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Memristor-Based Circuit Design for
Multilayer Neural Networks

Yang Zhang, Xiaoping Wang, Member, IEEE, and Eby G. Friedman, Fellow, IEEE

Abstract— Memristors are promising components for applica-
tions in nonvolatile memory, logic circuits, and neuromorphic
computing. In this paper, a novel circuit for memristor-based
multilayer neural networks is presented, which can use a single
memristor array to realize both the plus and minus weight
of the neural synapses. In addition, memristor-based switches
are utilized during the learning process to update the weight
of the memristor-based synapses. Moreover, an adaptive back
propagation algorithm suitable for the proposed memristor-based
multilayer neural network is applied to train the neural net-
works and perform the XOR function and character recognition.
Another highlight of this paper is that the robustness of the
proposed memristor-based multilayer neural network exhibits
higher recognition rates and fewer cycles as compared with other
multilayer neural networks.

Index Terms— Memristor, synaptic weight, crossbar array,
multilayer neural networks, XOR function, character recognition.

I. INTRODUCTION

ARTIFICIAL neural networks have been exploited to
solve many problems in the area of pattern recognition,

exhibiting the potential to provide high speed computation.
One possible device to achieve high speed computation is
memristors, the discovery of which greatly broadened the area
of hybrid CMOS architectures to nonconventional logic [1]
such as threshold logic [2] and neuromorphic computing [3].
Memristors were theoretically postulated by Chua in 1971 [4]
and later Williams’s team presented a resistance variable
device as a memristor at HP Labs in 2008 [5]. As a novel
nanoscale device, memristors provide several advantageous
features such as non-volatility, high density, low power, and
good scalability [6]. Memristors are particularly appealing for
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realizing synaptic weights in artificial neural networks [7], [8]
as the innate property of a reconfigurable resistance with
memory makes memristor highly suitable for synapse weight
refinement.

Neuron circuits were originally developed in
CMOS [9], [10]. Later, hybrid CMOS-memristor synaptic
circuits were developed [11]–[13]. The area and power
consumption of transistors are however much greater than
memristors. A memristor bridge synapse-based neural network
and learning are proposed in [14]–[16], which implement
multilayer neural networks (MNN) trained by a back
propagation (BP) algorithm, and the synapse weight updates
are performed by a host computer. The major computational
bottleneck is however the learning process itself which could
not be completely implemented in hardware with massive
memristor-based crossbar arrays.

Many previous memristor-based learning rules have focused
on Spike-Timing Dependent Plasticity (STDP) [17]. For exam-
ple, neuromorphic character recognition system with two
PCMO memristors (2M) as a synapse was presented in [18],
and a learning rule proposed in [19] for visual pattern recog-
nition with a CMOS neuron. The filamentary switching binary
2M synapse was used for speech recognition [20]. The con-
vergence of STDP-based learning is however not guaranteed
for general inputs [21].

New methods have since been proposed for memristor-
based neuromorphic architectures. For example, brain-state-
in-a-box (BSB) neural networks are presented in [22], which
also use 2M crossbar arrays to represent, respectively, plus-
polarity and minus-polarity connection matrices. Memristor-
based multilayer neural networks with online gradient descent
training are proposed in [23] and [24], which use a single
memristor and two CMOS transistors (2T1M) per synapse.
A training method of a 2M hardware neuromorphic network is
proposed in [25]. To reduce the circuit size, fewer memristors
and transistors are desired. A memristor-based crossbar array
architecture is therefore presented in [26], where both plus-
polarity and minus-polarity connection matrices are realized
by a single crossbar array and a simple constant-term circuit,
thereby reducing the physical size and power dissipation. The
memristor-based neural network in [26] is however limited to a
single layer neural network (SNN). On-chip learning methods
remain a challenge in most memristor-based neural networks.

Neuromorphic processors with memristor-based synapses
are investigated in [27]–[29] to achieve the digital pattern
recognition. Training algorithms of 2M crossbar neuromorphic
processors is proposed in [30] and [31], which could be
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used in MNN; however, two memristors per synapse are
required. An on-chip supervised learning rule for an ultra-high
density neural crossbar using a memristor for the synapse and
neuron is described in [32] to perform XOR and AND logic
operations. Realizing the BP algorithm on a 1M crossbar array
remains an issue.

The primary contributions of this paper are:

1) A memristor-based AND (MRL) gate [33] is utilized
as a memristor-based switch (MS) [2] in updating the
synaptic crossbar circuits. A memristive model for synap-
tic circuits based on experimental data is utilized in
the simulations. Formulae for determining the relevant
time for the weight updating process are also available.
Moreover, an amplifier is added to generate the errors,
creating an opportunity for updating the synaptic weights
on-chip.

2) The memristor-based SNN in [26] is expanded to MNN
and provides enhanced robustness despite the memris-
tance variations. The proposed memristor-based synaptic
crossbar circuit uses fewer memristors and no transistors
as compared with the synaptic circuits discribed in [11],
[12], [14]-[16], [18]-[20], [22], [23], [25], [30], and [31].

3) An adaptive BP algorithm suitable for the proposed
memristor-based MNN is developed to train neural net-
works and perform the XOR function and character
recognition. Moreover, the weight adjustment process and
the proposed MNNs exhibit higher recognition rates and
require fewer cycles.

The remainder of this paper is organized as follows. The
memristor and the MS are discussed in section II. The
proposed memristor-based SNN and the expanded MNN are
presented in section III. The operation of the MNN based on
the proposed adaptive BP algorithm is described in Section IV.
The robustness of the crossbar architecture is discussed
in section V. In section VI, simulation results are provided
to demonstrate the superior performance of the proposed
memristor-based neural networks. The paper is concluded
in section VII.

II. MEMRISTORS AND MS

Basic background about memristors and the memristor-
based switch (MS) are provided in this section. In section II.A,
a memristor is characterized analytically, and different mem-
ristor models are discussed. In section II.B, the MS is proposed
for application to memristor-based neural networks.

A. Memristor

A charge controlled memristance [4] can be described as

M(q) = dφ/dq, (1)

where M(q) is the memristance (in �), φ is the magnetic
flux, and q is the electric charge. The current controlled HP
memristor is [5], [34]

v(t) = R(t)i(t)

R(t) = RON
w(t)

D
+ ROFF

(
1 − w(t)

D

)
⎫⎬
⎭, (2)

Fig. 1. Memristor-based logic switch. (a) A memristor-based logic switch,
and (b) truth table for AND operation.

where w(t) is the width of the doped region (initial width
w(0) = w0 ∈ R), R(t) is the memristance (R(t) = M(q)),
D is the thickness of the TiO2, RON denotes the internal
low memristance when the memristor is completely doped
(w(t) = D), ROFF denotes the internal high memristance
when the memristor is completely undoped (w(t) = 0), and
i(t) and v(t) are, respectively, the current and voltage of the
memristor [5].

To consider the characteristics of the memristors, differ-
ent memristor models are compared in [35]–[37]. Moreover,
different memristor-based SPICE models and circuits are
presented in [38]–[40]. A new model is therefore proposed
which matches the synaptic behavior of recent memristive
devices [41]. The derivative of the state variable in the pro-
posed memristive model is

dw(t)

dt
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μv
RON

D

ioff

i(t) − i0
f (w(t)), v(t) > VT+ > 0

0, VT− � v(t) � VT+
μv

RON

D

i(t)

ion
f (w(t)), v(t) < VT− < 0,

(3)

where i0, ioff , and ion are constants, μv denotes the average
ion mobility, and VT+ and VT− are, respectively, positive and
negative threshold voltages. A relationship exists between the
change of the conductance and the pulse numbers (time) [42].
It is also possible to add a nonlinear ion drift phenomenon,
such as a decrease in the ion drift speed close to the bounds,
with a window,

f (w(t)) = 1 −
(

2w(t)

D
− 1

)2p

, (4)

where p is a positive integer.

B. A Memristor-Based Logic Switch

In a memristor-based neural network, the input voltages
are VH or 0 V. The proposed memristor-based AND logic
switch (MS) is a simplified form of [2], which consists of
two memristors P and Q connected by two positive termi-
nals, as shown in Fig. 1(a). Four memristors are not needed
in an MS since the input voltages are all positive in a
neural network. VP and VQ are the two input voltages, and



ZHANG et al.: MEMRISTOR-BASED CIRCUIT DESIGN FOR MULTILAYER NEURAL NETWORKS 679

VR is the output. To ensure the correctness of the AND
logic operation, RR � RP, RQ, as described in [2]. The
truth table for the memristor-based AND operation is shown
in Fig. 1(b). To simplify the calculation, the window function
is ignored. The nonlinear ion drift phenomenon is considered
in the simulation with a window function. The time required
for a memristor to change from RON to ROFF or from ROFF
to RON is assumed to be the same. The initial weight of
P and Q memristors is arbitrary and the switching time T1 for
MS is [2]

T1 ≈ 2ion�RROFF

kVH
= 2β1ion D2

μv VH
, (5)

where k = μv�RRON/D2, �R is the difference between
ROFF and RON (�R = ROFF − RON), and β1 =
ROFF/RON. ROFF and RON are, respectively, the high
and low memristances of memristors P and Q, as shown
in Fig. 1(a). No threshold in the MS is assumed. The output
error Ve is [2]

Ve ≈ RQ

RP + RQ
VH = RON

ROFF + RON
VH. (6)

To change the memristance of MR from an arbitrary initial
memristance RRi to a final memristance RR f , the relationship
between RR and time T is [2]

T =

⎧⎪⎪⎨
⎪⎪⎩

VR(ln RRi − ln RR f ) − i0(RRi − RR f )

k ′ioff
, VR > 0

R2
Ri − R2

R f

2k ′VR
ion, VR < 0,

(7)

where k ′ = μ′
v�RR′

ON/D2, and R′
ON is the low memristance

of MR.
When the memristance of the memristor MR changes from

R′
ON to R′

OFF, from (7), the time T2 is

T2 = R′2
OFF − R′2

ON

2k ′VR
ion = (β2 + 1)D2

2μ′
v VR

ion, (8)

where β2 = R′
OFF/R′

ON, and R′
OFF is the high memristance

of MR. T1 is desired to be as small as possible with respect
to T2, so β1 < β2 and μv > μv0.

III. MEMRISTIVE NEURAL NETWORK CIRCUITS

In section III.A, a memristor-based single layer neural
network (SNN) is expanded into a multilayer neural net-
work (MNN). Moreover, the modified back propagation (BP)
learning method is proposed for on-chip MNN in section III.B.

A. Memristor-Based SNN

In this section, the MS is utilized in the memristor-based
synaptic crossbar circuit in [26], where both plus-polarity
and minus-polarity connection matrices are realized by a
single crossbar array and a simple constant-term circuit [26].
The second amplifier A2 is changed (as shown in Fig. 2)
in the output part [26] to correctly operate the neural network
(the connection of the positive and negative terminals of
the amplifier are switched). Moreover, amplifier A3 is added
(as shown in Fig. 2) to generate the errors, updating the

Fig. 2. Proposed memristor-based SNN.

synaptic weights on chip. The requirement of T1 to be smaller
than T2 can be achieved by using different memristors in the
MS and synapses. The memristance of the synaptic memristor
is much higher than in the MS.

Assume a learning system that operates on K discrete
iterations of inputs, indexed by k = 1, 2, . . . , K. During each
iteration k, the system receives a pair of two vectors of size
M and N: inputs VI

(k) ∈ R
M and outputs VO

(k) ∈ R
N .

For example, assume W is an adjustable N×M matrix, and
consider the estimator [23],

VO
(k) = W(k)VI

(k), (9)

or

V (k)
O j =

M∑
i=1

W (k)
j i V (k)

Ii , (10)

where i = 1, 2, . . . , M and j = 1, 2, . . . , N.
A new synaptic array composed of a single crossbar array

of M−(G ji ) and the constant-term circuit of Gs is shown
in Fig. 2. Here, Gs (Gs = 1/Rs) is the conductance of Rs ,
and G ji (G ji = 1/R ji ) is the memristor conductance at the
crossing point between the i th row and j th column. VIi is the
input voltage applied to the i th row. According to Kirchhoff’s
law, VF is [26]

VF = −
M∑

i=1

R f

Rs
VIi . (11)

The output voltage of the j th column VO j is

VO j = −
[

M∑
i=1

(R0 × G ji × VIi ) + R0

R f
VF

]
. (12)

Combining (12) with (11), VO j is

VO j =
M∑

i=1

R0 × (Gs − G ji) × VIi . (13)
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The synaptic weight is

W ji = R0 × (Gs − G ji). (14)

The comparator enables V ′
O j as

V ′
O j = f (VO j ) =

{
VH if VO j > 0

VL if VO j ≤ 0,
(15)

where VH and VL (VL = 0) are, respectively, the high and
low voltages of the comparator. The output of the estimator
VO = WVI predicts the target output VT for new unseen
inputs VI. To solve this problem, the synapse weights W
are updated to minimize the error between the outputs and
target outputs over a K0 long subset of the training set
(k = 1, 2, . . . , K0). The error vector is

�V(k) = VT
(k) − V′

O
(k)

. (16)

A common measure is the mean square error (MSE) [23]
which is

MSE =
K0∑

k=1

‖�V(k)‖2. (17)

The performance of the outputs is tested over another subset,
called the test set (k = K0 + 1, K0 + 2, . . . , K).

A feasible iterative algorithm for minimizing the
objective (17) is

W(k+1) = W(k) − 1

2
η∇W(k)‖�V(k)‖2, (18)

where η is the learning rate. Using the chain rule (9) and (16),
∇W(k)‖�V(k)‖2 = −2(VT

(k) − V′
O

(k))(VI
(k))	. Therefore,

defining �W(k) ≡ W(k+1) − W(k), the outer product is

�W(k) = η�V(k)(VI
(k))	, (19)

or

�W (k)
j i = W (k+1)

j i − W (k)
j i = η�V (k)

j (V (k)
Ii ). (20)

Specifically, the MNNs are commonly trained using the BP
algorithm, which is an efficient form of online gradient
descent [43]. Importantly, note that the update rule in (20)
is local, i.e., the change in the synaptic weight W (k)

j i depends

only on the input V (k)
Ii and error �V (k)

j .

To implement BP training for the neural network, the
relevant time is determined for each step. From (14),

�W (k)
j i = −R0�G(k)

j i . (21)

From (20),

�W (k)
j i = η(V (k)

T j − V ′(k)
O j )V (k)

Ii

=

⎧⎪⎪⎨
⎪⎪⎩

0 if V (k)
T j = V ′(k)

O j or V (k)
Ii = 0

ηV 2
H if V (k)

Ii = VH, V (k)
T j = VH, V ′(k)

O j = 0

−ηV 2
H if V (k)

Ii = VH, V (k)
T j = 0, V ′(k)

O j = VH.

(22)

If �W (k)
j i �= 0,

| �G(k)
j i |=| 1

R(k+1)
j i

− 1

R(k)
j i

|= ηV 2
H

R0
. (23)

Fig. 3. Proposed memristor-based MNN.

Assuming W ji ∈ [−1, 1] while R ji ∈ [R′
ON, R′

OFF], R0, Rs ,
R f are determined from (14). From (7), the time T (k) in each
step is

T (k) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

VW(ln R(k)
j i − ln R(k+1)

j i )−i0(R(k)
j i − R(k+1)

j i )

k ′ioff
, VW >0

(R(k)
j i )2− (R(k+1)

j i )2

2k ′VW
ion, VW <0.

(24)

B. Memristor-Based MNN

A simple two-layer neural network can be expanded to a
multilayer NN, as shown in Fig. 3. A two-layer crossbar is
considered. In layer 1, an N×M matrix W(1) (W ji ) corresponds
to N neurons and M inputs. In layer 2, a P × N matrix W(2)

(Wpj ) corresponds to P neurons and N inputs.
An adaptive BP algorithm is [30]

1) Initialize the memristors with a high memristance R′
OFF.

2) Randomly apply the weight updating voltage VW to all
of the memristors to record all of the random values of
the initial weights (W (1)

j i and W (1)
pj ) and memristances

(R(1)
j i and R(1)

pj ).
3) Apply the input patterns VI to the crossbar circuit and

evaluate any hidden and output neuron values.
4) For output layer neurons, determine the error �V between

the neuron output V′
O and the target output VT.

�V (k)
1 j =

P∑
p=1

�V (k)
2p W (k)

pj . (25)
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5) Back propagate the error.

�W (k)
pj = η(V (k)

T2p − V ′(k)
O2p)V (k)

I2 j

=

⎧⎪⎪⎨
⎪⎪⎩

0 if V (k)
T2p = V ′(k)

O2p or V (k)
I2 j = 0

ηV 2
H if V (k)

I2 j = VH, V (k)
T2p = VH, V ′(k)

O2p = 0

−ηV 2
H if V (k)

I2 j = VH, V (k)
T2p = 0, V ′(k)

O2p = VH,

(26)

where neuron p is a connected with the previous layer
neuron j .

6) Apply write pulses to the crossbar with the pulse
width proportional to �Wpj to update the memristor
conductance. If �W (k)

pj �= 0,

| �G(k)
pj |=| 1

R(k+1)
pj

− 1

R(k)
pj

|= ηV 2
H

R0
. (27)

7) Determine �W (k)
j i to ensure that each memristor conduc-

tance is changed.

�W (k)
j i = η�V (k)

1 j V (k)
I1i

=
⎧⎨
⎩

0 if V (k)
I1i = 0

ηVH

∑P

p=1
�V (k)

2p W (k)
pj if V (k)

I1i �= 0.
(28)

8) Apply write pulses to the crossbar with the pulse
width proportional to �W (k)

j i to update the memristor

conductance. If �W (k)
j i �= 0,

| �G(k)
j i | = | 1

R(k+1)
j i

− 1

R(k)
j i

|

=
∣∣∣∣∣
ηVH

∑P
p=1 �V (k)

2p W (k)
pj

R0

∣∣∣∣∣. (29)

9) If the error does not converge to a sufficiently small value,
return to step 2).

Remark 1: Using a similar method, (24)-(29) can be written
as a general expression describing N layers.

IV. SYSTEM OPERATION

The methods of operating the proposed BP training and
synaptic weight adjustment process on-chip are introduced
in this section, which exhibit the advantages of no sneak
paths. In section IV.A, a four step BP on-chip training
method is presented. Sneak path methods that change the
synaptic weight in the neural network array are described in
section IV.B.

A. BP Training Circuit

The circuit implementation of BP training for the neural
network circuits is shown in Fig. 3. The training is composed
of four steps [30]:

1 Apply input voltages to layer 1 and record layer 2 neuron
output errors.

2 Back propagate layer 2 errors through the second layer
weights and record layer 1 errors.

Fig. 4. Memristor-based synaptic weight adjustment method. (a) M22 is
adjusted from 1 to −1, and (b) M22 is adjusted from −1 to 1.

3 Update layer 2 synaptic weights based on layer 2
errors.

4 Update layer 1 synaptic weights based on layer 1 errors.
The four-step operation of the proposed BP training is

described as follows:
Step 1: The input signals, Ctrl1 and Ctrl2, are set

to VH, turning on the MS. A set of input voltages is
applied to the layer 1 neurons, and the layer 2 neu-
ron outputs VO21, VO22, . . . , VO2p, . . . , VO2P are compared
with the expected outputs VT21, VT22, . . . , VT2p, . . . , VT2P.
This process is shown in Fig. 3. The error terms
�V21,�V22, . . . ,�V2p, . . . ,�V2P are based on the differ-
ence between the observed outputs and the expected outputs.
These values are generated using comparators that provide a
discretized error value of VH, −VH, or 0. These errors are
amplified (to 2 V, −2 V, or 0) and applied to the synaptic array
to change the value of the memristances, as shown in Fig. 4.
The value of |�W ji | can be obtained in testing process and
the corresponding |�G ji | (or |�R ji |) can be calculated with
FPGA or LUT (lookup table). The initial states of memristors
are recorded and the calculation of adjustment time can be
processed in FPGA. Each synaptic adjustment is controlled
with peripheral circuits.

Step 2: To back propagate the errors of layer 2,
Ctrl1 and Ctrl2 are set to VH. The layer 2 errors
(�V21,�V22, . . . ,�V2p, . . . ,�V2P) are applied to
the layer 2 weights to generate the layer 1 errors
(�V11,�V12, . . . ,�V1 j , . . . ,�V1N).

Step 3: Ctrl1 and Ctrl2 are set to 0 (MS is turned off)
to isolate the second layer crossbar from the first layer.
A training unit amplifies the layer 2 errors along with the
layer 2 intermediate outputs to generate a set of training pulses.
These pulses are applied to the layer 2 memristor crossbar to
update the layer 2 synaptic weights.

Step 4: To isolate the first layer crossbar from the input
voltages, Ctrl1 and Ctrl2 are set to 0. A process similar
to step 3 is applied to update the synaptic weights in the
memristor crossbar array of layer 1.

B. Synaptic Weight Updating

In the testing process, the applied voltage is the input
voltage 0 or VH. The final output voltages are error signal
voltages 0, VH or −VH. The applied weight update voltages
are amplified to 0, 2 V or −2 V, which are controlled with



682 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 2, FEBRUARY 2018

TABLE I

WEIGHT UPDATE DIRECTION

peripheral circuits. The memristor weight updating process
utilized by the training unit is presented in this section.

All the weights within a crossbar can be updated using the
following method. Different grid sizes of the crossbar arrays
have been evaluated, and a 3×3 crossbar array is considered as
an example. When a voltage greater than the memristor thresh-
old is applied across a memristor, the memristance increases or
decreases depending upon the terminal of the device. The two
possible update situations of �Vj are listed in Table I along
with the direction that the weight is changed, or �Vj = 0 and
the weight remains unchanged.

1) Decreasing Synaptic Weight: If �Vj < 0, VW > 0.
Assume only memristor M22 is changed and the other memris-
tors remain unchanged. One possible solution is to apply dif-
ferent voltages on different rows and columns. For VW = 2 V
on row 2 and the other rows are connected to GND, column 2
is connected to GND and 0.9 V is applied to the other columns,
as shown in Fig. 4(a). The threshold voltage (VT) of the
synapse memristors is 1.5 V, and R f is much smaller than
the memristance of M ji . Only the voltage of memristor M22
is 2 V, which is larger than VT. The memristance of M22
therefore decreases. The voltage of memristors M11, M13,
M31, and M33 is −0.9 V, while the voltage of memristors
M12 and M32 is 1.1 V and the voltage of memristors M21
and M23 is 0 V. The absolute values are all smaller than VT,
the memristances therefore remain the same.

2) Increasing Synaptic Weight: If �Vj > 0, VW < 0.
A similar method is utilized, as shown in Fig. 4(b).

To make changes in the memristor conductances, a volt-
age of appropriate magnitude and polarity for a suitable
duration across the memristor is applied [44]–[46]. In each

step, the required durations T (1)
2 , T (2)

2 , . . . , T (k)
2 , . . . , T (K)

2
can be determined from (27) and (24), and T (1)

1 , T (2)
1 , . . . ,

T (k)
1 , . . . , T (K)

1 can be determined from (29) and (24).

V. ROBUSTNESS ANALYSIS

Process variations and noise can significantly affect circuit
performance. In this section, these noise sources, the impact
of physical design challenges, and sneak path currents are
discussed.

A. Sources of Noise

Electrical noise from the power supplies and neighboring
wires can significantly degrade the quality of the analog sig-
nals. Different from process variations that remain unchanged
once the circuit is fabricated, signal fluctuations vary dur-
ing circuit operation. When character recognition is operated
on-chip, the input voltages can be affected by random noise.
The inputs are changed from 0 to VH to evaluate the robustness
of the proposed MS and synaptic circuit.

TABLE II

PARAMETERS OF THE MEMRISTOR-BASED MNN

B. Physical Challenges

There are four major physical constraints: 1) The memris-
tors in the MS and synaptic array are different; 2) The bound-
ary voltage VH is smaller than the VT of the memristors; 3) The
sum of VH and the maximum amplitude of the noise sources is
smaller than VT. 4) The precision of the synaptic adjustment
process depends upon the precision of the conductance of the
memristors and is adjusted by applying a different number of
voltage pulses.

C. Sneak Path Currents
The training process is not affected by sneak path

currents [47]. Only one write line is raised to reach the weight
changing voltage VW. Other lines are protected to ensure
the absolute value of the voltages remain smaller than VT,
as shown in Fig. 4. VW is set higher than VT since only a small
change in the memristance is needed during each training step.
Hence, the voltage drop on the other memristors is smaller
than VT, and does not result in unexpected changes in the
memristance. However, in larger arrays, after a significant
number of pulses (such as a 16 kb array after 5 × 106 pulses),
the write operation is disturbed and exhibits 164 false
bits [48].

VI. SIMULATION RESULTS

PSPICE is used to evaluate the proposed memristor-based
MNN circuits. The circuits and learning process are also
evaluated in Matlab. The basic memristor model [38] and the
synaptic model with threshold voltages [41] are both used in
the simulations. The parameters of the memristor-based MNN
are listed in Table II. The drive voltages of amplifiers A0 and
A1 are ±5 V, 0.9 V and 0 V for A2, and ±0.9 V for A3.
Many different voltage levels are required, ±5 V voltages is
utilized to produce ±0.9 V and ±2 V voltages through step
down circuits. The range of weights supported by a memristor-
based synapse is [−1,+1].

A. Synaptic Weight Updating
Different grid sizes of crossbars have been considered.

A 3 × 3 crossbar array, for example, considers that memristor
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Fig. 5. Simulation results of memristor-based synaptic weight adjustment
process. (a) Input voltage VW for weight adjustment operation, (b) memris-
tance of memristor M11 (M13, M31, M33 are the same), (c) memristance
of memristor M12 (M32 is the same), (d) memristance of memristor M21
(M23 is the same), and (e) memristance of memristor M22. X represents time
and Y represents voltage.

M22 in row two, column two is accessed. Using the synaptic
weight updating approach, the simulation results demonstrate
that only M22 can be updated from R′

OFF to R′
ON or from R′

ON
to R′

OFF (shown in Fig. 5) while the other memristors remain
the same during the updating process, verifying that the sneak
path currents have been eliminated during the weight updating
process.

The switching time (gate delay) is approximately equal to
0.02 ns from (5), and the error is approximately equal to
0.01 V from (6). A pulse of amplitude 2 V and width 0.61 ns
from (8) change the memristance from R′

OFF to R′
ON (the

weight of the synapse from 1 to −1). Similarly, a pulse of
amplitude −2 V and width 0.61 ns change the memristance
from R′

ON to R′
OFF (the weight of the synapse from −1 to 1),

as shown in Fig. 5.

B. XOR Function

A simple two layer neural network is simulated to verify
the correctness of the learning method. The XOR function is
learned on a network of 2 inputs × 3 hiddens × 1 output,
as shown in Fig. 7. In layer 1, a 3 × 2 memristor matrix
corresponds to three neurons and two inputs. In layer 2, a 1×3
memristor matrix corresponds to three inputs and one output.
One cycle contains four iterations for four different input
patterns and the learning rate η = 0.1. The output voltages
during each iteration are shown in Figs. 6. The error of the
hardware training process for each neuron during each cycle
is shown in Fig. 8 (1,000 events are tested to produce different
samples). The error Ee is

Ee =
√

1

K0
MSE. (30)

C. Character Recognition

A more complex function is simulated on two different
networks for character recognition. One network is a single

Fig. 6. Changes in input and output voltages during each iteration of the
XOR operation. (a) Input voltage VI11, (b) input voltage VI12, and (c) output
voltage V ′

O21.

Fig. 7. XOR operation, (a) MNN, and (b) truth table.

Fig. 8. Training error in each cycle for the XOR operation in the MNN.

Fig. 9. Ten digit images used as an input to the network for character
recognition.

layer composed of 30 inputs × 10 outputs. The network is
trained on black and white images of size 5×6 pixels, as shown
in Fig. 9. Consider, for example, image 5. The input and output
voltages are shown in Table III (“1” represents VH). One cycle
contains ten iterations for ten different input patterns and the
learning rate η = 0.1. The error (K0 = 10) of hardware
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Fig. 10. Input image 5 in the left column is shown. Images with 20%
random pixels as white noise are shown in the middle column to produce a
noisy image mask. The resulting noisy images used for testing are shown in
the right column.

Fig. 11. Training error in each cycle for character recognition in the SNN.
(a) Input images are without noise, and (b) input images are with 20% noise.

TABLE III

INPUT AND OUTPUT VOLTAGE ARRAYS OF IMAGE 5

training for each neuron in each cycle is shown in Fig. 11(a)
(1,000 events are tested to produce different samples).

The robustness of the memristive neural network circuits is
tested using following method. Noise is added to input images

Fig. 12. Training error in each cycle for character recognition in the MNN.

TABLE IV

COMPARISON OF RECOGNITION RATE FOR DIFFERENT NOISE LEVELS

(e.g. number 5) to generate noisy images, as shown in Fig. 10.
The original images for number 5 are shown in the left column,
and uniform random noise mask images are shown in the
middle column. Noisy images are acquired by flipping all of
the pixels in the character images wherever there is a white
pixel in the noise mask image (assuming 20% noise). The
average number of cycles for the correct recognition is shown
in Fig. 11(b). The recognition rate of the network is 99.0%
when 20% noise is added to the images, as listed in Table IV.

Another example network is two layers of 30 inputs × 6
hiddens × 4 outputs. Consider again, for example, image 5.
The input and output voltages are listed in Table III. One cycle
contains ten iterations for ten different input patterns and the
learning rate η = 0.04. The error (K0 = 10) of hardware
training for each neuron in each cycle is shown in Fig. 12
(1,000 events are tested to produce different samples). From
simulation, the recognition rate of the network is 95.4% when
20% noise is added to the images.

The recognition rate of the proposed memristor-based neural
networks when noise is added to the images is compared
with [18] in Table IV. The proposed memristor-based BP
algorithm is compared with the winner-take-all algorithm [18]
in Table V. Note that the proposed system exhibits a higher
recognition rate and requires fewer cycles.

D. Effects of Memristance Variations

In a practical fabricated memristor array, the the updating
process is achieved by applying different numbers of pos-
itive or negative voltage pulses. In each step, the memris-
tance or conductance of memristors are not adjusted precisely,
the effects of memristance variations are therefore discussed
in this section.

To obtain a desired change in the memristance, a voltage
of appropriate magnitude and polarity over a suitable duration
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TABLE V

COMPARISON OF THE PROPOSED MEMRISTOR-BASED BP
ALGORITHM WITH THE WINNER-TAKE-ALL

ALGORITHM IN [18]

Fig. 13. Training error during each cycle with different levels of memristance
variations for character recognition in the SNN.

(pulse number) is applied across the memristor. However, due
to cycle-to-cycle variations, the change during each step cannot
be accurately controlled. Different random noise ranging from
5% to 15% is therefore added to the memristance during each
step, as shown in Fig. 13. The corresponding cycle numbers
are, respectively, 14, 30, and 48. The proposed memristor-
based MNN is shown to be inherently tolerant to memristance
variations.

VII. CONCLUSIONS

A single memristor-based synaptic architecture for mul-
tilayer neural networks with on-chip learning is proposed.
Moreover, an adaptive BP algorithm suitable for the pro-
posed memristor-based multilayer neural network is applied
to train neural networks and perform the XOR function and
character recognition. A simple, compact, and reliable neural
network can be used for applications in pattern recognition
by combining the advantages of the memristor-based synaptic
architecture with the proposed BP weight change algorithm.
The advantages of the proposed architecture are verified
through simulations, demonstrating that the proposed adaptive
BP algorithm exhibits higher recognition rates and requires
fewer cycles.
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