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Noise Coupling Models in Heterogeneous 3-D ICs
Boris Vaisband, Student Member, IEEE, and Eby G. Friedman, Fellow, IEEE

Abstract— Models of coupling noise from an aggressor module
to a victim module by way of through silicon vias (TSVs) within
heterogeneous 3-D integrated circuits (ICs) are presented in this
paper. Existing TSV models are enhanced for different substrate
materials within heterogeneous 3-D ICs. Each model is adapted
to each substrate material according to the local noise coupling
characteristics. The 3-D noise coupling system is evaluated for
isolation efficiency over frequencies of up to 100 GHz. Isolation
improvement techniques, such as reducing the ground network
inductance and increasing the distance between the aggressor and
victim modules, are quantified in terms of noise improvements. A
maximum improvement of 73.5 dB for different ground network
impedances and a difference of 38.5 dB in isolation efficiency for
greater separation between the aggressor and victim modules are
demonstrated. Compact, accurate, and computationally efficient
models are extracted from the transfer function for each of
the heterogeneous substrate materials. The reduced transfer
functions are used to explore different manufacturing and design
parameters to evaluate coupling noise across multiple 3-D planes.

Index Terms— 3-D integrated circuit (IC), heterogeneous
3-D system, noise coupling, substrate coupling, through silicon
via (TSV) noise coupling model.

I. INTRODUCTION

NOISE coupling is of increasing importance within the
integrated circuits (ICs) community [1]–[6]. This issue

is of fundamental concern in 3-D circuits, where signals
are distributed among multiple different layers using through
silicon vias (TSVs), creating an electronic storm within the
3-D system. Different types of signals (power, clock, and data)
can propagate within these vertical interconnects. Different
TSV processes are used in 3-D integration, including via-first,
via-middle, and via-last [7]. In each of these processes, the
TSV penetrates the substrate of a layer and connects to either
the first or last metal within that layer. TSVs, a seminal
component of 3-D technology, are short vertical intercon-
nections (e.g., 20 μm in length and 2 μm in diameter [8])
between the different layers that can alleviate global signaling
issues [9]. The TSVs, however, also pose novel obstacles.
In particular, the noise is coupled through the TSV into the
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Fig. 1. Heterogeneous 3-D IC.

TABLE I

COMMON CIRCUITS AND COMPATIBLE SUBSTRATE TYPES

substrate of each layer. This noise propagates through the
substrate and affects the victim circuits surrounding a TSV.

Modern applications employ diverse functionalities. Mobile
devices are capable of sensing light, capturing images and
videos, high-performance processing, storing large amounts of
data, and much more. A 3-D structure is an effective platform
for integrating these heterogeneous circuits within a single
system, as shown in Fig. 1. Each layer of a 3-D IC is typically
independently optimized and often designed using different
substrate materials for different applications. Common circuits
and compatible substrate materials are listed in Table I. The
electrical resistivity and the thermal conductivity of each
substrate material are also listed. Some commonly used mate-
rials in modern ICs are silicon (Si), gallium arsenide (GaAs),
germanium (Ge), and mercury cadmium (MerCad)
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TABLE II

COMPARISON OF LUMPED, DISTRIBUTED, AND SHORT-CIRCUIT MODELS FOR Si, GaAs, AND Ge SUBSTRATES
FOR DIFFERENT VALUES OF INDUCTANCE OF THE GROUND NETWORK

telluride (HgCdTe) [10]–[12]. Noise coupling from the
TSVs into the victim layers for these common substrates
is discussed here. Previous work has addressed noise
coupling from TSVs into the substrate in homogeneous
circuits (processor/memory stacks), typically on a silicon
substrate [13], [14]. The purpose of this paper is to provide
noise coupling models for heterogeneous 3-D systems
composed of different substrate materials.

It is suggested here to change the acronym TSV from TSV
to through-substrate-via, since the substrate penetrated by the
vertical interconnect in a heterogeneous 3-D system can be
composed of different types of materials. A similar example is
the acronym MOS that stands for metal–oxide–semiconductor
and not for metal–oxide–silicon.

The rest of this paper is organized as follows. Through-
substrate-via models are proposed in Section II. A frequency
analysis of the isolation efficiency and isolation improvement
techniques, as well as extraction of the transfer function
of the noise coupling system, are discussed in Section III.
Design methods to lower coupling noise between layers are
provided in Section IV. Finally, some conclusions are drawn
in Section V.

II. THROUGH-SUBSTRATE-VIA MODELS

Existing models for noise coupling from TSVs to victim
circuits in 3-D ICs [13]–[15] have to date only addressed
homogeneous systems. In these models, the layers are exclu-
sively silicon, including dual-well bulk CMOS and partially
depleted silicon-on-insulator [14]. The noise coupling model
proposed in [13] is shown in Fig. 2(a). A distributed RC model
composed of four sections is used to characterize the
TSV impedance and capacitive coupling into the silicon
substrate. The substrate is modeled using distributed lateral
and vertical resistors. The ground network is modeled as a
resistive–inductive impedance [16].

Silicon is the most common substrate material for ICs and
is used for many applications. The model shown in Fig. 2(a)
suggests the use of a distributed model for the RC impedances.
The resistance of a TSV, based on the following expres-
sion [13], is

Rtsv = 1

Ntsv
· ρc D

π(W/2)2 . (1)

Fig. 2. Noise coupling from a TSV to a victim through a silicon substrate
as (a) previously proposed in [13], and (b) proposed in this paper.

The number of distributed sections of the TSV is Ntsv, the
resistivity of the conductive material within the TSV is ρc, and
the depth (length) and the diameter of the TSV are D and W ,
respectively. With a copper resistivity of 2.8 μ� · cm [17],
a depth of 20 μm, and a diameter of 2 μm [8], a resistance
of 0.18 � for (1/Ntsv) = 1 is produced. This resistance is
relatively small as compared with the resistance of a typical
digital buffer [18]. It is proposed, therefore, to use a lumped
RC model for the TSV [1], [19], as shown in Fig. 2(b).
Another important aspect is the model of the ground network.
The victim device is commonly connected to the ground
network through the bulk contact; the inductive behavior of
this network, therefore, also has to be considered.

A comparison of a lumped model versus a distributed model
with three sections is listed in Table II for Si, GaAs, and Ge.
For Ge, a third short-circuit model [shown in Fig. 3(a)] is also
compared. This model completely omits the resistors of the
substrate, since the resistance of the substrate is negligible and
the model, therefore, only exhibits a coupling capacitance from
the TSV to the substrate [19]. The models have been evaluated
using SPICE. A 10-ps input ramp from 0 to 1 V (Vpulse) is
applied to simulate switching the aggressive digital circuits.
The voltage is evaluated at the victim device node. Both the
peak noise voltage and the settling time (2% of the final value)
have been recorded for three different inductance values of the
ground network. Note that unlike coupling between adjacent
interconnects where the analysis of the propagating waves is
required [6], in this paper, coupling from a signal propagating
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Fig. 3. Noise coupling from a TSV to a victim through (a) short-circuit
Ge substrate model, and (b) open-circuit GaAs substrate model.

within an aggressor TSV to the substrate is described. The
peak noise and settling time are, therefore, sufficient metrics
for evaluating coupling noise in transient analysis.

The error of the lumped model as compared with the
distributed model for Si is 1.2%. A lumped model can,
therefore, be used to accurately characterize a silicon substrate.
As observed from the results listed in Table II, the inductance
of the ground network can significantly affect the peak noise
voltage. In the worst case (from 0.1 to 10 nH), a difference
of 26.5 mV (14.2%) is noted.

The peak noise voltage for both lumped and distributed
models for GaAs is in the range of picovolts and is, therefore,
negligible in most applications. The proposed model in this
case is an open-circuit model that ignores the capacitive
coupling, as shown in Fig. 3(b). It is also observed from
Table II that the inductance of the ground network has no
effect on the peak noise voltage. This behavior is due to the
resistivity of the substrate, which is sufficiently large to shunt
the inductance of the ground network.

The accuracy of the short-circuit, lumped, and distrib-
uted models is shown in Table II. Ge is highly dependent
on the inductance of the ground network. Comparing the
lumped and distributed models, a distributed model pro-
vides negligible accuracy improvement as compared with
a lumped model. The worst case difference in the peak
noise voltage is 0.2 mV (2.3%), while the settling time
is similar. The lump model that incorporates fewer nodes
is, therefore, preferable. The short-circuit model deviates
from the lump model by 2.6 mV (23.4%) and 2 ns
(25%) for, respectively, the peak noise voltage and set-
tling time. A lump model, similar to the model for sili-
con [shown in Fig. 2(b)], should, therefore, be used. If the
circuit specifications are not particularly strict (a higher
peak noise voltage and longer settling times are allowed),
a short-circuit model can be used to reduce the computational
effort.

MerCad telluride is commonly used as a detector material
for infrared arrays in space-related applications [20]. The
electrical resistivity of this material is similar to silicon. The
same model, as shown in Fig. 2(b), can, therefore, be used in
the noise coupling analysis process.

III. ANALYSIS OF FREQUENCY RESPONSE

A technology specific analysis of the frequency response
of the lump noise coupling model is offered in this section.

The analysis is limited to frequencies of up to 100 GHz to
maintain a near field coupling mode. Noise isolation improve-
ment techniques are also suggested. The model is simulated
in SPICE, and the transfer function of the system is extracted
based on the characteristics of each substrate material.
In Section IV, the extracted transfer functions are simulated in
MATLAB and compared with SPICE. Note that due to similar
electrical properties of HgCdTe and Si, only Si, GaAs, and Ge
as the substrate materials are considered.

A. Isolation Efficiency of Noise Coupled System

Isolation efficiency is the magnitude of the signal observed
at the victim for a 1 V aggressor signal (in decibel). The
isolation efficiency of a noise coupled system for different
substrate materials and ground network inductances is shown
in Fig. 4. The results shown in Fig. 4 are obtained from
the SPICE simulations. The isolation efficiency of Ge is
strongly dependent on frequency, followed by Si, and GaAs
exhibits almost no dependence on frequency due to the high
resistivity of the substrate. Although Ge is strongly depen-
dent on frequency for a wide range of frequencies (up to
approximately 10 GHz), the isolation efficiency of Ge is
higher than GaAs. The frequency dependent components of the
Ge system lower the coupled noise at the victim. As shown
in Fig. 4(c), GaAs is independent of the inductance of the
ground network. The effect of the inductance of the ground
network on Si and Ge is discussed later in this section.

For Ge circuits, the resonant frequency is within a practical
range of frequencies. To avoid high coupling noise for these
circuits, special techniques to improve noise isolation should
be considered. For Si circuits, the isolation techniques are
highly dependent on the operational frequency of the circuit
and noise toleration specifications. For a typical frequency
range of signal transitions in digital CMOS circuits (under
10 GHz), the isolation efficiency is high. For those circuits
that require fast transitions with strict noise tolerance specifi-
cations, isolation enhancement methods should be considered.
For GaAs, the isolation efficiency is −15.9 dB. Isolation
techniques that operate independent of frequency should be
applied to further improve noise isolation.

B. Techniques to Improve Noise Isolation

Several techniques are offered here to improve noise
isolation in heterogeneous 3-D circuits.

1) Ground Network Inductance: The tradeoff between thin-
ner and more resistive, and thicker and more inductive metal
interconnect should be considered when considering power
distribution networks in ICs. In 3-D ICs, identifying the
inductive return paths is more complicated as compared
with 2-D circuits, since these paths can span the entire
3-D structure. Special emphasis should, therefore, be placed
on low inductance ground lines. As shown in Fig. 4, low
inductance ground networks directly improve the isolation effi-
ciency of the coupled noise system for both Si and Ge. For Ge,
low inductive ground networks are particularly important. The
worst case difference in isolation efficiency for an inductive
ground network is 73.5 dB. For a ground network with an



VAISBAND AND FRIEDMAN: NOISE COUPLING MODELS IN HETEROGENEOUS 3-D ICs 2781

Fig. 4. Isolation efficiency of a noise coupled system for (a) silicon,
(b) germanium, and (c) gallium arsenide substrate materials.

inductance of 10 nH, the resonance frequency is 15.1 GHz,
while for an inductance of 0.1 nH, the resonance frequency
is above the practical range of frequencies (>100 GHz).
The resonance frequency fres = (1/2π(LC)1/2), where the
capacitance of the system is C and the inductance of the
ground network is L. As shown in Fig. 4(b), a lower ground
network inductance can shift the resonance frequency out of
the practical range of frequencies.

To further validate this technique, a tradeoff between
inductance and resistance is considered for each

Fig. 5. Resistance and inductance versus linewidth of ground network. The
ground network is copper.

substrate material. The resistance and inductance as a
function of the linewidth of the ground network are extracted
according to [21] and shown in Fig. 5.

SPICE simulations of the isolation efficiency for each of
the substrate materials are shown in Fig. 6. For a Si substrate,
the results indicate that within the practical range of fre-
quencies (below 100 GHz), the linewidth has no effect on
the ground network inductance, and therefore, a minimum
linewidth should be used. For Ge, a tradeoff exists between
the resistance and inductance of the ground network. For
wide lines, the peak isolation efficiency is lower than for
narrow lines. The worst case difference between a linewidth
of 2 and 20 μm is 8.2 dB. For frequencies below 56 GHz,
the isolation efficiency of a narrow line (2 μm) is better than
a wide line (20 μm). The linewidth of the ground network
should, therefore, be chosen according to the transition fre-
quency of the signals. For GaAs, the isolation efficiency is
independent of the linewidth. The smallest allowable width
should, therefore, be used.

2) Distance Between Aggressor and Victim Circuit: This
dimension is measured from the aggressor module A on
layer m to the victim module V on layer n, as shown
in Fig. 7. The depth (length) of a single TSV and the horizontal
distance (on layer n) from the TSV to the victim circuit are,
respectively, D and l. The distance between modules A and V
is therefore

dAV =
√

(D · |m − n|)2 + l2. (2)

The effect of dAV on the isolation efficiency of Ge, evaluated
using the Ge model in SPICE, is shown in Fig. 8. Substrate
thicknesses, ranging from 20 to 60 μm, have been evaluated
to determine the effect of different manufacturing processes
of heterogeneous substrate materials. Similarly, lateral dis-
tances, ranging from 10 to 1,000 μm, have been evaluated.
An improvement of 38.5 dB in isolation efficiency is demon-
strated for dAV = 1, 000.2 μm as compared with the case
of dAV = 60.8 μm. Placing the victim circuits farther from
those TSVs carrying aggressor signals significantly improves
the noise isolation characteristics. Alternatively, a thicker
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Fig. 6. Isolation efficiency of a noise coupled system as a function of
linewidth of the ground network for (a) silicon, (b) germanium, and (c) gallium
arsenide substrate materials.

substrate or a larger number of layers between the aggres-
sor and victim modules only slightly improves the isolation
efficiency due to the low impedance of the TSVs.

C. Transfer Function of Noise Coupled System

To better evaluate the noise coupling mechanism,
a heterogeneous system is represented as a transfer function.

Fig. 7. Distance from aggressor module A on layer m to victim module B
on layer n.

Fig. 8. Effect of distance between the aggressor and the victim on the
isolation efficiency for a Ge substrate. The resonant frequency is observed
at the peak isolation efficiency due to the increasing reactance of the ground
network.

This system consists of an input (aggressor signal) and output
(signal at victim module). The isolation efficiency of the
system [13], [22] is determined, and the noise mitigation
techniques are offered. The small signal equivalent circuit of
the noise coupled system is shown in Fig. 9. The following
relations are used.

1) Substrate Impedance: Rsub ≡ Rsub1 + Rsub2.
2) TSV Coupling Reactance: XCtsv ≡ (1/ωCtsv).
3) TSV Coupling Impedance: ZCtsv ≡ − j · XCtsv .
4) Ground Network Reactance: Xgnd ≡ ωLgnd.
5) Ground Network Impedance: Zgnd ≡ Rgnd + j · Xgnd.
6) Load Reactance: X L ≡ (1/ωCL).
7) Load Impedance: Z L ≡ − j · X L .

The transfer function is analyzed in this section for a
heterogeneous system according to the substrate materials
discussed in Section II. The transfer function of the lumped
model is

H (ω) = Vout

Vin

= (Rbulk+Zgnd)Z L

(Rtsv+Z L)(Rsub+ Rbulk+ZCtsv +Zgnd)+ Rtsv ·Z L
.

(3)
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Fig. 9. Equivalent small signal model of a noise coupled system.

Reducing the transfer function can produce a simpler model
requiring less computational effort. The simulated load capac-
itance (100 fF) is relatively small. The model can, there-
fore, be treated as an open circuit assuming a small signal
model (Fig. 9) within a practical range of frequencies
(1 MHz–100 GHz). The transfer function H (ω) is

H (ω) = Rbulk + Zgnd

Rsub + Rbulk + ZCtsv + Zgnd + Rtsv
. (4)

Further reductions of (4) are dependent on the substrate
material for a specific layer.

1) Si Substrate: The substrate and bulk resistances in
Si and HgCdTe are three to five orders of magni-
tude larger than the TSV and ground network resistances
(Rsub, Rbulk � Rtsv, Rgnd) for l as low as 10 μm. Therefore,
(4) reduces to

H (ω) = Rbulk + j · Xgnd

Rsub + Rbulk + j (Xgnd − XCtsv)
. (5)

2) Ge Substrate: For Ge, the substrate and bulk impedances
are of the same relative magnitude as the other components of
the transfer function; therefore, (4) cannot be further reduced.
The transfer function for Ge is therefore

H (ω) = Rbulk + Zgnd

Rsub + Rbulk + ZCtsv + Zgnd + Rtsv
. (6)

3) GaAs Substrate: The substrate and bulk resistances
in GaAs are significantly larger (approximately six orders

Fig. 10. Keep out region around an aggressor TSV. The victim modules (V)
should be placed outside this region.

of magnitude) than all other components of the noise coupled
system. The transfer function, therefore, reduces to

H (ω) = Rbulk

Rsub + Rbulk
. (7)

Substituting the substrate and bulk parameters and worst case
distance from the aggressor TSV to the victim (l = 10 μm)
leads to H (ω) ≈ 0.16. In units of decibel, 20logH (ω) ≈
−15.9 dB, which corresponds to the isolation efficiency for
GaAs, as shown in Fig. 4(c).

IV. DESIGN CONSIDERATIONS

After obtaining the reduced transfer function of the sys-
tem for each substrate type, some design considerations for
decreasing the coupling noise are offered in this section.
The objective is to minimize |H (ω)| by adjusting different
manufacturing and design parameters and to lower the noise
coupled from the aggressor to the victim.

An example of a design parameter that greatly affects
|H (ω)| is the horizontal distance from an aggressor TSV to
a victim module l. A keep out region (shown in Fig. 10) is
a circular area around an aggressor TSV, in which a victim
should not be placed to achieve noise coupling lower than
Nmax (maximum allowed noise coupling level in decibel).
The radius of the keep out region is l, such that
20log|H (ω, l)| < Nmax. The magnitude of the transfer func-
tions in (5)–(7) for Si, Ge, and GaAs are, respectively, (8), (9),
and (10), as shown at the bottom of this page, respectively.

Although (8)–(10) are dependent on l, it is difficult to pro-
vide a closed-form expression in l. A design space for each of
the substrate materials is, therefore, generated according to the

|H (ω, l)| =
[(

Rbulk(Rsub(l) + Rbulk) + Xgnd(Xgnd − XCtsv)

(Rsub(l) + Rbulk)2 + (Xgnd − XCtsv)
2

)2

+
(

Xgnd(Rsub(l) + Rbulk) − Rbulk(Xgnd − XCtsv)

(Rsub(l) + Rbulk)2 + (Xgnd − XCtsv)
2

)2
]1/2

(8)

|H (ω, l)| =
[(

(Rbulk + Rgnd)(Rsub(l) + Rbulk + Rtsv + Rgnd) + Xgnd(Xgnd − XCtsv)

(Rsub(l) + Rbulk + Rtsv + Rgnd)2 + (Xgnd − XCtsv)
2

)2

+
(

Xgnd(Rsub(l) + Rbulk + Rtsv + Rgnd) − (Rbulk + Rgnd)(Xgnd − XCtsv)

(Rsub(l) + Rbulk + Rtsv + Rgnd)2 + (Xgnd − XCtsv)
2

)2
]1/2

(9)

|H (ω, l)| = Rbulk

Rsub + Rbulk
(10)
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Fig. 11. Isolation efficiency versus frequency and radius of keep out region
for (a) Si, (b) Ge, and (c) GaAs substrate materials.

Fig. 12. Keep out region around aggressor TSV for Nmax = −40 dB. The
victim circuits should be placed on the isolation efficiency surface below the
base surface.

relevant expression, as shown in Fig. 11. Both the frequency
and l are based on the maximum coupling noise (Nmax). The
design space for Si, Ge, and GaAs generated from (8) to (10)

Fig. 13. Comparison between SPICE model and extracted transfer function
for (a) Si, (b) Ge, and (c) GaAs substrate materials.

is shown in Fig. 11. Each plot describes the isolation
efficiency of the coupled noise system with respect to
frequency and l.

As shown in Fig. 11, the noise at the victim is less at
low frequencies and increasing l. An increase in l rapidly
lowers the noise coupling for both Si and GaAs. Alternatively,
in Ge, the dependence of the isolation efficiency on l is weak.
This behavior is due to the negligible substrate resistivity,
leading to a stronger dependence on the frequency of the
noise coupled system. The resonance frequency for Ge is
shown in Fig. 11(b). The design space around the resonance
frequency should be avoided.
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To quantify the keep out region within the design space,
a horizontal surface, described here as the base surface, can
be added at Nmax. An example of a Si substrate is shown
in Fig. 12. In this case, Nmax = −40 dB and the keep out
region is above the horizontal surface. This surface can be used
to determine the minimum distance between the aggressor and
the victim to maintain the isolation efficiency below Nmax
for any frequency within the relevant range. Similar design
spaces can be generated based on the transfer function for
the other design parameters (e.g., TSV diameter, TSV filling
material, impedance of the ground network, and size of victim
device).

A comparison between the transfer function and the SPICE
simulated model for Si, Ge, and GaAs is shown in Fig. 13.
This comparison is obtained by observing the plots in Fig. 11
at l = 10 μm and a ground network inductance of 1 nH, the
same distance and inductance used in the SPICE analysis. The
results show discrepancies smaller than 1 dB for all substrate
materials.

V. CONCLUSIONS

A complex electronic storm exists within heterogeneous
3-D systems. Models of noise coupling in heterogeneous
3-D ICs are presented in this paper. These models con-
sider the different substrate materials within a heterogeneous
3-D system. A lump model is sufficient for the Si and Ge
substrates, with a peak noise voltage error, as compared
with a distributed model, of, respectively, 26.5 and 0.2 mV.
For Ge, a short-circuit model can be used for less stringent
noise constraints. The electrical properties of HgCdTe are
similar to silicon; the model used for silicon is, therefore,
proposed for this type of substrate. GaAs substrates are highly
resistive, efficiently isolating the victim from the aggressor.
An open circuit model is, therefore, used for GaAs substrates.

The noise coupled system is represented as a transfer
function to evaluate the isolation efficiency characteristics.
Minimizing the magnitude of the transfer function, hence,
lowering the coupled noise, is the objective. Isolation improve-
ment techniques are offered. The transfer function can be
reduced based on material specific parameters. Each reduced
transfer function can be utilized to generate a design space
for different manufacturing and design parameters. A keep
out region, the horizontal distance between an aggressor TSV
and a victim, and the maximum coupling noise are evaluated
in terms of the relevant design space. The reduced transfer
functions are compared with the SPICE models, and good
agreement is observed within a practical range of frequencies
(up to 100 GHz).
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