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DTT: Direct Truncation of the Transfer Function—An
Alternative to Moment Matching for Tree Structured

Interconnect
Yehea I. Ismail, Member, IEEE,and Eby G. Friedman, Fellow, IEEE

Abstract—A method is introduced to evaluate time domain
signals within RLC trees with arbitrary accuracy in response to
any input signal. This method depends on finding a low frequency
reduced-order transfer function by direct truncation of the exact
transfer function at different nodes of an RLC tree. The method
is numerically accurate for any order of approximation, which
permits approximations to be determined with a large number
of poles appropriate for approximating RLC trees with under-
damped responses. The method is computationally efficient with a
complexity linearly proportional to the number of branches in an
RLC tree. A common set of poles is determined that characterizes
the responses at all of the nodes of anRLC tree which further
enhances the computational efficiency. Stability is guaranteed by
the DTT method for low-order approximations with less than five
poles. Such low-order approximations are useful for evaluating
monotone responses exhibited byRC circuits.

Index Terms—Circuit simulation, inductance, interconnect,
RLC, VLSI.

I. INTRODUCTION

I T has become well accepted that interconnect delay dom-
inates gate delay in current deep submicrometer VLSI cir-

cuits [1]–[8]. With the continuous scaling of technology and in-
creased die area, this situation is becoming worse [9]–[14]. In
order to properly design complex circuits, accurate character-
ization and simulation of the interconnect behavior and signal
transients are required. This high accuracy is necessary for ana-
lyzing performance critical modules and nets and to accurately
anticipate possible hazards during switching. Also, increasing
performance requirements has forced a reduction of the safety
margins used in worst case design, requiring more accurate in-
terconnect delay characterization. Thus, the process of char-
acterizing signal waveforms in tree structured interconnect (or
nearly tree structured) is of primary importance since most in-
terconnect in a VLSI circuit is tree structured [15]–[17].

Asymptotic waveform evaluation (AWE)-based algorithms
[18]–[24] have gained popularity as a more accurate delay
model as compared to the Elmore delay model. AWE uses
moment matching to determine a set of low frequency dominant
poles that approximate the transient response at the nodes of
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an RLC tree. However, AWE suffers two primary problems
[19]–[23]. The first problem is that the AWE method can lead
to an approximation with unstable poles even for low-order
approximations [19]–[23]. The second problem is that AWE
becomes numerically unstable for higher order approximations
which limits the order of the approximations determined using
AWE to less than approximately eight poles (of which some
poles may be unstable and are discarded) [19]–[23]. This
limited number of poles is inappropriate for evaluating the
transient response of an underdampedRLC tree which requires
a much greater number of poles to accurately capture the tran-
sient response at all of the nodes. To overcome this limitation,
a set of model order reduction algorithms has been developed
to determine higher order approximations appropriate forRLC
circuits based on the state space representation of anRLC
network. Examples are Pade via Lanczos (PVL) [25], Matrix
Pade via Lanczos (MPVL) [26], Arnoldi Algorithms [27],
Block Arnoldi Algorithms [28], passive reduced-order inter-
connect macromodeling algorithm (PRIMA) [29], [30], and the
SyPVL Algorithm [31]. However, these model order-reduction
techniques have significantly higher computational complexity
than AWE. The complexity of PVL techniques is superlinear
with when inductance is present, whereis the order of
the RLC tree and is equal to the total number of capacitors
and inductors in the tree. As for PRIMA, the complexity is
quadratic with the approximation order [25]–[31]. This
complexity is much higher than the complexity of AWE which
is linearly proportional to and for an RLC tree [19]–[23].
Note that can be on the order of thousands for a typical large
industrialRLCcircuit and can be as high as 40.

The moments of a transfer function of orderresults from
expanding the transfer function into a Taylor series around

as given by
l
l

(1)

The moment of the transfer function is the coefficient of
in the series expansion. An explicit moment matching tech-

nique such as AWE calculates a reduced-order transfer function
of the form

(2)

which has the first moments as in (1) where is much
smaller than . The moments of the circuit are first calculated
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and then the parameters of and are
determined such that have the same first moments
as [19]–[23]. By matching the first moments of ,

represents a low frequency approximation of since
if is sufficiently small, the terms with higher powers of,

, are negligible as compared to
the terms with the lower moments. The higher the number of
moments matched by (or higher ), the higher the fre-
quencies for which accurately approximates .

This paper introduces another method by which a low-fre-
quency approximation can be calculated. The new method is
based on directly truncating the higher powers ofin the nu-
merator and denominator of the original transfer function in (1).
Hence, a order approximate transfer function is given by

l
l

(3)

where . The numerator order is if ;
otherwise . Hence, this method in a sense matches
the first coefficients of in the numerator and denominator of
the transfer function instead of the moments. If (or the
frequency) is sufficiently small, the terms with higher powers of

in the denominator and numerator polynomials (
) are negligible with respect to the

lower power terms in . Thus, for low frequencies,
is an accurate representation of . Note that the coefficients

and are exactly the same in and .
The direct transfer function truncation (DTT) model order re-

duction method has much better numerical stability at higher
approximation orders as compared to moment matching tech-
niques due to the relation between the coefficients and
the poles of the transfer function given by

(4)

To illustrate the relation between the moments, poles, and
residues of the transfer function, (1) can be expressed as a
partial fractions sum given by

(5)

where is the pole of the transfer function and is the cor-
responding residue. By expanding each term in (5) into powers
of , the moments of can be expressed as

...

(6)

The poles with larger magnitudes are truncated when added to
the dominant poles with smaller magnitudes in higher order mo-
ments due to the addition of poles raised to large powers. This
behavior, in addition to the need to invert ill-conditioned ma-
trices [18]–[21], renders AWE incapable of calculating higher
order approximations to simulate complicated waveforms. As
for DTT, larger magnitude poles are multiplied by smaller mag-
nitude poles in all of the terms of the coefficients higher than,
and hence information about larger poles is present in
for much larger than in the case of the moments. This relation
between the denominator coefficients and the poles permits the
poles to be determined with much larger magnitudes than AWE
is capable of determining through moment matching.

The objective of this paper is therefore to describe the DTT
method [32] for evaluating the transient response at the nodes of
a generalRLC tree which is capable of determining high-order
approximations appropriate for underdampedRLC trees in a
computationally efficient manner (complexity linear with).
A single line as a special case of a tree with only one output
(or sink) is covered by this tree analysis methodology. This new
method also has improved pole stability properties for low-order
approximations as compared to AWE, a useful feature withRC
trees which do not require higher order approximations. The rest
of the paper is organized as follows. A description of the DTT
method is provided in Section II. In Section III, the complexity
and stability characteristics of the DTT method are discussed.
The transient responses based on the DTT method for several
RCandRLC trees are compared to SPICE simulations in Sec-
tion IV. Finally, some conclusions are offered in Section V. Pseu-
docode describing the DTT method is provided in the Appendix.

II. THE DTT METHOD

The concepts used to develop the DTT method are explained
in this section. The rules governing the poles and zeros in an
RLC tree are defined in Section II-A The method used to cal-
culate the exact transfer functions at the nodes of anRLC tree
is introduced in Section II-B The use of transfer function trun-
cation to determine a reduced-order approximation is discussed
in Section II-C. The process of determining the set of common
poles describing the transient response of anRLC tree and the
corresponding residues at each node of the tree is described in
Section II-D.

A. Pole-Zero Behavior in RLC Trees

The poles and zeros of anRLCtree maintain specific relations
to the poles and zeros of the subtrees forming theRLC tree.
These rules are established in this subsection and are used in the
following subsection to develop an algorithm to dete rmine the
poles and zeros of a generalRLCtree by recursively subdividing
the tree into smaller subtrees.

Rule 1: The poles of an RLC circuit are zeros of the
impedance seen at the input of the circuit.

This rule can be understood by referring to Fig. 1 and noting
that the transfer functions describing the capacitor voltages and
inductor currents have a common denominator (the character-
istic equation of the tree) [33]–[37]. Thus, the transfer function
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Fig. 1. A generalRLCcircuit.

Fig. 2. SimpleRLCcircuit.

at an arbitrary node of anRLC tree and the input admittance
of the tree are given by

(7)

(8)

respectively, where and are functions of depen-
dent on the circuit structure and is the common denomi-
nator of the circuit. The input impedance is

(9)

Thus, the common denominator of anRLCcircuit is the numer-
ator of the input impedance which proves rule 1.

As an example, consider the single sectionRLC circuit
shown in Fig. 2. This circuit has a transfer function and an
input impedance given by

(10)

(11)

respectively. Note that the denominator of the transfer function
is the numerator of the input impedance. Another way to in-
terpret Rule 1 is that anRLC circuit has a short-circuit input
impedance when is equal to the poles of the circuit.

Rule 2: The poles of an RLC circuit driven at nodeare
zeros of the transfer function at node.

This rule can be explained by referring to Fig. 3. Note that the
RLCcircuit 2 is driven by theRLCcircuit 1 at node . Applying
rule 1, is a short-circuit between nodeand the ground at
frequencies equal to the poles of circuit 2. Hence, is equal
to zero when is equal to the poles of circuit 2, i.e., the poles of
circuit 2 are zeros of the transfer function at node.

As an example, consider the circuit shown in Fig. 4. Note
that theRLC subcircuit 2 is driven at node and that if not
connected, subcircuit 2 has a denominator given by

Fig. 3. A generalRLC circuit composed of twoRLC subcircuits connected
together.

Fig. 4. A ladderRLCcircuit composed of twoRLCsections in series.

. The transfer functions at nodeand the output node
are

(12)

(13)

Note that the numerator at nodeis the same as the denominator
of the disconnected subcircuit 2 in accordance with rule 2.

Rule 3: The poles of an RLC circuit driven at nodeare
zeros of the transfer functions at all of the nodes of parallel RLC
circuits driven at the same node.

This rule can be explained by referring to Fig. 5. TheRLC
subcircuits are driven byRLCsubcircuit 1 at node

. Applying rule 1, is a short-circuit at frequencies equal
to the poles of circuit 2. Hence, is equal to zero and all of
the current supplied by circuit 1 is sunk to ground by when

is equal to the poles of circuit 2. Since is equal to zero
and no current is supplied to the subcircuits when is
equal to the poles of circuit 2, the voltages at all of the nodes of
subcircuits are equal to zero. Alternatively, the poles
of circuit 2 are zeros of the transfer functions at all of the nodes
of the parallel subcircuits driven at node. The same is true for
the poles of subcircuits which are zeros of the transfer
functions at all of the nodes of the parallel subcircuits driven at
node .
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Fig. 5. A generalRLCcircuit composed of anRLCsubcircuit driving several
subcircuits connected in parallel.

Fig. 6. AnRLC tree composed of threeRLCsections.

As an example, consider theRLC tree shown in Fig. 6. The
RLC of section 1 drives the two parallelRLC in section 2 and
section 3. The transfer functions at nodes, 2, and 3 are given
by

(14)

(15)

(16)

respectively, where is the common denominator and is a poly-
nomial in of order six. The specific form of is not of in-
terest here. The denominators of subcircuits 2 and 3 are

and , respectively. Note
that both denominators are multiplied in the numerator of the

Fig. 7. GeneralRLC tree.

transfer function at nodeshowing that the poles of subcircuits
2 and 3 are zeros of the transfer function at the driving nodein
accordance with rule 2. Note also that the poles of subcircuit 2
are zeros of the transfer function at node 3 and vice versa, which
verifies rule 3.

B. Calculating the Transfer Functions at the
Nodes of an RLC Tree

It is illustrated in this subsection how to recursively calculate
the transfer functions at the nodes of anRLCtree using the con-
cepts developed in the previous subsection. Consider the general
RLC tree shown in Fig. 7. The current sunk to ground by a ca-
pacitor is given by where is the voltage
across . Thus, the current passing through the resistance
and the inductance is given by

(17)

where the summation indexoperates over all of the capacitors
in the tree. The voltage drop across and is given by

(18)

In the frequency domain, this relation transforms to

(19)

Dividing (19) by , the following relation results:

(20)

where is the transfer function at node 1 and is the
transfer function at node. Note that determining the transfer
function at node 1 is sufficient to determine the poles of the
entire circuit since the transfer functions at all of the nodes of
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Fig. 8. Building block of a generalRLC tree.

an RLC tree have a common denominator (as was mentioned
previously).

Now consider the structure shown in Fig. 8 which depicts
anRLCsection driving left and right subtrees. Without loss of
generality, a binary branching factor is used here since a general
tree with an arbitrary branching factor can be transformed into
a binary tree by inserting zero impedance branches [38], [39].
The structure shown in Fig. 8 can be used recursively to fully
represent anyRLC tree since the left and right subtrees can in
turn be represented by the same structure. The transfer function
at node 1 of Fig. 8 is given by (20), which can be reformulated
by using the rational representations of the transfer functions,

and , and is

(21)

Assume that the transfer functions at all of the nodes of the left
and rightRLC subtrees (when the trees are disconnected) are
known and are given by at node
of the left subtree and at node
of the right subtree. The numerator at node 1, of Fig. 8,
can be directly calculated by applying rule 2 described in the
previous subsection and is

(22)

The “ ” operator above represents a polynomial multiplication.
The denominator can be determined from (21) as

(23)

where is defined as

(24)

and characterizes the summation of the numerators of the
transfer functions across the capacitors in the tree multiplied
by the corresponding capacitances. The summation in
operates over all of the capacitors in the tree and can be divided
into three components

(25)

where covers the capacitors in the left subtree andcovers
the capacitors in the right subtree. By applying rule 3, the nu-
merators in the left subtree can be described in terms of the pa-
rameters of the disconnected left and right subtrees as

. Similarly, . Thus,
(25) can be reconfigured as

(26)

Note that the two summations above areand of the dis-
connected left and right subtrees, respectively. Hence,can
be fully calculated in terms of the disconnected left and right
subtree parameters as

(27)

Thus, by knowing the parameters of the left and right sub-
trees, , , , and , (22), (27), and (23) can
be used in that order to determine , , and , re-
spectively. The parameters of the left and right subtrees, ,

, , and , can be determined in turn in terms
of their left and right subtrees by using the structure shown in
Fig. 8 and (22), (27), and (23). This process is repeated recur-
sively until the left and right subtrees are nonexistent. If the left
subtree does not exist, then and . If the
right subtree does not exist, then and .

After this recursion process terminates, the denominator and
numerator across each capacitancein the tree represent the
transfer function for the subtree rooted at theRLCsection . For
example, for the tree shown in Fig. 7, and at node
1 represent the transfer function at node 1 for the entire tree.
However, and at node 2 represent the transfer func-
tion at node 2 for the subtree composed of theRLCsections, 2,
4, and 5. Also, and at node 4 represent the transfer
function at node 4 for the subtree composed ofRLCSection IV.
Thus, after the recursion process terminates, the only relevant
parameters for the entireRLCtree are and across the
capacitor closest to the input ( in the case of the tree shown
in Fig. 7). The denominators and numerators at all of the other
nodes are incorrect. The denominators at these nodes need not
be corrected since these denominators are the same as the de-
nominator at the node closest to the input. However, the numer-
ators differ at each node and need to be corrected. According to
rule 3, all of the numerators in the left subtree have to be mul-
tiplied by and all of the numerators in the right subtree
have to be multiplied by . This process is repeated recur-
sively starting at the root of the tree and advancing toward the
sinks.

Thus, the process of determining the transfer function at all
of the nodes of anRLCtree consists of two steps. The first step
is to calculate the common denominator of theRLC tree and
is accomplished by the function Cal_Denominator presented as
pseudocode in the Appendix which uses the recursive equations
in (22), (27), and (23). The common denominator is the denom-
inator at the node closest to the input of theRLC tree after the
recursion terminates. The second step is to correct the numera-
tors of the transfer functions at the nodes of theRLC tree. This
task is achieved by the function Correct_Numerators which is
also described as pseudocode in the Appendix.
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C. Transfer Function Truncation and Approximation Order

The process of calculating the exact transfer functions at all
of the nodes of anRLC tree has been described in the previous
subsection. However, calculating the exact transfer function can
be time consuming sincecan be in the order of thousands for
typical large industrialRLC trees. In practice, there is no need
to calculate the thousands of poles characterizing anRLC tree
since the transient behavior can be accurately characterized by
a few number of low-frequency dominant poles [18]–[24] (typ-
ically several tens of poles). Thus, a low frequency approxima-
tion is required that can correctly anticipate the set of dominant
poles without calculating the exact high-order transfer function.

Assume that the exact transfer function at a specific node of
theRLC tree is given by

(28)

where and are positive real constants. The
system order is equal to the total number of capacitors and
inductors in the tree. The order of the numerator polynomial
is less than and is dependent on the node at which the transfer
function is calculated. A order approximate transfer function
is found by direct truncation of the exact transfer function
in (28) and is given by

(29)

where . The numerator order if ;
otherwise . The order of the numerator has to be
less than the order of the denominator for a causal approxi-
mation. If (or the frequency) is sufficiently small, the terms
with higher power of in the denominator and numerator poly-
nomials ( ) are negligible
with respect to the lower power terms in . Thus, for low
frequencies, is an accurate representation of . The
range of frequencies for which is accurate increases as
increases.

The calculation of a order approximation for the transfer
functions at all of the nodes of anRLCtree can be accomplished
by an order limited polynomial multiplication. To better under-
stand this concept, assume thatand are two polynomials
of orders and , respectively. The polynomial given by

has an order of . The polynomials , ,
and are given by

(30)

(31)

(32)

respectively, where the coefficientsare

(33)

Fig. 9. An RC transmission line with a source resistance and a load
capacitance.

Note that is equal to zero if is out of the range of 0
to . For a limited polynomial multiplication, the highest de-
sired power of in is rather than and the coefficients of
higher powers of do not need to be calculated. Also,and
can be limited by since higher powers than in both polyno-
mials cannot produce powers ofin less than or equal to.
Hence, if a order approximation is sought, all of the poly-
nomial multiplications of the DTT method described in the pre-
vious subsection arelimited. These limited polynomial mul-
tiplications are much less expensive than full polynomial multi-
plications since is typically much less than. The number of
scalar multiplications required for alimited polynomial mul-
tiplication is at most when the polynomial orders,

and , are equal to . As is explained in Section III, the
actual number of scalar multiplications performed by the DTT
method is much less than the number of multiplications antici-
pated using the complexity of a polynomial multi-
plication.

D. Determining the Poles, Residues, and the Transient
Response

Once the common denominator of order, is deter-
mined, as described in the previous subsections, the firstdomi-
nant low frequency poles of theRLCtree can be calculated as the
roots of the polynomial . A numerical method for evalu-
ating the roots of a polynomial can be used to determine theRLC
tree poles, , e.g., [40], [41]. The residues corresponding
to each pole at a specific node can be efficiently calculated by
direct substitution of the poles into the numerator of the transfer
function at this node. The residues corresponding to the pole
at node of anRLC tree can be calculated as

(34)

where

(35)

where is the coefficient of in . Note that is inde-
pendent of the node at which the residues are evaluated. Thus,

can be evaluated once and used to calculate the residues
at any number of nodes, which reduces the computational com-
plexity when the transient response is required at many nodes.
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Fig. 10. Transient response evaluated using the DTT method as compared to
SPICE simulations for the circuit shown in Fig. 9 using different approximation
orders. SPICE simulations are represented by a solid line and the DTT
simulations are represented by a dashed line. The circuit shown in Fig. 9 is
simulated withR = 50 
,C = 1 pF,R = 25 
, andC = 0:05 pF.

The poles of the circuit and the corresponding residues at
node of anRLC tree can be used to characterize the transfer
function at node as

(36)

This transfer function can be used to calculate the time domain
response at node for an arbitrary input by multiplying the
Laplace transform of the input by and calculating the
inverse Laplace transform of the resulting expression. For

Fig. 11. A generalRC tree. The resistance values shown are in ohms,
inductance values are in nH, and capacitance values are in picofarads (pFs).

example, for a unit step input, the output response at node,
is

(37)

For an exponential input of the form

(38)

the transient response at nodeis given by

(39)
where is the time constant of the input signal. Some of the
poles determined using the DTT method can be unstable due to
the truncation of the denominator polynomial as discussed in the
following section. These unstable poles can be simply discarded
from the summations in (37) and (39). However, all of the poles
should be included when calculating the residues using (34) and
(35).

III. COMPLEXITY AND STABILITY OF THE DTT METHOD

The DTT method has a complexity linearly proportional to
the order of the tree, which is twice the number ofRLCsec-
tions in the tree since eachRLCsection has one capacitor and
one inductor. This linear complexity occurs because the DTT
method traverses each section in the tree only once as illustrated
in the previous section and in the Appendix. At each section of
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Fig. 12. Transient response evaluated using the DTT method as compared to SPICE simulations at different nodes of theRC tree depicted in Fig. 11. SPICE
simulations are represented by a solid line and the DTT simulations are represented by a dashed line. A fourth-order approximation is used.

Fig. 13. AnRLC transmission line with a source resistance and a load capacitance.

theRLC tree, polynomial multiplications are required to calcu-
late the common denominator as given by (22), (27), and (23).
Although polynomial multiplication has an apparent complexity
proportional to for a order approximation, the average
number of scalar multiplications required per section is much
lower than for anyRLCtree. To better explain this argument,
consider the following cases. A node of anRLC tree with the
right subtree nonexistent has and . Thus, (22),
(27), and (23) become

(40)

(41)

(42)

respectively. Note that the DTT method has no polynomial mul-
tiplication at a node of a tree driving only one branch. The DTT
method is therefore particularly efficient for single lines and in
those cases where branches of a tree can be subdivided into sev-
eral seriesRLCsections to model the distributed nature of the
interconnect impedance.

A binary tree (such as the tree illustrated in Fig. 7 with a total
of branches has leaves. These leaves are driven by
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Fig. 14. Transient response evaluated using the DTT method as compared to SPICE simulations for the circuit shown in Fig. 13 using different orders of
approximation. SPICE simulations are represented by a solid line and the DTT simulations are represented by a dashed line. The circuit shown in Fig. 13is
simulated withR = 40 
, L = 7 nH,C = 1 pF,R = 10 
, andC = 0:1 pF.

branches, which are in turn driven by branches, and so on.
Determining , , and at the leaves requires
only two scalar multiplications independent of the desired ap-
proximation order since for leaf, , , and

. Applying these values at the
next level with branches, the number of scalar multiplica-
tions required to determine , , and is ten mul-
tiplications for a fourth-order approximation or higher. Thus,
for a binary tree, the average number of scalar multiplications
required by the DTT method is much less thanmultiplica-
tions per polynomial multiplication. For example, calculating a
fourth-order approximation at all of the nodes of a binary tree
requires a total number of scalar multiplications, , given by

(43)

Thus, the average number of scalar multiplications per branch
of the tree is 9.75. The number of scalar multiplications calcu-
lated based on the polynomial multiplication complexity is
62 which greatly overestimates the complexity. The overesti-
mation is even worse for higher values of. For , the
actual number of scalar multiplications is 160multiplications
while the model would predict 11 000multiplications. As
the branching factor of anRLC tree increases, the overestima-
tion by the model increases. This trend occurs because the
leaves of the tree (which require only two scalar multiplications)

constitute a larger fraction of the total number of branches with
higher branching factors. For example, a tree with a branching
factor of ten has almost 9/10 of its branches as leaves. For a
general tree with a random branching factor at each node, the
average number of scalar multiplications per node is much less
than the model.

The above analysis demonstrates that the complexity of cal-
culating the transfer functions at all of the nodes of anRLCtree
is almost linear with the desired order of approximation,. This
feature greatly decreases the expense of calculating higher order
approximations. Also, the method depends on simple polyno-
mial multiplications, which are numerically accurate for very
high orders of approximation [42]–[44].

An analysis of the stability of the approximations calculated
using the DTT method shows that a DTT approximation with
an order less than five is guaranteed to be stable. Assume that
the exact common denominator of anRLC tree is given by

l (44)

The common denominator of a order approximation is there-
fore given by

l (45)

For a second-order approximation, the condition for stability is
that and are positive [33]. Since and are the coeffi-
cients of and in the exact common denominator ,
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and are guaranteed to be positive. This behavior occurs be-
cause a passiveRLCtree is guaranteed to be stable [33]–[37] and
stability requires that all of the coefficients ofin the denom-
inator are positive. Therefore, a second-order approximation is
always stable. For a third-order approximation, the Routh–Hur-
witz criterion for stability [33] requires that . The
coefficients , , and are given by

(46)

(47)

(48)

respectively, where , , , are the poles of the exact
common denominator and have negative real parts due to the
stability of a passiveRLCcircuit. Thus, the quantity
is given by

(49)

Note that the quantity is positive since , , ,
have negative real parts. Thus, a third-order approximation

is also guaranteed to be stable. The same procedure can be re-
peated for a fourth-order system. It can be shown that stability
is also guaranteed for a fourth-order system. These low-order
approximations are useful forRC trees since the signals within
anRC tree can typically be approximated with a few dominant
poles due to the monotone nature of the response. Approxima-
tions of order five or higher are not guaranteed to be stable.
However, since the DTT method is numerically stable for any
order of approximation and since the computational complexity
increases slowly with the approximation order, high order ap-
proximations can always be determined using the DTT method
to correctly detect all of the poles in the frequency range of in-
terest.

IV. EXPERIMENTAL RESULTS

The DTT method is applied in this section to calculate the
transient response of severalRC andRLC trees. The resulting
transient responses are compared to SPICE simulations to eval-
uate the accuracy of the DTT method. The DTT method is ap-
plied first to evaluate the transient response of theRC circuit
shown in Fig. 9. The circuit is composed of a distributedRC
transmission line driven by a lumped resistance(which rep-
resents the output impedance of the driving gate) and a load
capacitance (which represents the input capacitance of the
driven gate). The line has a total resistance ofand a total
capacitance of . The transient response based on the DTT
method with approximation orders of two, three, and four are

(a)

(b)

Fig. 15. Transient response evaluated using the DTT method as compared
to SPICE simulations for the circuit shown in Fig. 13 using different line
parameters. SPICE simulations are represented by a solid line and the DTT
simulations are represented by a dashed line. (a)R = 30 
, L = 7 nH,
C = 1 pF,R = 20 
, C = 0:5 pF, and approximation order= 20.
(b) R = 20 
, L = 8 nH,C = 1 pF,R = 10 
, C = 0:4 pF, and
approximation order= 25.

compared to SPICE in Fig. 10. Note that a second-order ap-
proximation has a negligible error in the transient response as
compared to SPICE and that the third and fourth order approx-
imations are practically exact.

The second circuit simulated using the DTT method is theRC
tree shown in Fig. 11. The transient response at several nodes of
the tree are calculated based on the DTT method and compared
to SPICE in Fig. 12. A fourth-order DTT approximation is used
to calculate the transient responses shown in Fig. 12. Note that
a fourth-order approximation is accurate as compared to SPICE
simulations. In general, a fourth-order approximation is suffi-
ciently accurate for mostRC trees. The guaranteed stability of
a fourth-order approximation is therefore a valuable feature for
RCcircuits. Note that despite the fact that anRCcircuit cannot
produce complex poles [34]–[37], a reduced-order approxima-
tion based on the DTT method can result in complex poles for
anRCcircuit. However, the resulting complex poles forRCcir-
cuits always produce accurate stable monotone responses.

The circuit shown in Fig. 13 represents anRLC transmission
line with a lumped source resistance and a load capacitance and
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TABLE I
A GENERAL RLCTREE. THE TREE HASSEVERAL RLCSECTIONS, EACH SECTION OFWHICH COMPRISES A ROW OF THE HAS ANID NUMBER. THE ID NUMBERS OF

THE LEFT AND RIGHT RLC SECTIONS DRIVEN BY AN RLC SECTION ARE GIVEN IN THE FIFTH AND SIXTH COLUMNS. A ZERO IN

THESECOLUMNS IMPLIES THAT THE LEFT ORRIGHT SECTIONS DO NOTEXIST

is simulated using the DTT method. The transient response is
calculated based on the DTT method with approximation or-
ders of 4, 15, 25, and 35 and is compared to SPICE in Fig. 14.
Note that an approximation order between 25 and 35 is required
for an underdamped response with second-order oscillations to
achieve a SPICE-like accuracy. Such high-order approximations
cannot be achieved by AWE [19]–[23] due to its numerical insta-
bility with high approximation orders. Other methods capable
of calculating such high-order approximations [25]–[31] have a
much higher computational complexity as compared to the DTT
method. The computational efficiency of the DTT method and
its numerical accuracy for very high orders of approximation
makes it suitable for accurately simulatingRLC trees. Several
simulations of the circuit shown in Fig. 13 are shown in Fig. 15
with different line parameters and source and load impedances.
The DTT method accurately characterizes the waveform details
as compared to SPICE.

The transient response at several nodes of theRLCtree char-
acterized in Table I are evaluated based on the DTT method
and compared to SPICE in Fig. 16. A 40th-order approxima-
tion is used and is highly accurate as compared to SPICE. A
45th-order approximation is used to evaluate the transient re-
sponse of a large copper interconnect tree based on a 0.25-m

CMOS IBM technology. The tree has 673 capacitors and 673
inductors. The transient responses based on the DTT method
and SPICE are compared in Fig. 17. Note that the DTT method
is capable of accurately characterizing the transient response of
large industrialRLC trees with complicated nonmonotone un-
derdamped responses.

V. CONCLUSION

The DTT method has been introduced to evaluate the tran-
sient responses withinRLC trees with arbitrary accuracy for
any input signal. The DTT method is numerically accurate for
any order of approximation, which permits approximations to
be determined with a large number of poles appropriate for ap-
proximatingRLCtrees with underdamped responses. The DTT
method is computationally efficient with a complexity linearly
proportional to the number of branches in the tree. A common
set of poles is determined that characterizes the responses at all
of the nodes of anRLCtree, which further enhances the compu-
tational efficiency of the proposed method. The stability is guar-
anteed by the DTT method for low-order approximations with
less than five poles, which is useful for efficiently analyzingRC
circuits.
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Fig. 16. Transient response evaluated using the DTT method as compared to SPICE simulations at different nodes of theRLCtree characterized in Table I. SPICE
simulations are represented by a solid line and the DTT simulations are represented by a dashed line. A 40th approximation order is used.

Fig. 17. Transient response evaluated using the DTT method as compared
to SPICE simulations at a particular leaf node of a large copper interconnect
RLCtree based on an IBM 0.25�m CMOS technology. SPICE simulations are
represented by a solid line and the DTT simulations are represented by a dashed
line. A 45th approximation order is used.

APPENDIX

THE DTT ALGORITHM

A generalRLC tree is composed of several connectedRLC
sections. EachRLCsection has a series resistance, inductance,
and capacitance with the capacitance grounded as shown in
Fig. 2. The objective is to calculate the transfer functions across

Fig. 18. Pseudocode for calculating the common denominator of anRLCtree.

all of the capacitors in theRLC tree. The function to calculate
the common denominator of anRLC tree rooted at theRLC
section is Cal_Denominator and uses the DTT algorithm as
explained in Section II. A pseudocode that performs this task is
described in Fig. 18.

The function is initially called by Cal_Denominator () and
recursively calculates the common denominator. The structure
“section” has the elementsR, L, andC, which represent the re-
sistance, inductance, and capacitance of anRLCsection, respec-
tively. The structure also has the arrays, , and , which
represent the polynomials of the numerator,in (27), and the
denominator of the transfer function across the capacitor of the
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Fig. 19. Pseudocode for correcting the numerators of the transfer functions at
all of the nodes of anRLC tree.

RLCsection, respectively. The operator “” represents a polyno-
mial multiplication. An efficient limited order polynomial mul-
tiplication function should be used as discussed in Section II.
The functions, left ( ) and right ( ), return pointers to the left
and right sections driven by, respectively. If no left (right) sec-
tion is driven by , left (right ). The function
uses (22), (27), and (23) and the recursion termination condi-
tions described by the DTT method in Section II-B.

The second step is to correct the numerators of the transfer
functions at the nodes of theRLCtree. The function performing
this task is described in Fig. 19. The function is initially called
by Correct_Numerators ( ) and recursively corrects the nu-
merators at all of the nodes of theRLCtree as described in Sec-
tion II-B. Note that the Correct_Numerators function has to be
called after the Cal_Denominator function has been called.
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