perimental results show that BPDG-based substrate noise estimation can speed up the sequence pair based floorplanning by $73 \times$ and the B^* -tree based floorplanning by $33 \times$, comparing with the conventional *full-blown substrate noise simulation-based* floorplanning.

References

- A. Nardi, H. Zeng, J. L. Garrett, L. Daniel, and A. L. Sangiovanni-Vincentelli, "A methodology for the computation of an upper bound on nose current spectrum of CMOS switching activity," in *Proc. Int. Conf. Comput.-Aided Des.*, Nov. 2003, pp. 778–785.
- [2] A. Koukab, K. Banerjee, and M. Declercq, "Modeling techniques and verification methodologies for substrate coupling effects in mixed-signal system-on-chip designs," *IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.*, vol. 23, no. 6, pp. 823–836, Jun. 2004.
- [3] M. V. Heijingen, M. Badarouglu, S. Donnay, G. G. E. Gielen, and H. J. D. Man, "Substrate noise generation in complex digital systems: Efficient modeling and simulation methodology and experimental verification," *IEEE J. Solid-State Circuits*, vol. 37, no. 8, pp. 1065–1072, Aug. 2002.
- [4] H. Lan, Z. Yu, and R. W. Dutton, "A CAD-oriented modeling approach of frequency-dependent behavior of substrate noise coupling for mixed-signal IC design," in *Proc. Int. Symp. Quality Electron. Des.*, Mar. 2003, pp. 195–200.
- [5] B. E. Owens, S. Adluri, P. Birrer, R. Shreeve, S. K. Arunachalam, and K. Mayaram, "Simulation and measurement of supply and substrate noise in mixed-signal ICs," *IEEE J. Solid-State Circuits*, vol. 40, no. 2, pp. 382–391, Feb. 2005.
- [6] N. K. Verghese and D. J. Allstot, "Rapid simulation of substrate coupling effects in mixed-mode ICs," in *Proc. IEEE Custom Integr. Circuits Conf.*, May 1993, pp. 18.3.1–18.3.4.
- [7] R. Gharpurey and R. G. Meyer, "Modeling and analysis of substrate coupling in integrated Circuits," *IEEE J. Solid-State Circuits*, vol. 31, no. 3, pp. 344–353, Mar. 1996.
- [8] N. K. Verghese and D. J. Allstot, "Computer-aided design considerations for mixed-signal coupling in RF integrated circuits," *IEEE J. Solid-State Circuits*, vol. 33, no. 3, pp. 314–323, Mar. 1998.
- [9] J. P. Costa, M. Chou, and L. M. Silveria, "Efficient techniques for accurate modeling and simulation of substrate coupling in mixed-signal IC's," *IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems*, vol. 18, no. 5, pp. 597–607, May 1999.
- [10] D. Ozis, T. Fiez, and K. Mayaram, "A comprehensive geometry-dependent macromodel for substrate noise coupling in heavily doped CMOS processes," in *Proc. IEEE Custom Integr. Circuits Conf.*, May 2002, pp. 497–500.
- [11] L. Deferm, C. Claes, and G. J. Declerck, "Two- and three-dimensional calculation of substrate resistance," *IEEE Trans. Electron Devices*, vol. 35, no. 3, pp. 339–352, Mar. 1988.
- [12] S. Mitra, R. A. Rutenbar, L. R. Carley, and D. J. Allstot, "Substrateaware mixed-signal macro-cell placement in WRIGHT," *IEEE J. Solid-State Circuits*, vol. 30, no. 3, pp. 529–532, Mar. 1995.
- [13] S.-S. Lee and D. J. Allstot, "Electrothermal simulation of integrated circuits," *IEEE J. Solid-State Circuits*, vol. 28, no. 12, pp. 1283–1293, Dec. 1993.
- [14] C. Lin and D. M. W. Leenaerts, "A new efficient method substrateaware device-level placement," in *Proc. Asia South Pac. Des. Autom. Conf.*, Jan. 2000, pp. 533–536.
- [15] W. H. Kao and W. K. Chu, "Noise constraint driven placement for mixed signal designs," in *Proc. IEEE Int. Symp. Circuits Syst.*, May 2003, pp. 712–715.
- [16] G. Blakiewicz, M. Jeske, M. Chrzanowska-Jeske, and J. S. Zhang, "Substrate noise modeling in early floorplanning of mixed-signal SOCs," in *Proc. Asia South Pac. Des. Autom. Conf.*, Jan. 2005, pp. 819–823.
- [17] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, "VLSI module placement based on rectangle-packing by the sequence-pair," *IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.*, vol. 15, no. 12, pp. 1518–1524, Dec. 1996.
- [18] X. Tang and D. F. Wong, "Floorplanning with alignment and performance constraints," in *Proc. Des. Autom. Conf.*, Jun. 2002, pp. 848–853.
- [19] H. Xiang, X. Tang, and M. D. F. Wong, "Bus-driven floorplanning," *IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.*, vol. 23, no. 11, pp. 1522–1530, Nov. 2004.
- [20] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, "B*-Ttrees: A new representation for non-slicing floorplans," in *Proc. Des. Autom. Conf.*, Jun. 2000, pp. 458–463.

- [21] T.-C. Chen and Y.-W. Chang, "Modern floorplanning based on fast simulated annealing," in *Proc. Int. Symp. Phys. Des.*, Apr. 2005, pp. 104–112.
- [22] H. Han, "Synthesized compact models for substrate noise coupling in mixed-signal ICs," Ph.D. dissertation, Dept. Electr. Eng., Stanford Univ., Stanford, CA, 2006.
- [23] S. N. Adya and I. L. Markov, "Fixed-outline floorplanning: Enabling hierarchical design," *IEEE Trans. Very Large Scale Integr. (VLSI) Syst.*, vol. 11, no. 12, pp. 120–1135, Dec. 2003.

Efficient Distributed On-Chip Decoupling Capacitors for Nanoscale ICs

Mikhail Popovich, Eby G. Friedman, Radu M. Secareanu, and Olin L. Hartin

Abstract—A distributed on-chip decoupling capacitor network is proposed in this paper. A system of distributed on-chip decoupling capacitors is shown to provide an efficient solution for providing the required on-chip decoupling capacitance under existing technology constraints. In a system of distributed on-chip decoupling capacitors, each capacitor is sized based on the parasitic impedance of the power distribution grid. Various tradeoffs in a system of distributed on-chip decoupling capacitors are also discussed. Related simulation results for typical values of on-chip parasitic resistance are also presented. The worst case error is 0.003% as compared to SPICE.

Index Terms—Decoupling capacitors, power distribution systems, power noise.

I. INTRODUCTION

Decoupling capacitors are widely used to manage power supply noise [1]. Decoupling capacitors are an effective way to reduce the impedance of power delivery systems operating at high frequencies [2]. A decoupling capacitor acts as a local reservoir of charge, which is released when the power supply voltage at a particular current load drops below some tolerable level. Since the inductance scales slowly [3], the location of the decoupling capacitors significantly affects the design of the power/ground (P/G) networks in high performance integrated circuits (ICs) such as microprocessors. At higher frequencies, a distributed system of decoupling capacitors is placed on-chip to effectively manage the power supply noise [4].

The efficacy of decoupling capacitors depends upon the impedance of the conductors connecting the capacitors to the current loads and power sources. As described in [5], a maximum parasitic impedance

Manuscript received March 07, 2007; revised August 28, 2007 and November 30, 2007. Current version published November 19, 2008. This work was supported in part by the Semiconductor Research Corporation under Contract 2004-TJ-1207, by the National Science Foundation under Contract CCR-0304574 and Contract CCF-0541206, by grants from the New York State Office of Science, Technology and Academic Research to the Center for Advanced Technology in Electronic Imaging Systems, and by grants from Intel Corporation, Eastman Kodak Company, and Freescale Semiconductor Corporation.

M. Popovich is with the QCT, Qualcomm Corporation, San Diego, CA 92121 USA (e-mail: mikhailp@qualcomm.com).

E. G. Friedman is with the Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627 USA (e-mail: friedman@ece.rochester.edu).

R. M. Secareanu and O. L. Hartin are with the Microwave and Mixed Signal Technologies Laboratory, Freescale Semiconductor, Tempe, AZ 85284 USA (e-mail: r54143@freescale.com; lee.hartin@freescale.com).

Digital Object Identifier 10.1109/TVLSI.2008.2001735

Fig. 1. Placement of on-chip decoupling capacitors using a conventional approach. Decoupling capacitors are allocated into the white space (those areas not occupied by the circuits elements) available on a die using an unsystematic or *ad hoc* approach. As a result, the power supply voltage drops below the minimum tolerable level for remote blocks (shown in dark grey). Low noise regions are light grey.

between the decoupling capacitor and the current load (*or* power source) exists at which the decoupling capacitor is effective. Alternatively, to be effective, an on-chip decoupling capacitor should be placed to ensure that both the power supply and the current load are located inside the appropriate effective radius [5]. The efficient placement of on-chip decoupling capacitors in nanoscale ICs is the subject of this paper. Unlike the methodology for placing a single lumped on-chip decoupling capacitors is proposed. A design methodology to estimate the parameters of a distributed system of on-chip decoupling capacitors is also presented, permitting allocation of the required on-chip decoupling capacitance under existing technology constraints.

This paper is organized as follows. The problem of placing on-chip decoupling capacitors in nanoscale ICs under technology constraints is formulated in Section II. The design of an on-chip distributed decoupling capacitor network is presented in Section III. Several design tradeoffs are discussed in Section IV. Related simulation results for typical on-chip parasitic resistances are discussed in Section V. Some specific conclusions are summarized in Section VI.

II. PLACING ON-CHIP DECOUPLING CAPACITORS IN NANOSCALE ICS

Decoupling capacitors have traditionally been allocated into the white space (those areas not occupied by the circuit elements) available on a die based on an unsystematic or *ad hoc* approach [6], as shown in Fig. 1. In this way, decoupling capacitors are often placed at a significant distance from the current load. Conventional allocation strategies, therefore, result in increased power noise, compromising the signal integrity of an entire system. This issue of power delivery cannot be alleviated by simply increasing the size of the on-chip decoupling capacitors. Furthermore, increasing the size of more distant on-chip decoupling capacitors results in wasted area, increased power, reduced reliability, and higher costs. A new design methodology is therefore required to account for technology trends in nanoscale ICs, such as increasing frequencies, larger die sizes, higher current demands, and reduced noise margins.

To be effective, a decoupling capacitor should be placed physically close to the current load. This requirement is naturally satisfied in board and package applications, since large capacitors are much smaller than the dimensions of the circuit board (or package) [7]. In this case, a lumped model of the decoupling capacitor provides sufficient accuracy [8].

Fig. 2. Network of distributed on-chip decoupling capacitors. The magnitude of the decoupling capacitors is based on the impedance of the interconnect segment connecting a specific capacitor to a current load.

Fig. 3. Physical model of the proposed system of distributed on-chip decoupling capacitors. Two capacitors are assumed to provide the required charge drawn by the load. Z_1 and Z_2 denote the impedance of the metal lines connecting C_1 to the current load and C_2 to C_1 , respectively.

The size of an on-chip decoupling capacitor, however, is directly proportional to the area occupied by the capacitor and can require a significant portion of the on-chip area. The minimum impedance between an on-chip capacitor and the current load is fundamentally affected by the magnitude (and therefore the area) of the capacitor. Systematically partitioning the decoupling capacitor solves this issue. A system of on-chip distributed decoupling capacitors is illustrated in Fig. 2.

In a system of distributed on-chip decoupling capacitors, each decoupling capacitor is sized based on the impedance of the interconnect segment connecting a capacitor to a current load. A particular capacitor only provides charge to a current load during a short period. The rationale behind the proposed scheme can be explained as follows. The capacitor closest to the current load is engaged immediately after the switching cycle is initiated. Once the first capacitor is depleted, the next capacitor is activated, providing a large portion of the total current drawn by the load. This procedure is repeated until the last capacitor becomes active. Similar to the hierarchical placement of decoupling capacitors presented in [2] and [9], the proposed technique provides an efficient solution for providing the required on-chip decoupling capacitance based on specified capacitance density constraints. A system of distributed on-chip decoupling capacitors should therefore be utilized to provide a low impedance, cost effective power delivery network in nanoscale ICs.

III. DESIGN OF AN ON-CHIP DISTRIBUTED DECOUPLING CAPACITOR NETWORK

As described in Section II, a system of distributed on-chip decoupling capacitors is an efficient solution for providing the required on-chip decoupling capacitance based on the maximum capacitance density available in a particular technology. A physical model of the proposed technique is illustrated in Fig. 3. For simplicity, two decoupling capacitors are assumed to provide the required charge drawn by the current load. Note that as the capacitor is placed farther from the current load, the magnitude of an on-chip decoupling capacitor increases due to relaxed area constraints. Also note that by applying an approach similar to KVL and KCL expressions for two stages, an analytic solution for any practical number of on-chip decoupling capacitors can be developed.

A circuit model of the proposed system of distributed on-chip decoupling capacitors is shown in Fig. 4. The impedance of the metal lines connecting the capacitors to the current load is modeled as resistors R_1 and R_2 . A triangular current source is assumed to characterize the

Fig. 4. Circuit model of an on-chip distributed decoupling capacitor network. The impedance of the metal lines is modeled as R_1 and R_2 , respectively.

current load. The magnitude of the current source increases linearly, reaching the maximum current I_{max} at rise time t_r , i.e., $I_{\text{load}}(t) = I_{\text{max}}(t/t_r)$.

Note from Fig. 4 that since the charge drawn by the current load is provided by the on-chip decoupling capacitors, the voltage across the capacitors during discharge drops below the initial power supply voltage. The required charge during the entire switching event is thus determined by the voltage drop across C_1 and C_2 .

The voltage across the decoupling capacitors at the end of the switching cycle $(t = t_r)$ can be determined from Kirchhoff's laws [10]. Writing KVL and KCL equations for each of the loops (see Fig. 4), the system of differential equations for the voltage across C_1 and C_2 at t_r is

$$\frac{dV_{C_1}}{dt} = \frac{V_{C_2} - V_{C_1}}{R_2 C_1} - \frac{I_{load}}{C_1} \tag{1}$$

$$\frac{dV_{C_2}}{dt} = \frac{V_{C_1} - V_{C_2}}{R_2 C_2}.$$
(2)

Simultaneously solving (1) and (2) and applying the initial conditions, the voltage across C_1 and C_2 at the end of the switching activity is determined by (3) and (4), respectively. I_{max} is the magnitude of the maximum current load and t_r is the rise time

$$V_{C_{1}}|_{t=t_{r}} = \frac{1}{2(C_{1}+C_{2})^{3}t_{r}} \times \left[2C_{1}^{3}t_{r} + C_{1}^{2}t_{r}(6C_{2}-I_{\max}t_{r}) - C_{2}^{2}t_{r} \times (2C_{2}(I_{\max}R_{2}-1) + I_{\max}t_{r}) + 2C_{1}C_{2} \times (C_{2}^{2}\left(1-e^{-\frac{(C_{1}+C_{2})t_{r}}{C_{1}C_{2}R_{2}}}\right)I_{\max}R_{2}^{2} + C_{2}(3-I_{\max}R_{2})t_{r} - I_{\max}t_{r}^{2} \right]$$
(3)

$$V_{C_{2}}|_{t=t_{r}} = \frac{1}{2(C_{1}+C_{2})^{3}t_{r}} \times \left[2C_{1}^{3}t_{r} + C_{2}^{2}t_{r}(2C_{2}-I_{\max}t_{r}) + 2C_{1}C_{2}t_{r} \times (C_{2}(3+I_{\max}R_{2})-I_{\max}t_{r}) + C_{1}^{2}\left(2C_{2}^{2}\left(e^{-\frac{(C_{1}+C_{2})t_{r}}{C_{1}C_{2}R_{2}}}-1\right)I_{\max}R_{2}^{2} + 2C_{2}(3+I_{\max}R_{2})t_{r}-I_{\max}t_{r}^{2}\right) \right].$$
(4)

Note that the voltage across C_1 and C_2 after discharge is determined by the magnitude of the decoupling capacitors and the parasitic resistance of the metal line(s) between the capacitors. The voltage across C_1 after the switching cycle, however, depends upon the resistance of the P/G paths connecting C_1 to a current load and is

$$V_{C_1} = V_{\text{load}} + I_{\max} R_1 \tag{5}$$

Fig. 5. Voltage across C_1 during discharge as a function of C_1 and R_2 : $I_{\text{max}} = 0.01 \text{ mA}$, $V_{\text{dd}} = 1 \text{ V}$, $R_1 = 10 \Omega$, and $t_r = 100 \text{ ps}$. Assuming $C_1 = C_2$, the minimum tolerable voltage across C_1 , resulting in $V_{\text{load}} \ge 0.9V_{\text{dd}}$, is 0.91 V (shown as a black equipotential line).

where V_{load} is the voltage across the terminals of a current load. Assuming $V_{\text{load}} \geq 0.9V_{\text{dd}}$ and $V_{C_1}^{\text{max}} = V_{\text{dd}}$ (meaning that C_1 is infinitely large), the upper bound for R_1 is

$$R_1^{\max} = \frac{V_{\rm dd}(1-\alpha)}{I_{\rm max}} \tag{6}$$

where α is the ratio of the minimum tolerable voltage across the terminals of a current load to the power supply voltage ($\alpha = 0.9$ in this paper). If $R_1 > R_1^{\max}$, no solution exists that provides sufficient charge drawn by the load. In this case, the circuit block should be partitioned, reducing the current demands (I_{\max}).

Note that expressions for determining the voltage across the decoupling capacitors are transcendental functions. No closed-form solution, therefore, exists. From (3) and (4), the design space can be graphically obtained for determining the maximum tolerable resistance R_2 and the minimum magnitude of the capacitors, maintaining the voltage across the load equal to or greater than the minimum allowable level. The voltage across C_1 after discharge as a function of C_1 and R_2 is depicted in Fig. 5.

Observe from Fig. 5 that the voltage across capacitor C_1 increases exponentially with capacitance, saturating for large C_1 . The voltage across C_1 , however, is almost independent of R_2 , decreasing slightly with R_2 . This behavior can be explained as follows. As a current load draws charge from the decoupling capacitors, the voltage across the capacitors drops below the initial level. The charge released by a capacitor is proportional to the capacitance and the voltage drop. A larger capacitance therefore results in a smaller voltage drop. From Fig. 4, note that as resistance R_2 increases, capacitor C_2 becomes less effective (a larger portion of the total current is provided by C_1). As a result, the magnitude of C_1 is increased to maintain the voltage across the load above the minimum tolerable level.

In general, to determine the parameters of the system of distributed on-chip decoupling capacitors, the following assumptions are made. The parasitic resistance of the metal line(s) connecting capacitor C_1 to the current load is known. Since C_1 is placed close to the current load, this capacitor is relatively small and is typically connected to the current load by a single line. For a specific sheet resistance, R_1 can therefore be determined from the maximum allowable width and length of the metal line connecting the decoupling capacitor to the current load. The minimum voltage level at the load is $V_{\text{load}} = 0.9V_{\text{dd}}$. The maximum magnitude of the current load I_{max} is 0.01 A, the rise time t_r is 100 ps, and the power supply voltage V_{dd} is 1 V. Note that the voltage across C_2 after discharge as determined by (4) is also considered a design parameter. Since the capacitor C_2 is connected directly to the power supply (a shared power rail), the voltage drop across C_2 appears on the global power line, compromising the signal integrity of the overall system. The voltage across C_2 at t_r is therefore based on the maximum tolerable voltage fluctuations on the P/G line during discharge (the voltage across C_2 at the end of the switching cycle is set to 0.95 V).

The system of equations to determine the parameters of an on-chip distributed decoupling capacitor network as depicted in Fig. 4 is

$$V_{\rm load} = V_{C_1} - I_{\rm max} R_1 \tag{7}$$

$$V_{C_1} = f(C_1, C_2, R_2) \tag{8}$$

$$V_{C_2} = f(C_1, C_2, R_2) \tag{9}$$

$$\frac{I_{\max}t_r}{2} = C_1 \left(V_{dd} - V_{C_1} \right) + C_2 \left(V_{dd} - V_{C_2} \right)$$
(10)

where V_{C_1} and V_{C_2} are the voltage across C_1 and C_2 and determined by (3) and (4), respectively. Equation (10) states that the total charge drawn by the current load is provided by C_1 and C_2 . Note that in the general case with the current load determined *a priori*, the total charge is the integral of $I_{\text{load}}(t)$ from zero to t_r . Solving (7) for V_{C_1} and substituting into (8), C_1 , C_2 , and R_2 are determined from (8) to (10), as discussed in Section IV.

IV. DESIGN TRADEOFFS IN A DISTRIBUTED ON-CHIP DECOUPLING CAPACITOR NETWORK

To design a system of distributed on-chip decoupling capacitors, the parasitic resistances and capacitances should be determined based on design and technology constraints. As shown in Section III, in a system composed of two decoupling capacitors (see Fig. 4) with known R_1 , R_2 , C_1 , and C_2 are determined from the system of equations (7)–(10). Note that since this system of equations involves transcendental functions, a closed-form solution cannot be determined. To determine the system parameters, the system of equations (7)–(10) is solved numerically [11].

Several tradeoff scenarios are discussed in this section. The dependence of the system parameters on R_1 is presented in Section IV-A. The design of a distributed on-chip decoupling capacitor network with minimum magnitude C_1 is discussed in Section IV-B.

A. Dependence of System Parameters on R_1

The parameters of a distributed on-chip decoupling capacitor network for typical values of R_1 are listed in Table I. Note that the minimum magnitude of R_2 exists for which the parameters of the system can be determined. If R_2 is sufficiently small, the distributed decoupling capacitor network degenerates to a system with a single capacitor (where C_1 and C_2 are merged). For the parameters listed in Table I, the minimum magnitude of R_2 is four ohms, as determined from numerical simulations.

Note that the parameters of a distributed on-chip decoupling capacitor network are determined by the parasitic resistance of the P/G line(s) connecting C_1 to the current load. As R_1 increases, the capacitor C_1 increases substantially (see Table I). This increase in C_1 is due to R_1 becoming comparable to R_2 , and C_1 providing a greater portion of the total current. Alternatively, the system of distributed on-chip decoupling capacitors degenerates to a single oversized capacitor. The system of distributed on-chip decoupling capacitors should therefore

 TABLE I

 Dependence of the Parameters of the Distributed On-Chip

 Decoupling Capacitor Network on R_1

<i>D</i> .	$R_2 =$	$5(\Omega)$	$R_2 = 10(\Omega)$				
(\mathbf{n})	C_1	C_2	C_1	C_2			
(32)	(pF)	(pF)	(pF)	(pF)			
1	1.35	7.57	3.64	3.44			
2	2.81	5.50	4.63	2.60			
3	4.54	3.64	5.88	1.77			
4	6.78	1.87	7.56	0.92			
5	10.00	0	10.00	0			
$V_{dd} = 1 \text{ V}, V_{load} = 0.9 \text{ V},$							
$t_r = 100 \mathrm{ps}$, and $I_{max} = 0.01 \mathrm{A}$							

 TABLE II

 DISTRIBUTED ON-CHIP DECOUPLING CAPACITOR NETWORK AS A FUNCTION

 OF R_1 Under the Constraint of a Minimum C_1

R_1		$V_{C_2} \neq$	$V_{C_2} = 0.95$ volt					
(Ω)	$R_2(\Omega) = C_2(\mathrm{pF})$		$R_2(\Omega) = C_2(\mathfrak{pF})$		$R_{2}\left(\Omega ight)$	$C_2 (pF)$		
1	2	5.59	5	8.69	4.68	8.20		
2	2	6.68	5 5	11.64	3.46	8.40 8.60 8.80		
3	2	8.19		17.22	2.28			
4	2	10.46	5	31.70	1.13			
5	2 14.21		5	162.10	-	-		
$V_{dd} = 1 \text{ V}, V_{load} = 0.9 \text{ V}, t_r = 100 \text{ ps},$								
$I_{max} = 0.01 \mathrm{A}, \mathrm{and} C_1 = 1 \mathrm{pF}$								

be carefully designed. Since the distributed on-chip decoupling capacitor network is strongly dependent upon the first level of interconnection (R_1) , C_1 should be placed as physically close as possible to the current load, reducing R_1 . If such an allocation is not practically possible, the current load should be partitioned, permitting an efficient allocation of the distributed on-chip decoupling capacitors under specific technology constraints.

B. Minimum C_1

In practical applications, the size of C_1 (the capacitor closest to the current load) is typically limited by technology constraints, such as the maximum capacitance density, and design constraints, such as the available area. The magnitude of the first capacitor in a distributed system is therefore typically small. In this section, the dependence of a distributed on-chip decoupling capacitor network on R_1 is determined for minimum C_1 . A target magnitude of 1 pF is assumed for C_1 . The parameters of a system of distributed on-chip decoupling capacitors as a function of R_1 under the constraint of a minimum C_1 are listed in Table II. Note that V_{C_2} denotes the voltage across C_2 after discharge.

Note that two scenarios are considered in Table II to evaluate the dependence of a distributed system of on-chip decoupling capacitors. In the first scenario, the distributed on-chip decoupling capacitor network is designed to maintain the minimum tolerable voltage across the terminals of a current load. In this case, the magnitude of C_2 increases with R_1 , becoming impractically large for large R_1 . In the second scenario, an additional constraint (the voltage across C_2) is applied to reduce the voltage fluctuations on the shared P/G lines. In this case, as R_1 increases, C_2 slightly increases. In order to satisfy the constraint for V_{C_2} , R_2 should be significantly reduced for large values of R_1 , meaning that the second capacitor should be placed close to the first capacitor. As R_1 is further increased, R_2 becomes negligible, implying that capacitors C_1 and C_2 should be merged to provide the required charge to the distant current load.

R_1	R_2	Imax	C_1	C_2	Vload (mV)		Error	$V_{C_2} (\mathrm{mV})$		Error
(Ω)	(Ω)	(A)	(pF)	(pF)	V_{load}^{min}	SPICE	(%)	$V_{C_2}^{min}$	SPICE	(%)
0.5	1.5	0.025	0	24.99930	900	899.998	0.0002	950	949.998	0.0002
0.5	2	0.025	4.25092	17.56070	900	899.999	0.0001	950	949.999	0.0001
0.5	3	0.025	7.97609	11.04180	900	899.999	0.0001	950	949.999	0.0001
0.5	4	0.025	9.67473	8.06921	900	899.999	0.0001	950	949.999	0.0001
0.5	5	0.025	10.65000	6.36246	900	899.999	0.0001	950	949.999	0.0001
0.5	6	0.025	11.2838	5.25330	900	899.999	0.0001	950	949.999	0.0001
0.5	7	0.025	11.72910	4.47412	900	899.999	0.0001	950	949.999	0.0001
0.5	8	0.025	12.05910	3.89653	900	899.999	0.0001	950	949.999	0.0001
0.5	9	0.025	12.31110	3.44905	900	899.980	0.002	950	949.973	0.003
	$V_{dd} = 1 \text{ V}$, and $t_r = 100 \text{ ps}$									

TABLE III MAGNITUDE OF ON-CHIP DECOUPLING CAPACITORS AS A FUNCTION OF THE PARASITIC RESISTANCE OF THE P/G LINES CONNECTING THE CAPACITORS TO THE CURRENT LOAD

V. CASE STUDY

The dependence of a system of distributed on-chip decoupling capacitors on the current load and parasitic impedance of a power delivery system is described in this section to quantitatively illustrate the previously presented concepts. The load is modeled as a ramp current source with a 100-ps rise time. The minimum tolerable voltage across the load terminals is 90% of the power supply level. The magnitude of the on-chip decoupling capacitors for various parasitic resistances of the metal lines connecting the capacitors to the current load is listed in Table III.

The parameters of the system of distributed on-chip decoupling capacitors are analytically determined from (7)–(10). The resulting power supply noise is estimated using SPICE and compared to the maximum tolerable level (the minimum voltage across the load terminals V_{load}^{\min}). The maximum voltage drop across C_2 at the end of the switching activity is also estimated and compared to $V_{C_2}^{\min}$. Note that the analytic solution produces accurate estimates of the on-chip decoupling capacitors for typical parasitic resistances of a power distribution grid. The maximum error in this case study is 0.003%.

From Table III, note that in the case of a large R_2 , the distributed decoupling capacitor network degenerates to a system with a single capacitor. Capacitor C_1 is therefore excessively large. Conversely, if C_2 is placed close to C_1 (R_2 is small), C_2 is excessively large and the system behaves as a single capacitor. An optimal ratio R_2/R_1 therefore exists for specific characteristics of the current load that results in the minimum budgeted on-chip decoupling capacitance. Alternatively, in this case, both capacitors provide an equal portion of the total charge (see Table III for $R_1 = 0.5 \Omega$ and $R_2 = 4 \Omega$).

VI. CONCLUSION

A system of distributed on-chip decoupling capacitors has been proposed in this paper. A distributed on-chip decoupling capacitor network is an efficient solution for providing the required on-chip decoupling capacitance under existing technology constraints. In a system of distributed on-chip decoupling capacitors, each capacitor is sized based on the parasitic impedance of the power delivery system. Hierarchically allocating the on-chip decoupling capacitors greatly relaxes the technology constraints for physically distant capacitors, making the distant on-chip decoupling capacitors more effective.

REFERENCES

- M. Popovich, A. V. Mezhiba, and E. G. Friedman, *Power Distribu*tion Networks With On-Chip Decoupling Capacitors. New York: Springer, 2008.
- [2] M. Popovich and E. G. Friedman, "Decoupling capacitors for multivoltage power distribution systems," *IEEE Trans. Very Large Scale Integr. (VLSI) Syst.*, vol. 14, no. 3, pp. 217–228, Mar. 2006.
- [3] A. V. Mezhiba and E. G. Friedman, "Scaling trends of on-chip power distribution noise," *IEEE Trans. Very Large Scale Integr. (VLSI) Syst.*, vol. 12, no. 4, pp. 386–394, Apr. 2004.
- [4] M. Popovich and E. G. Friedman, "Noise aware decoupling capacitors for multi-voltage power distribution systems," in *Proc. IEEE Int. Symp. Quality Electron. Des.*, Mar. 2005, pp. 334–339.
- [5] M. Popovich, E. G. Friedman, M. Sotman, A. Kolodny, and R. M. Secareanu, "Maximum effective distance of on-chip decoupling capacitors in power distribution grids," in *Proc. ACM Great Lakes Symp. VLSI*, Apr./May 2006, pp. 173–179.
- [6] S. Zhao, K. Roy, and C.-K. Koh, "Decoupling capacitance allocation and its application to power-supply noise-aware floorplanning," *IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.*, vol. 21, no. 1, pp. 81–92, Jan. 2002.
- [7] J. Kim, B. Choi, H. Kim, W. Ryu, Y.-H. Yun, S.-H. Ham, S.-H. Kim, Y.-H. Lee, and J.-K. Kim, "Separated role of on-chip and on-PCB decoupling capacitors for reduction of radiated emission on printed circuit board," in *Proc. IEEE Int. Symp. Electromagn. Compatibility*, Aug. 2001, pp. 531–536.
- [8] T. Hubing, "Effective strategies for choosing and locating printed circuit board decoupling capacitors," in *Proc. IEEE Int. Symp. Electromagn. Compatibility*, Aug. 2005, pp. 632–637.
- [9] L. D. Smith, R. E. Anderson, D. W. Forehand, T. J. Pelc, and T. Roy, "Power distribution system design methodology and capacitor selection for modern CMOS technology," *IEEE Trans. Adv. Packag.*, vol. 22, no. 3, pp. 284–291, Aug. 1999.
- [10] M. E. Van Valkenburg, *Network Analysis*. Englewood Cliffs, NJ: Prentice-Hall, 1974.
- [11] Wolfram Research, Inc., Champaign, IL, "Mathematica 5.2," 2005.