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Synaptic Characteristics of
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Abstract— The memristor, a promising candidate for
synaptic interconnections in artificial neural network, has
gained significant attention for application to neuromorphic
systems. One common method is using two memristors as
one synapse to represent the positive and negative weights.
In this paper, the synaptic behavior of a Ag/AgInSbTe/Ta
(AIST)-based memristor is experimentally demonstrated.
In addition, a neural architecture using one AIST memristor
as a synapse is proposed, where both the plus and minus
weights of the neural synapses are realized in a single mem-
ristive array. Moreover, the memristor-based neural net-
work is extended to a multilayer architecture, and modified
memristor-based backpropagation learning rules are imple-
mented on-chip to achieve pattern recognition. The effects
of device variations and input noise on the performance
of a memristor-based multilayer neural network (MNN) are
also described. The proposed MNN is capable of pattern
recognition with high success rates and exhibits several
advantages, such as good accuracy, high robustness, and
noise immunity.

Index Terms— Crossbar array, memristor, multilayer
neural networks (MNNs), pattern recognition, synaptic
weight.

I. INTRODUCTION

THE traditional Von Neumann computer architecture has
become increasingly insuficient to satisfy the demand

for high-performance computing. Alternative methods are
therefore desired for high-performance memory, logic, and
neuromorphic computing systems [1]–[3]. One of the most
promising candidates is the memristor, the discovery of which
has further broadened the scope of hybrid CMOS architec-
tures to nonconventional architectures [4], such as threshold
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logic [5] and neuromorphic systems [6]. Memristors are par-
ticularly appealing for realizing synaptic weights in artificial
neural networks [7]–[12] for the following reasons. First,
memristors are a simple two-terminal structure, supporting
high density crossbar arrays. Second, the device conductance,
which represents the synaptic weight, can be changed by
simple positive and negative voltage pulses.

One common method to achieve the positive and negative
weights is utilizing two memristors as one synapse for pattern
recognition [13]–[17]. More complex memristor-based multi-
layer neural networks (MNNs) with online gradient descent
training have been realized by using a single memristor and
two CMOS transistors (2T1M) per synapse [18]. A sim-
pler memristor-based crossbar array architecture is described
in [19], where both plus-polarity and minus-polarity connec-
tion matrices are realized by a single memristor-based crossbar
array.

In this paper, the synaptic behavior of Ag/AgInSbTe/Ta
(AIST)-based memristive devices is experimentally demon-
strated. Reproducible gradual resistance tuning as an electronic
synapse is shown in our previous study [20]. The resistance is
precisely tuned by regulating the polarity, amplitude, width,
and number of applied voltage pulses [21], [22]. In addi-
tion, a memristor-based neural network is extended to mul-
tilayers using one memristor as a synapse with a modified
memristor-based backpropagation (BP) learning rule imple-
mented on-chip. The effects of conductance variations cannot,
however, be accurately controlled by adjusting the synaptic
weight. Random variations in the conductance are therefore
added to the adjustment process of the synaptic weights.

II. EXPERIMENT

Ag (100 nm)/AgInSbTe (25 nm)/Ta (100 nm) stacked
capacitorlike memristors have been fabricated and charac-
terized. An image of the devices from a scanning electron
microscope (SEM) is shown in Fig. 1(a). The contact areas
of the devices are 100 × 100 μm2, 200 × 200 μm2, and
300 ×300 μm2. In this system, positive and negative voltages
are applied to change the conductance of the memristive
device, as shown in Fig. 1(b). The positive bias is from the
top Ta electrode to the bottom Ag electrode.

The current–voltage (I–V ) characteristics of a 100 ×
100 μm2 device is shown in Fig. 1(c). The pinched hysteresis
loop exhibits a memristor fingerprint, and no electroforming
process is needed to induce resistive switching. During a
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Fig. 1. Memristive behavior of Ag/AgInSbTe/Ta memristor. (a) Top
SEM view of the Ag (100 nm)/AgInSbTe (25 nm)/Ta (100 nm) stacked
capacitorlike devices with various contact areas deposited on the Si/SiO2
Substrate. (b) Scheme of the devices and measurement setup. (c) Bipolar
resistive switching I–V characteristics. (d) Double logarithmic plots
of I–V curves in the positive bias region, indicating an SCLC mechanism.
(e) Repetitive gradual device conductance modulation under pulse stim-
ulation. (f) Experimental evolution of the conductance under the stimulus
of 50 positive pulses (0.6 V, 5 μs) and 50 negative pulses (−0.6 V, 5 μs).

linear direct current (dc) voltage sweep, a relatively small
SET voltage at approximately 0.19 V drives the memristor
to a low-resistance state from a high-resistance state, whereas
a RESET voltage of approximately −0.37 V switches the
device to the high-resistance state. The logarithmic I–V char-
acteristics of the positive region is shown in Fig. 1(d), which
exhibits an ohmic behavior (with a slope of approximately
1) in the low-voltage region, followed by a rapid nonlinear
increase in current in the high-voltage region. Several switch-
ing mechanisms have been proposed, such as space charge-
limited conduction (SCLC), electrochemical metallization, and
valence change mechanism. This phenomenon indicates that
the memristive behavior could be characterized by the SCLC
mechanism [20], [21], [23]. In the low-voltage region of 0–
0.19 V, the thermally generated carriers exceed the injected
carriers, resulting in a linear I–V behavior. At the threshold
voltage (VT ) of the memristor, the increased injected carriers
are absorbed as charge traps originating from the distorted
structure of the amorphous AgInSbTe. When the traps are
filled by injected carriers, an abrupt increase in the current
occurs. When the space charge accumulates in the material,
a field is established that hinders further injection, and the
slope reduces to 2, consistent with the Mott–Gurney law

(I ∝ V 2) [24]. In contrast, a negative bias releases the carriers,
and the device returns to the high-resistance state.

The gradual conductance tuning property under positive or
negative voltage pulses has also been examined, as shown in
Fig. 1(e) and (f). Due to the application of ten consecutive
periods of 50 positive pulses (0.6 V, 5 μs) and 50 negative
pulses (−0.6 V, 5 μs), the device conductance can be contin-
uously increased or decreased, representing the potentiation
or depression of the memristive synapse. The upper and lower
limit of the conductance is, respectively, 2.4 and 11.1 mS,
although cycle-to-cycle variations exist. This characteristic
can be utilized in electronic synapses for synaptic weight
adjustment. This gradual change in conductance may result
from homogenous charge trapping and detrapping processes
rather than a localized filamentary conduction mechanism.

Three layers of the stacked devices have been prepared by
dc magnetron sputtering (JZCK-640S) at room temperature.
The bottom 100-nm Ag electrode is deposited on a Si/SiO2
(1 μm) substrate. The pattern of the upper 25-nm AgInSbTe
and 100-nm Ta layers is formed by photolithography (Karl
Suss MJB3), followed by a sequential AgInSbTe/Ta deposition
and lift-off process. During AgInSbTe film deposition, the
sputtering power and argon pressure are maintained, respec-
tively, at 30 W and 0.5 Pa. An SEM image of the memristors
is from a Nova NanoSEM 450. Electrical characterization is
performed using a probe station (Cascade S300) equipped with
a semiconductor characterization system (Keithley 4200-SCS)
under a dc voltage sweep mode and pulse mode. During
electrical measurements, the positive bias is the current flow-
ing from the Ta electrode to the bottom Ag electrode. All
measurements are performed at room temperature in air.

III. APPLICATION TO NEURAL NETWORKS

A. Memristor-Based Multilayer Neural Networks

A CMOS analog transmission gate (TG) is used as a switch,
as shown in Fig. 2(a). When C = 0 and C = VDD, the TG
turns OFF. Alternatively, when C = VDD and C = 0, the TG
turns on [see Fig. 2(b)]. A neural network structure using a
crossbar array of memristors controlled by TGs is adopted, as
shown in Fig. 2(c), where the M input channels are connected
to the rows and the N output channels are connected in the
first layer to the columns of the memristor crossbar network.
The second layer supports the N input channels and P output
channels.

The network is trained on black white images of size
3 × 5 pixels, as shown in Fig. 3(a) and (c). For example, the
input voltages of image 3 are [111; 001; 010; 001; 111] and
the target outputs are [0; 0; 1; 1] (“1” represents VH ). Pattern
recognition for eight digit numbers [see Fig. 3(c)] is simulated
on a two layer network of 15 inputs ×7 hiddens ×4 outputs,
as shown in Fig. 3(b). The corresponding outputs of numbers
0 to 7 are (0, 0, 0, 0) to (0, 1, 1, 1) [see Fig. 3(d)].

To change the weight of the memristor-based neural net-
work, VDD/2 and VDD/3 write schemes [25] can be used.
However, due to the proposed circuits and threshold voltage
of the AgInSbTe memristor, the conventional VDD/2 or VDD/3
write scheme cannot satisfy the weight updating process. The
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Fig. 2. Memristor-based MNN. (a) Structure of CMOS TG. (b) Symbol
for CMOS TG. (c) Proposed memristor-based MNN. (d) Voltages for
conductance of M22 increasing. (e) Conductance of M22 decreasing.

relative protection voltages are therefore determined, and the
weight change method is shown in Fig. 2(d) and (e). Different
grid crossbar sizes have been tested, and a 3×3 crossbar array
is considered as an example. Only memristor M22 is assumed
to change and the other memristors remain unchanged. The
voltages in the process of conductance change are shown
in Fig. 2(d) and (e).

Assume that a learning system operates on K discrete
iterations of inputs, indexed by k = 1, 2, . . . , K. During each
iteration k, the system receives a pair of two vectors of size
M and N: inputs VI

(k) ∈ R
M and outputs VO

(k) ∈ R
N .

For example, assume that W is an adjustable N×M matrix,
and consider the estimator [18]

VO
(k) = W(k)VI

(k) (1)

or

V (k)
O j =

M∑

i=1

W (k)
j i V (k)

I i (2)

where i = 1, 2, . . . , M and j = 1, 2, . . . , N.

Fig. 3. Memristor-based MNN for pattern recognition of eight-digit
numbers (0-7). (a) 3× 5 input image. (b) MNN for classification of 3× 5
binary images. (c) Ideal input images and noisy images with 15% random
pixels. (d) Output of numbers 0–7 are (0, 0, 0, 0) to (0, 1, 1, 1).

A synaptic array circuit composed of a single crossbar
array of M−(G ji ) and a constant-term circuit of Gs are
shown in Fig. 2(c). Here, Gs (= 1/Rs) is the conductance
of Rs , and G ji (=1/R ji ) is the memristor conductance at the
crossing point between the i th row and j th column. VI i is the
input voltage applied to the i th row. According to Kirchhoff’s
voltage law, the synaptic weight is

W ji = R0 × (Gs − G ji). (3)

The comparator enables V ′
O j as

V ′
O j = f (VO j ) =

{
VH if VO j > 0

VL if VO j ≤ 0
(4)

where VH and VL (VL = 0) are, respectively, the high and
low voltage of the comparator. The output of the estimator
VO = WVI predicts the target output VT for new unseen
inputs VI. To solve this problem, the synapse weights W
are updated to minimize the error between the outputs and
target outputs over a K0-long subset of the training set
(k = 1, 2, . . . , K0). The error vector is

�V(k) = VT
(k) − V′

O
(k)

. (5)

The final error Ee is

Ee =
√√√√ 1

K0

K0∑

k=1

‖�V(k)‖2. (6)

A modified BP learning rule is applied to reduce the error Ee

to zero.
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TABLE I
FITTING PARAMETERS TO PRACTICAL MEMRISTIVE DEVICES

B. Effects of Device Variations

To obtain a desirable change in the memristor conductance,
a voltage of appropriate magnitude and polarity for a suitable
duration (pulse number) is applied across the memristor. The
memristance of the AIST-based memristive device can be
described by the synaptic model [26]

R(t) = RON
w(t)

D
+ ROFF

(
1 − w(t)

D

)
(7)

where w(t) is the width of the doped region, D is the
thickness, ROFF and RON are, respectively, the internal high
and low memristances. The derivative of the width is

dw(t)

dt
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μv
RON

D

iOFF

i(t) − i0
f (w(t)), v(t) > VT+ > 0

0, VT− ≤ v(t) ≤ VT +
μv

RON

D

i(t)

iON

f (w(t)), v(t) < VT − < 0

(8)
where i0, iOFF, and iON are constants, μv denotes the average
ion mobility, and VT + and VT − are, respectively, positive and
negative threshold voltages. The parameters of the AIST-based
memristor are listed in Table I.

However, due to cycle-to-cycle variations of practical
devices, the change in each step cannot be accurately
controlled. To verify the effects of device variations on net-
work performance, the relevant device parameters are assumed
to follow a Gaussian distribution. The exact value of a parame-
ter for a given device is randomly chosen using a Monte Carlo
method during the simulation process [27]. The abrupt changes
of the practical devices reduce the successful recognition rate
of complex functions. Another method is using the stochastic
memristive model in neuromorphic system design [28]. In
this paper, the synaptic model mentioned previously is built
to evaluate the effect of abrupt changes of the conductance.
Moreover, considering the effects of device variations, the
weight (conductance) is not precisely adjusted. During each
step, more than one pulse may be applied to update the weight.
The effect of random noise on the conductance during each
step is also compared, as shown in Fig. 4(a). The different ran-
dom noise rates are 0%, 5%, 10%, and 15% for four different
tests. The corresponding cycle numbers are, respectively, 31,
55, 64, and 70. Changes in the corresponding output voltages
during the first ten cycles and final ten cycles are, respectively,
shown in Fig. 5(a) and (b). Based on measurement data,

Fig. 4. Training error in each cycle for pattern recognition in an MNN
assuming device variations and noisy images. (a) Number of cycles of
random noise of the conductance adjusted for each step. (b) Number of
cycles of different noise levels for the noisy input images.

the level of noise for successful recognition is 14.91%. The
proposed memristor-based MNN is verified to be inherently
tolerant to device variations.

The results of training errors during each cycle for the
correct recognition patterns in a memristor-based MNN for
six different runs are illustrated in Fig. 6(a). The learning
rate η is 0.05 for six different tests (from Run 1 to Run 6),
and the corresponding cycle numbers are, respectively, 52, 43,
48, 52, 37, and 63 [see Fig. 6(a)]. Additionally, the results
of training errors during each cycle for the correct pattern
recognitions at different learning rates are shown in Fig. 6(b).
The learning rate η = 0.05, 0.01, 0.03, 0.06, 0.02, and 0.008
for six different runs, and the corresponding cycle numbers are,
respectively, 58, 187, 62, 39, 100, and 868. If the learning rate
is excessively high (η = 0.07), the weights are updated too
fast and can overshoot the optimal value. Alternatively, if the
learning rate is too small (η = 0.005), the weights are updated
too slow and may not be able to overcome a local minima [27].
When η ≤ 0.005 or η ≥ 0.07, the error cannot converge to 0
within 2000 cycles, suggesting that the learning rate needs to
be properly chosen (η = 0.05) to balance between the learning
speed and the accuracy.

When pattern recognition is operated on-chip, the input
voltages are assumed to be affected by a different amount of
random noise. The inputs are changed from 0 to VH to evaluate
the robustness of the circuit. Noisy images are acquired by
randomly flipping 15% of the pixels as black in the character
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Fig. 5. Change in output voltages during each cycle. (a) Change in the
outputs (V′O21, V′O22, V′O23, and V′O24) during the first ten cycles, and
(b) change in the outputs (V′O21, V′O22, V′O23, and V′O24) during the last
ten cycles.

images, as shown in Fig. 3(d). The different noise levels for
the input noisy images are compared, as shown in Fig. 4(b).
The different noise levels are 0%, 5%, 10%, and 15% for four
different runs, and the corresponding cycle numbers are 48, 99,
74, and 101. The proposed memristor-based MNN, therefore,
exhibits the advantages of good accuracy, high robustness, and
noise immunity.

C. Energy Reducing Method and Comparion

AIST-based memristors have been fabricated in neural net-
works as synapses. The proposed memristive neural network
has been extended to multilayers. The MNN can be effec-
tively described as a modified on-chip BP learning rule and
trained to perform eight digit number recognition. Although
the energy consumption of the AIST-based memristors is
relatively high, several methods exist to reduce the energy,
such as scaling the cell size to nanometers [29], controlling
the conductive filament formation/disruption process [30], and
inserting an additional insulating layer [31]. The proposed
memristor-based synaptic crossbar circuit requires fewer mem-
ristors as compared with PCMO-based memristive synaptic
circuits [13], [14], [17] and metal–oxide memristive synaptic
circuits [15], [16], since the synapse can be realized by a
single memristor. The control circuits within the peripheral

Fig. 6. Training error in each cycle for pattern recognition in an MNN
for six different runs. (a) η = 0.05 for six different runs, and (b) different
rates, η = 0.05, 0.01, 0.03, 0.06, 0.02, and 0.008.

circuits of the proposed neural network are therefore simpler
than using two memristors as one synapse. Moreover, a
memristor-based neural network has also been extended to
multilayers, and a modified BP learning rule is applied to
achieve on-chip pattern recognition. After learning the prin-
cipal input images, the memristor-based MNN successfully
classifies the different digit numbers. Another highlight of
this paper is that successful learning and classification are
obtained in the memristor-based MNN despite the presence
of device variations, demonstrating the reliability of the MNN
architecture and the proposed learning algorithm.

IV. CONCLUSION

The proposed AIST memristor is verified to behave as a
synapse within a neural architecture, where both the plus and
minus weights of the neural synapses are realized in a single
memristor array. Moreover, the extended MNN exhibits several
advantages, such as good accuracy, high robustness, and noise
immunity, which is verified by simulation. The ability to reli-
ably achieve on-chip learning and perform classification tasks
in the presence of unreliable devices is also demonstrated. This
approach can be extended to larger MNNs and other learning
algorithms to achieve more complex tasks.
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