:14 19:49 17:13 6:33

Circuit V 49 M 3418:05 46:38 38:55 13:09
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less than 0.3% of the voltage, as determined with SPICE. Previously
proposed IR drop analysis methods iteratively solve the power grid to
determine the node voltages. These methods require the voltage at
all of the nodes adjacent to the analysis node to be determined.
Determining the voltage at a particular node therefore requires the
computation of the voltage at nearby nodes which may not be of
interest. Alternatively, the proposed algorithms presented in this
paper can compute the voltage at any particular node in a power grid
without determining the voltage at the adjacent nodes. The proposed
algorithm can therefore be applied to localized power grid analysis.
Appendix A. Effective resistance model

To determine the effective resistance between nodes nx1 ,y1
and

nx2 ,y2
, the principal of superposition is applied in two steps. First,
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the current I is introduced at nx1 ,y1
and exits the grid at the

boundaries (i.e., at infinity). The current from nx1 ,y1
to the adjacent

nodes is determined by the resistance between nx1 ,y1
and the

adjacent nodes. Secondly, current I is introduced at infinity and
exits the power grid at nx2 ,y2

. The current from the adjacent nodes
to nx2 ,y2

is found similarly. By applying superposition in these two
steps, the current I is modeled as entering the power grid from nx1 ,y1

and exiting the grid at nx2 ,y2
. The effective resistance between nx1 ,y1

and nx2 ,y2
can therefore be written as Reff ¼ 2ðVx1 ,y1

�Vx2 ,y2
Þ=I

[16,25].
When a current source is connected to nx,y, this current can be

described in terms of the adjacent node voltages and correspond-
ing resistances as

Ix,y ¼
ð2kþ2ÞVx,y�ðkVx,yþ1þkVx,y�1þVxþ1,yþVx�1,yÞ

kr
: ðA:1Þ

Applying separation of variables, substituting Vx,y ¼ exaþ jyb where
kþ1¼ k cos bþcosh a, and after some simplifications, the current
at n0;0 can be written as

i0;0 ¼
ð2kþ2ÞV0;0�kV0;1�kV0,�1�V1;0�V�1;0

kr
: ðA:2Þ

Applying certain trigonometric identities and Euler’s formula,
i0;0 is

i0;0 ¼ 2 sinh a=kr: ðA:3Þ

Similarly, the current at n0,y is

i0,y ¼ 2 sinh a cos yb=kr: ðA:4Þ

The voltage at an arbitrary node nx,y is the sum of all b values

Vx,y ¼

Z p

0
FðbÞvx,yðbÞ db, ðA:5Þ

where FðbÞ is a function that satisfies a current source at n0;0, and
no current source exists at n0,y when ya0. Thus, all of the current
sources other than at n0;0 are effectively eliminated [16]. The
corresponding current at nx,y is

Ix,y ¼

Z p

0
FðbÞix,yðbÞ db: ðA:6Þ

From inspection, FðbÞ is

FðbÞ ¼
kIr

2p sinh a , ðA:7Þ

to satisfy (A.5) when only one current source located at n0;0 is
present within the power grid. Substituting (A.7) into (A.5), the
voltage at nx,y is

Vx,y ¼
kIr

2p

Z p

0

e�9x9a cos yb
sinh a db: ðA:8Þ

Substituting (A.8) into Reff ¼ 2ðVx1 ,y1
�Vx2 ,y2

Þ=I, the effective resis-
tance between n0;0 and nx,y is

Rx,y ¼
k r

p

Z p

0

ð2�e�9x9a cos ybÞ
sinh a

db: ðA:9Þ

Rx,y is solved by dividing the integral into two, and writing (A.9) as
a sum of two integrals, Rx,y=r¼ R1ðx,yÞ þR2ðx,yÞ

Rx,y=r¼

ffiffiffi
k
p

p

Z p

0

ð1�e�x
ffiffi
k
p

9b9 cos nbÞ
b

db

þ
k

p

Z p

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ1�k cos bÞ2�1

q �
1

b
ffiffiffi
k
p

2
64

3
75db: ðA:10Þ
The first integral R1ðx,yÞ is solved using an exponential integral
[16,26]

R1ðx,yÞ ¼

ffiffiffi
k
p

2p ½lnðx
2þky2

Þþ2ð0:57721þ ln pÞ�, ðA:11Þ

while the second integral R2ðx,yÞ is solved numerically, assuming k

approaches 1

R2ðx,yÞ ¼ �0:033425k�
kðk�1Þ0:1975

p : ðA:12Þ

The effective resistance between two arbitrary nodes Rx,y is
therefore

Rx,y=r¼

ffiffiffi
k
p

2p ½lnðx
2þky2

Þþ3:44388��0:033425 k�
kðk�1Þ0:1975

p :

ðA:13Þ
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S. Köse, E.G. Friedman / INTEGRATION, the VLSI journal 45 (2012) 149–161 161
[22] X. Ye, W. Dong, P. Li, S. Nassif, Hierarchical multialgorithm parallel circuit
simulation, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 30 (2011) 45–58.

[23] H. Qian, S.R. Nassif, S.S. Sapatnekar, Power grid analysis using random walks,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 24 (2005) 1204–1224.

[24] H. Qian, S.S. Sapatnekar, Hierarchical random-walk algorithms for power grid
analysis, in: Proceedings of the IEEE/ACM Asia and South Pacific Design
Automation Conference, January 2004, pp. 499–504.

[25] C.R. Paul, Analysis of Linear Circuits, McGraw-Hill, 1989.
[26] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables, Dover Publications, 1972.
Selc-uk Köse received the B.S. degree in electrical and
electronics engineering from Bilkent University,
Ankara, Turkey, in 2006, and the M.S. degree in
electrical and computer engineering from the Univer-
sity of Rochester, Rochester, NY, in 2008, where he is
currently pursuing the Ph.D. degree in electrical engi-
neering.

He worked as a part-time Engineer with the VLSI
Design Center, Scientific and Technological Research
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