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A closed form solution for characterizing voltage-based signals in an RLC tree is pre-
sented. The closed form solution is used to derive figures of merit to characterize the
effects of inductance at a specific node in an RLC tree. The effective damping factor of
the signal at a specific node in an RLC tree is shown to be one useful figure of merit.
It is shown that as the effective damping factor of a signal increases, an RC model
is sufficiently accurate to characterize the waveform. The rise time of the input signal
driving an RLC tree is shown to be a second factor that affects the relative significance
of inductance. As the rise time of the input signal increases as compared to the effective
LC time constant at a specific node within an RLC tree, the signal at this node will no
longer exhibit the effects of inductance. It is demonstrated that a single line analysis to
determine the importance of including inductance to characterize an interconnect line
that is a part of a tree is invalid in many cases and can lead to erroneous conclusions.
The error exhibited by single line analysis is due to the large interaction among the
branches of the tree.
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1. Introduction

It has become well accepted that interconnect delay dominates gate delay in current

deep submicrometer VLSI circuits.1–4 With the continuous scaling of technology

and increased die area, this situation is expected to become worse. In order to

properly design complex circuits, more accurate interconnect models and signal

propagation characterization are required. Historically, interconnect has been mod-

eled as a single lumped capacitance in the analysis of the performance of on-chip

interconnects. With the scaling of technology and increased chip size, the crosssec-

tional area of wires has scaled down while interconnect length has increased. The
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resistance of the interconnect has therefore become significant, requiring more ac-

curate RC delay models. At first interconnect was modeled as a lumped RC circuit.

To further improve accuracy, the interconnect has been modeled as a distributed

RC circuit (multiple T or Π sections) for those nets requiring more accurate delay

models. A well known method used to determine which nets require more accurate

delay models is to compare the driver resistance Rtr and the load capacitance CL
to the total resistance and capacitance of the interconnect line, Rt and Ct.

5,6 Typ-

ically, those nets that require more accurate RC models are longer, more highly

resistive nets.

Currently, inductance is becoming increasingly important with faster on-chip

rise times and longer wire lengths. Wide wires are frequently encountered in clock

distribution networks and in upper metal layers. These wires are low resistive lines

that can exhibit significant inductive effects. Furthermore, performance require-

ments are pushing the introduction of new materials for low resistance interconnect7

and new dielectrics to reduce interconnect capacitance. These technological ad-

vances significantly reduce the RC time constants of the interconnect, which

increases the effects of inductance.

Inductance, however, need not be included in every net in a VLSI circuit since

an RLC model will add to the computational complexity of the circuit simulator

with potentially an insignificant gain in accuracy. Inductance should be included

only in those nets that exhibit significant inductive effects and for which an RC

model would cause unacceptable errors. Thus, it is important to determine which

nets within a high speed VLSI circuit exhibit significant inductive effects.

The importance of on-chip inductance for single lines has been characterized in

Refs. 8–11. However, the nets in a VLSI chip are often structured as trees rather

than as single lines. Also, the clock distribution network, which is common to all

synchronous digital circuitry, is typically tree structured. The performance of a

VLSI chip heavily depends on the design of the clock distribution network where

the most accurate interconnect models are required. It is shown in this paper that

the branches of a tree cannot be treated as single lines for the purpose of evaluating

inductance effects. Rather, the entire tree should be examined for inductance effects

as a single structure since a large interaction occurs among the different branches.

It is therefore shown that applying a single line analysis to an RLC tree can cause

misleading conclusions.

The focus of this paper is the introduction of simple figures of merit that can be

used as criteria to determine which nets (and trees in general) require more accurate

RLC models. A second order approximation for a signal at a particular node of an

RLC tree is described in Sec. 2. The effective damping factor of a signal at a specific

node of a tree and the rise time of the input signal are used to derive two figures

of merit that describe the relative importance of inductance for the signal at this

node. These figures of merit are presented in Sec. 3. In Sec. 4, examples of RLC

trees are used to illustrate the error encountered in treating a branch of a tree as a

single line. Finally, some conclusions are offered in Sec. 5.
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Fig. 1. Simple RLC circuit.

2. Second Order Approximation for RLC Trees

A second order transfer function that approximates a higher order transfer function

at a specific node of an RLC tree is introduced in this section. Wyatt12 developed

a first order approximation for RC trees based on the Elmore delay13 assuming

that the system has only one dominant pole. Both Wyatt and Elmore assumed a

monotone system, which is not valid for an RLC circuit. For example, consider the

single section RLC circuit shown in Fig. 1. This circuit has a second order transfer

function given by:

g(s) =
1

s2LC + sRC + 1
. (1)

Note that the coefficient of s1 is RC, which does not include the inductance

L. This characteristic means that the Elmore time constant13 (and also Wyatt’s

approximation12) does not depend on inductance. However, inductance can have a

significant effect on the transient response of a circuit. To better observe the effects

of inductance, the transfer function of the circuit can be rearranged as:

g(s) =
ω2
n

s2 + s2ζωn + ω2
n

, (2)

where

ζ =
1

2

RC√
LC

, (3)

ωn =
1√
LC

. (4)

The poles of the transfer function in terms of the damping factor of the system,

ζ, are:

P1,2 = ωn[−ζ ±
√
ζ2 − 1 ] . (5)

Note that if ζ is less than one, the poles are complex and oscillations occur in

the response, which violates the monotone condition required by the Elmore delay

model. In that case the response is called underdamped and overshoots occur. If

ζ is greater than one, the poles are real and the response is called an overdamped

response. If ζ is equal to one, the response is called a critically damped response.
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Note in Eq. (3) that as the inductance increases, ζ decreases, which violates the

assumption of a monotonic response used in both the Elmore and Wyatt delay

models.

To characterize a nonmonotonic response, at least a second order approximation

is necessary because a nonmonotone response involves complex poles, which appear

in conjugate pairs. Thus, a second order system of the form described by Eq. (2)

can approximate a system with a nonmonotonic response. Therefore, it is necessary

to find a value of ζ and ωn that makes the second order approximation as accurate

as possible as compared to the exact transfer function.

Matching the moments of a transfer function to the moments of a higher order

system permits the transfer function to approximate the system.14–19 If a system

has an exact transfer function G(s), the normalized transfer function g(s) is given

by G(s)/G(0). An exact normalized transfer function of a system can be expanded

in the powers of s as:

g(s) = 1 +m1s+m2s
2 + · · · , (6)

where mi is the ith moment of the transfer function.19 The moments of a transfer

function include information about the poles and zeros of the system. For example,

the first moment of the transfer function m1 is:

m1 =

m∑
i=1

1

pi
−

n∑
i=1

1

zi
, (7)

where pi and zi are the poles and zeros of the transfer function, respectively. Thus,

if there is only one dominant pole in the system with no low frequency zeros that

can cancel the dominant pole, the first moment is sufficient to describe the system

and can be treated as the reciprocal of the dominant pole. For example, Wyatt

used only the first moment to obtain a first order system to approximate an RC

tree.12 For general systems, several moments can be used to calculate a higher or-

der approximate transfer function that better approximates the system. The greater

the number of moments that are matched, the more accurately the transfer func-

tion approximates the system. Several numerical methods have been introduced

to efficiently calculate the poles and residues of an approximate transfer function

of a higher order system.15–18 One example of these model reduction methods is

commonly called asymptotic wave evaluation.15

Applying the moment matching method, the transfer function in Eq. (2) is

expanded in powers of s where the first two moments of the transfer function

are equated to the first two moments of the nonmonotonic system, m1 and m2.

The expansion of the transfer function in Eq. (2) is:

g(s) = 1− s
(

2ζ

ωn

)
+ s2

(
−1 + (2ζ)2

ω2
n

)
− · · · = 1 +m1s+m2s

2 + · · · . (8)

The parameters that characterize the second order approximation of a nonmonotone

system, ζ and ωn, can be calculated in terms of the moments of the nonmonotonic
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system and are:

ζ =
−m1

2

1√
m2

1 −m2

, (9)

ωn =
1√

m2
1 −m2

. (10)

Hence, for a system with a nonmonotone response, a second order approximation

can be found if the first and second moments of the system are known.

For the general RLC tree shown in Fig. 2, the voltage drop at any node i as

compared to the input voltage is:

Vin(s)− Vi(s) =
∑
k

CkVk(s)s[Rki + Lkis] , (11)

where Rik (Lik) is the common resistance (inductance) from the input to nodes i

and k. For example, L77 = L1 + L3 + L7, L67 = L1 + L3, and L27 = L1. The

summation variable k operates over all the capacitors in the circuit. If the input is

a unit impulse, Vin(s) is equal to 1.0 and the voltages at the nodes of the tree are

C1
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Vin
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L3

C2
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C5

R5
L5

C4
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Fig. 2. General RLC tree.
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the unit impulse responses of these nodes. Thus, the normalized transfer function

gi(s) at node i is given by Vi(s) and is:

gi(s) = 1−
∑
k

CkVk(s)s[Rki + Lkis] = 1 +mi
1s+mi

2s
2 + · · · . (12)

The first and second moments of the transfer function at node i can be found from

mi
1 =

dgi(s)

ds

∣∣∣∣
s=0

, (13)

mi
2 =

1

2!

d2gi(s)

ds2

∣∣∣∣
s=0

. (14)

Differentiating Eq. (12) with respect to s and substituting s = 0,

mi
1 = −

∑
k

CkRikVk(s)|s=0 , (15)

mi
2 = −

∑
k

CkRik
dVk(s)

ds

∣∣∣∣
s=0

−
∑
k

CkLikVk(s)|s=0 . (16)

Note that Vk(s)|s=0 = 1, and that dVk(s)/ds|s=0 = mk
1 since Vk(s) = gk(s) =

1 +mk
1s+mk

2s
2 + · · · . Thus, the first and second moments of a general RLC tree

at node i are:

mi
1 = −

∑
k

CkRik , (17)

mi
2 =

∑
k

∑
j

CkRikCjRkj −
∑
k

CkLik . (18)

The first term in mi
2 can be approximated by (

∑
k CkRik)2. This approximation is

particularly accurate for balanced trees. Thus, the second moment of gi(s) can be

approximated by:

mi
2 =

(∑
k

CkRik

)2

−
∑
k

CkLik . (19)

Substituting the first and second moments of a general RLC tree into Eq. (9),

ζi and ωni that characterize a second order approximation of the transfer function

at node i are:

ζi =
1

2

∑
k

CkRik√∑
k

CkLik

, (20)

ωni =
1√∑

k

CkLik

. (21)
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Fig. 3. AS/X simulations as compared to the second order approximation and the Wyatt model.

Note the similarity between Eqs. (20) and (21) with ζ and ωn for a single RLC

section in Eqs. (3) and (4), respectively. The time constants RC and
√
LC are

replaced by the summations of equivalent time constants in the tree. Note also that

Eqs. (20) and (21) becomes Eqs. (3) and (4), respectively, for a single section. This

second order approximation of an RLC tree has the same accuracy characteristics

as the Wyatt approximation of an RC tree.12

The second order approximation is compared in Fig. 3 to AS/X20 simulations

of the output node 7 of the tree shown in Fig. 2. A balanced tree is considered.

The supply voltage is 2.5 volts. A step input is applied to both the RLC tree and

the second order approximation, permitting the transient response at node 7 to

be determined. Note the accuracy that the second order approximation exhibits as

compared to AS/X simulations for the case of a balanced tree. If the tree is unbal-

anced, the second order approximation is less accurate. Wyatt’s approximation is

also shown in Fig. 3. Note that Wyatt’s approximation fails to match the response

of an RLC tree with significant inductance.

3. Effect of Damping Factor and Input Rise Time

A second order approximation of the signals in an RLC tree is used in this section

to determine if the signal at a certain node exhibits significant inductance effects.

In Sec. 3.1, the effective damping factor ζi at node i of an RLC tree is used to

characterize when an RC model is sufficiently accurate as compared to an RLC

model, permitting inductance to be neglected. It is shown that as ζi increases (or as

the equivalent RC time constant at node i increases as compared to the equivalent

LC time constant), inductance effects decrease. In Sec. 3.2, the effect of the input

rise time on the importance of inductance is discussed. It is shown that as the input
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rise time increases as compared to the equivalent LC time constant at node i, the

effect of inductance on the transient behavior of the signal at node i becomes less

significant.

3.1. Damping factor

A step signal is used as the input to the second order approximation of the trans-

fer function at node i of an RLC tree to investigate the relationship between the

effective damping factor ζi and the significance of inductance on the transient be-

havior of the signal at node i. A step input is used since a step signal eliminates the

effect of the rise time and maximizes the significance of the inductance, permitting

the effect of the damping factor to be investigated. For a step input and a supply

voltage of VDD volts, the signal at node i is:

Si(t) = VDD + VDD

×
[

exp[ωnit(−ζi +
√
ζ2
i − 1 )]

−ζi +
√
ζ2
i − 1

− exp[ωnit(−ζi −
√
ζ2
i − 1 )]

−ζi −
√
ζ2
i − 1

]
. (22)

As the damping factor increases, the importance of the inductance on the circuit

decreases. Thus, the following approximation can be made assuming large ζi,√
ζ2
i − 1 ≈ ζi

[
1− 1

2ζ2
i

]
, with a relative error <

1

4ζ4
i

. (23)

With ζi > 2.5, the error due to this approximation is less than 0.7%. With this

approximation, the signal at node i can be approximated by:

Si(t) = VDD +
VDD

2

[
ζi −

1

2ζi

]

×

− 2ζi exp

[
ωnit

(
− 1

2ζi

)]
+

exp

[
ωnit

(
−2ζi −

1

2ζi

)]
2ζi

 . (24)

For ζi > 2.5, this expression can be further approximated by:

Si(t) ∼= VDD − VDD exp

[
ωnit

(
− 1

2ζi

)]
= VDD − VDD exp

− t∑
k

CkRik

 , (25)

with an error less than 8%. The maximum error is realized when the signal initially

switches since the exponential terms are still relatively large. Note that Eq. (25)

is precisely Wyatt’s approximation for a step response at node i of an RC tree.12

This relation shows that for ζi > 2.5, the inductance has a minimal effect on the
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transient response at node i, which is similar to the response of an equivalent RC

tree where inductance is neglected. Thus, the first figure of merit presented in this

paper is:

ζi =
1

2

∑
k

CkRik√∑
k

CkLik

> 2.5 . (26)

If this inequality is satisfied, the effects of inductance at node i are negligible. A

plot of AS/X20 simulations for the RLC tree shown in Fig. 2 at output node 7 as

compared to an equivalent tree with all inductances equal to zero is shown in Fig. 4
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Fig. 4. Effect of the equivalent damping factor on the accuracy of the RLC and RC models.
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for several values of ζi. The closed form solution in Eq. (22) is also shown. Note

that for ζi > 2.5, the response of the RLC tree is almost identical to that of an

equivalent RC tree in which inductance is neglected.

3.2. Input rise time

An exponential signal of the form,

Vin(t) = VDD

[
1− exp

(
− t
τ

)]
u(t) , (27)

is used as the input to the second order approximation of the transfer function of

an RLC tree to investigate the relationship between the input rise time and the

effects of inductance on the transient behavior of the signal at node i. u(t) is the

unit step function, VDD is the supply voltage, and the 90% rise time of the input

signal is 2.3τ where τ is the time constant of the exponential in Eq. (27). With this

input signal, the response at node i of an RLC tree is:

eiRLC (t) = VDD

[
1− ke−t/τ +

e−ζiωnit√
1− ζ2

i

[
sin(ωnit− θ1)−

√
1

k
sin(ωnit− θ2)

]]
,

(28)

where

θ1 = tan−1

[√
1− ζ2

i

ζi

]
, (29)

θ2 = tan−1


(

τ

TLCi

)√
1− ζ2

i(
τ

TLCi

)
ζi − 1

 , (30)

and

k =

(
τ

TLCi

)2

(
τ

TLCi

)2

− 2ζ

(
τ

TLCi

)
+ 1

. (31)

TLCi is

TLCi =

√∑
k

CkLik . (32)

According to Wyatt’s approximation,12 if the same input is applied to an RC tree,

the response at node i is:

eiRC (t) = VDD[1− k2e
−t/τ + e−t/TRCi [k2 − 1]] , (33)
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where

k2 =

(
τ

TRCi

)
(

τ

TRCi

)
− 1

, (34)

TRCi =
∑
k

CkRik . (35)

When the rise time of the input signal increases, Eq. (28) approaches Eq. (33).

This trend can be better understood by noting that if τ/TLCi and τ/TRCi are both

much greater than one, k and k2 tend to one and θ2 tends to θ1. Thus, if τ/TLCi
and τ/TRCi are much greater than one, the response at node i of an RLC tree does

not exhibit any effects caused by inductance and an RC tree model can be used to

model the interconnect tree. These two conditions, τ/TLCi and τ/TRci, are much

greater than one and reduce to the first condition if the damping factor figure of

merit described by Eq. (26) is considered. If ζi is greater than 2.5, the inductance

effects are not significant because of the damping factor and there is no need to

determine the rise time of the input signal. If ζi is less than 2.5, then TRCi < 5TLCi.

Thus, τ/TLCi < 5τ/TRCi is the range where the input rise time should be evaluated

(ζi < 2.5). Hence, if τ/TLCi is much greater than one and ζi < 2.5, then τ/TRCi is

also much greater than one.

The second figure of merit can be derived by assuming τ/TLCi = 10 and using

the relation trin = 2.3τ . Thus, the second figure of merit is:

trin > 23

√∑
k

CkLik . (36)

If this inequality is satisfied, the effects of inductance at node i can be neglected.

A plot of AS/X20 simulations of the RLC tree shown in Fig. 2 at output node 7 as

compared to an equivalent tree with no inductances is shown in Fig. 5 for several

values of trin. The closed form solution (28) is also shown. ζi is maintained constant

at 0.5 so that the inductance cannot be ignored. Note that for trin/TLCi > 23, the

response of the RLC tree is the same as that of an equivalent RC tree in which

inductance is neglected.

4. Results and Examples

Examples illustrating the importance of using a tree analysis for characterizing in-

ductance effects as well as general traits of inductance effects in RLC trees are

presented in this section. In Sec. 4.1, a single line analysis to characterize the im-

portance of inductance is compared to a tree analysis and an example is given that

demonstrates a single line analysis can lead to erroneous conclusions. The effect

of the size of a tree on the significance of inductance is discussed in Sec. 4.2. It is

shown that there is a range of tree size for which inductance effects are prominent.
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time (ns)

V7

(volts)

AS/X RLC Tree

(28)

AS/X RC Tree

trin / TLC = 0.1

time (ns)

trin / TLC = 1

time (ns)

trin / TLC = 5

time (ns)

trin / TLC = 10

time (ns)

trin / TLC = 20

time (ns)

trin / TLC = 25

Fig. 5. Effect of the rise time on the inductance effects in an RLC tree. trin/TLC is varied
from 0.1 to 25. AS/X simulations are shown for an RC tree and an RLC tree. Equation (28) is
also shown to illustrate the accuracy of the closed form solution introduced here. Note that as
trin/TLC increases, the RC model approaches the RLC model.

4.1. Tree analysis versus single line analysis

The analysis of single lines to characterize the importance of on-chip inductance

has been previously evaluated.8–11 However, analyzing single lines to characterize

the importance of inductance in RLC trees can be invalid. To illustrate this point,

values for the branch resistances, inductances, and capacitances for the RLC tree

shown in Fig. 2 are listed in Table 1. According to Refs. 8–11, if a single line analysis

is used for each branch, the damping factor for branch i is:

ζi =
1

2

RiCi√
LiCi

. (37)
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Table 1. Branch impedances for the

RLC tree shown in Fig. 2.

Branch R (Ω) L (nH) C (pF)

1 25 10 2
2 50 10 1
3 50 10 1
4 100 0.5 0.5
5 100 0.5 0.5
6 100 0.5 0.5
7 100 0.5 0.5

Table 2. Damping factors for the nodes of both the RLC single
lines and the RLC tree shown in Fig. 2.

Node ζi (RLC single line analysis) ζi (RLC tree analysis)

1 0.176 0.306
2 0.25 0.441
3 0.25 0.441
4 1.58 0.529
5 1.58 0.529
6 1.58 0.529
7 1.58 0.529

The damping factor of branch i affects the signal at node i. The single line analysis

and the RLC tree analysis introduced here are compared in Table 2 for the tree

shown in Fig. 2. The branch impedance values listed in Table 1 are used. Note the

large difference in the values of the damping factors according to an RLC single line

analysis as compared to an RLC tree analysis. For example, at node 7, the RLC

single line analysis anticipates no significant inductance effects (ζ7 = 1.58) while

an RLC tree analysis anticipates large inductance effects (ζ7 = 0.529). Simulations

of the voltage signal at node 7 of the RLC tree shown in Fig. 2 with the branch

impedance values listed in Table 1 are shown in Fig. 6. The voltage at node 7

exhibits high inductive effects as anticipated by the RLC tree analysis introduced

here. This simple example demonstrates that an RLC single line analysis can lead

in certain cases to erroneous conclusions. Note also that for node 1, the RLC single

line analysis anticipates greater inductance effects (ζ1 = 0.176) as compared to the

RLC tree analysis (ζ1 = 0.306).

The RLC single line analysis generates a significant difference between the max-

imum and minimum damping factors (0.176 < ζ < 1.58) as compared to the differ-

ence between the maximum and minimum damping factors in the more accurate

RLC tree analysis (0.306 < ζ < 0.529). This behavior is due to analyzing each line

individually while in reality all of the branches in the tree interact significantly, dis-

tributing the effects of the branch inductances throughout the tree. Alternatively,

the branches with higher inductive effects and the branches with lower inductance

effects influence each other, making the effect of inductance less on those branches



July 30, 2002 10:4 WSPC/123-JCSC 00045

318 Y. I. Ismail, E. G. Friedman & J. L. Neves

time ( 10 ps.)

V7

(volts)

AS/X RLC Tree

AS/X RC Tree

Fig. 6. AS/X simulations of the output voltage at node 7 of the RLC tree shown in Fig. 2 with
the branch impedance values listed in Table 1 for the equivalent RC tree.

with higher inductance effects and more on those branches with lower inductance ef-

fects. This phenomenon is accurately captured by the RLC tree analysis introduced

in this paper.

4.2. Effect of tree size on the significance of inductance

The effect of increasing the size of the tree is to increase the damping factors at

the nodes of the tree (and thus decrease the importance of the inductance). If the

size of a tree increases, both of the summations
∑

k CkRik and
∑

k CkLik increase.

As described by Eq. (20), ζi is half the first summation over the square root of the

second summation. Thus, if the two summations increase at the same rate while

increasing the size of the tree, the net result is an increase in ζi. For example, the

damping factor at node 1 for the RLC tree shown in Fig. 2 is:

ζ1 =
1

2

R1CT√
L1CT

=
R1

2

√
CT

L1
, (38)

where CT is the total capacitance of the tree. If the size of the tree increases, CT
also increases, making the damping factor at node 1 larger.

An important example of an RLC tree is a tree structured clock distribution

network. A clock distribution network is often structured as a balanced tree with

a wide trunk and narrowing branches.21–23 If a tree has a branching factor of two

(where each line is the parent of two other lines), for impedance matching purposes

the parent will have double the width of its children.22,24,25 The size of the tree

can be characterized by the number of levels n. A tree that has n levels has 2n − 1

branches. For example, the tree shown in Fig. 2 has three levels and seven branches.

The impedance of the branches in each level (r = 1, 2, . . . , n) can be approximated
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Fig. 7. Effect of the number of levels n on the output damping factor ζout of a binary clock tree.

by 2r−1Rroot, Lroot, and Croot/2
r−1, where Rroot, Lroot, and Croot are the root

resistance, inductance, and capacitance, respectively. The number of branches in

level r is 2r−1. Note that the inductance is assumed constant since it is a slowly

varying function with the width of the interconnect.10,26 The damping factor at an

output node can be calculated as a function of the number of levels (representing

the size of the tree) and the root impedance and is:

ζout =
1

4
√

2

RrootCroot√
LrootCroot

n(n+ 1)√
2−n + (n− 1)

. (39)

Note that the output damping factor increases monotonically as n increases. For

large n, ζout increases as n1.5. A plot of ζout versus n is shown in Fig. 7.

Alternatively, if the size of the tree is smaller, the rise time of the input signal

can be much greater than TLCi which, according to the second figure of merit in

Eq. (36), eliminates the effects of inductance. Thus, there is a range of the size

of an RLC tree where inductance effects are significant. For the special case of

a single RLC line, the size is simply represented by the length of the line. This

behavior is consistent with the results described in Ref. 11 in which there is a range

of interconnect line length where inductance effects are significant.

5. Conclusions

A second order approximation of an RLC tree with the same accuracy characteris-

tics as the Wyatt approximation for an RC tree has been introduced. This second

order approximation is used to derive two simple figures of merit to evaluate the

significance of the inductance effects exhibited by an RLC tree. The first figure

of merit is the damping factor of a signal at a specific node of a tree. It is shown
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that as the damping factor increases, inductance effects decrease. The second fig-

ure of merit is the rise time of the input signal as compared to the effective LC

time constant of the tree at a specific node. It is also shown that as the input rise

time increases as compared to the effective LC time constant, the importance of

inductance decreases. Evidence is provided that using a single RLC line analysis for

those branches within a tree can lead to incorrect conclusions. The error exhibited

by a single line analysis is due to the large interaction among the branches of a

tree. Finally, it is shown that there is a range of the size of an RLC tree where a

tree can exhibit significant inductive effects.
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