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Abstract— This paper explores the use of MOS current-mode
logic (MCML) as a fast and low noise alternative to static
CMOS circuits in microprocessors, thereby improving the
performance, energy efficiency, and signal integrity of future
computer systems. The power and ground noise generated by
an MCML circuit is typically 10–100× smaller than the noise
generated by a static CMOS circuit. Unlike static CMOS, whose
dominant dynamic power is proportional to the frequency,
MCML circuits dissipate a constant power independent of clock
frequency. Although these traits make MCML highly energy
efficient when operating at high speeds, the constant static
power of MCML poses a challenge for a microarchitecture that
operates at the modest clock rate and with a low activity factor.
To address this challenge, a single-core microarchitecture for
MCML is explored that exploits the C-slow retiming technique,
and operates at a high frequency with low complexity to save
energy. This design principle contrasts with the contemporary
multicore design paradigm for static CMOS that relies on a
large number of gates operating in parallel at the modest speeds.
The proposed architecture generates 10–40× lower power and
ground noise, and operates within 13% of the performance
(i.e., 1/ExecutionTime) of a conventional, eight-core static CMOS
processor while exhibiting 1.6× lower energy and 9% less area.
Moreover, the operation of an MCML processor is robust under
both systematic and random variations in transistor threshold
voltage and effective channel length.

Index Terms— Architecture-circuit codesign, energy efficient,
low noise, microprocessors, MOS current-mode logic (MCML).

I. INTRODUCTION

W ITH technology scaling, signal integrity and power
dissipation have become critical challenges that

limit microprocessor performance. MOS current-mode
logic (MCML) is a fast, low-noise differential logic style,
which has garnered recent interest as a replacement for
static CMOS circuits in noise-sensitive applications [1]–[3].
MCML is the CMOS successor of bipolar emitter-coupled
logic (ECL), which has been used in high-speed applications
since the 1970s. The Cray-1 [4], the IBM Enterprise
System/9000 [5], and the IBM System/390 [6] all used ECL
and differential current switching to achieve high speeds with
low noise.1
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unregulated power supply [7].

MCML maintains the benefits of traditional ECL, such
as high-speed, lower di/dt noise, and common-mode noise
rejection, without relying on bipolar transistors [1]. It requires
a constant current independent of frequency, making this
technology particularly appropriate for high-speed integrated
circuits (ICs). Unfortunately, MCML suffers from constant
static power dissipation, which, if left unmanaged, would
result in an inordinate energy requirement in large-scale
ICs operating at moderate speeds (e.g., 1–2 GHz). This
limitation heretofore has prevented the use of MCML as
a replacement for static CMOS in mainstream multicore
processors; however, signal integrity and power delivery
challenges, as well as the increasingly large CMOS static
power due to subthreshold leakage, are tilting the balance
in favor of MCML—particularly in single-core processors
operating at high frequencies.

This paper explores the use of MCML as an alternative
to static CMOS circuits in throughput-oriented microproces-
sors (such as the Sun Niagara [8], [9], Oracle M7 [10],
Intel Knights Landing [11], and Tilera TILEPro [12]), thereby
improving the signal integrity, performance, and energy
efficiency of future high-performance systems.2 Mitigating
static power requires exploiting the unique circuit-level power
characteristics of MCML at the architecture level, breaking
from the contemporary multicore design paradigm, which
relies on a large number of gates operating in parallel at
the modest speeds. A complexity-effective, deeply pipelined,
and multithreaded architecture specific to the MCML is
synthesized at 22 nm using an MCML standard cell library.
Simulation results indicate that the proposed MCML processor
achieves 10–40× lower power and ground noise, 1.6× lower
energy, and 9% less area than a conventional, eight-core static
CMOS system while operating within 13% of the perfor-
mance (1/ExecutionTime) achieved by a static CMOS version.
Moreover, the operation of the MCML processor is robust
under both systematic and random variations in transistor
threshold voltage and effective channel length.

II. RELATED WORK

MCML was introduced by Mizuno et al. [13] in 1996 as
a high-speed, low-noise, and analog friendly logic family for
mixed-signal environments, and has been used in applications,
such as CORDIC circuits, optical communication transceivers,
high-speed ring oscillators, frequency dividers, and multiplexer
circuits [1], [14]–[17]. Design guidelines are provided

2The MCML throughput cores can also be integrated with a conventional
wide-issue static CMOS core within a heterogeneous multicore configuration.
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Fig. 1. Exemplary MCML gates and interface circuitry. (a) Ideal MCML gate. (b) Inverter/buffer. (c) Two-input universal gate. (d) D-latch.
(e) MCML-to-CMOS conversion. (f) CMOS-to-MCML conversion.

in [18]–[20] for MCML logic gates and MCML circuits under
process variations. Badel [3] and Cevrero et al. [21] proposed
design flows for optimizing MCML cell libraries at 0.18 um
and 90 nm. Despite these advances, the high static power
prevents MCML from wide adoption in large-scale digital
circuits. Voltage noise poses major challenges in aggressive
voltage scaling and reliable operation in static CMOS
processors. Microarchitectural techniques have been developed
to detect and control inductive noise [22]–[24], such as sizing
and placing decoupling capacitors based on the expected
level of microarchitecture activity [25]. Zhang et al. [26] and
Gupta et al. [27] proposed Power Delivery Network modeling
techniques to assess IR drops and di/dt noise. Software
approaches in [28]–[32] aim at identifying, avoiding, and
recovering from noise-induced voltage emergencies. While an
issue in static CMOS processors, noise does not constitute a
serious issue in MCML processors.

Simultaneous switching noise is a dominant component of
noise [33]. Prior work explores power-gated [21] and dynam-
ically controlled [34] MCML cells to support power/clock
gating. The clock distribution of the MCML system uses
MCML gates, which do not contribute significant power noise.

Power consumption and high complexity are key limiting
factors that prevent deeply pipelined static CMOS processors
(e.g., Intel Pentium 4 [35], [36]) from operating at an aggres-
sive clock frequency. The dominant power component of an
MCML processor is static and independent of frequency,
which enables MCML to operate at a high frequency within
a limited power budget.

Seok et al. [37] describe an Fast Fourier Transformation
(FFT) core in the ultralow-voltage regime with
superpipelining, thereby reducing leakage power. C-slow
retiming has been applied to FPGA circuits, and automated
tools have been developed [38], [39]. Various multithreading
techniques have been applied to commercial processors,
including simultaneous multithreading (SMT) [40] and chip
multithreading [8]. These techniques inspire complexity-
effective solutions for MCML processors.

III. BACKGROUND AND MOTIVATION

The growing importance of signal integrity and power
delivery challenges, compounded by the increasingly large
CMOS static power due to subthreshold leakage current,
are diminishing the advantages of static CMOS circuits over
other logic families. This section provides an overview of
the electrical noise and signal integrity issues in CMOS ICs,
and the design principles behind MCML processors.

Detailed description of MCML is beyond the scope of this
paper; interested readers can find more information on MCML
in [1], [3], [13], [20], and [41].

A. Signal Integrity Challenges in Deeply Scaled CMOS

Electrical noise can be categorized into device and
switching noise. Device noise is intrinsic to transistors,
including thermal, shot, and flicker noise. Switching noise
results from the simultaneous switching of devices, which is
a primary concern in the conventional CMOS digital circuits,
and is typically two to three orders of magnitude greater than
the device noise [42]. Switching noise is particularly critical
in high-energy and high switching activity signal nets, such as
clock networks [33]. The two primary coupling mechanisms
for switching noise are: 1) power and ground noise and
2) interconnect noise. Power and ground noise is caused by
high-frequency switching of the instantaneous current, which
introduces large current spikes that IR and inductive (Ldi/dt)
voltage drops, producing voltage fluctuations in the power
and ground distribution networks [33], [43]–[46]. Interconnect
noise [47]–[49] or crosstalk is the voltage change induced on
a victim node due to capacitive or inductive coupling from a
switching node.

CMOS digital circuits are traditionally considered
tolerant to noise due to the high-noise margins [42]. This
condition, however, has changed due to scaled power supply
and threshold voltages. High-frequency signal transitions
exacerbate the magnitude of the coupling noise, which
makes signal integrity a significant challenge in high-speed
digital ICs. As a result, microprocessor designers incorporate
expensive hardware solutions and pessimistically employ the
worst case design to ensure the reliable operation. Numerous
microarchitecture techniques have been proposed in [22]–[32]
and [50]–[53] to address inductive noise and IR drops at the
expense of performance, power, and area. In mixed-signal
circuits, the noise reduces the precision and the dynamic
range of sensitive analog circuitry through capacitive and
inductive coupling, resistive voltage drops, and threshold
voltage variations [42]. The design of future microprocessors,
therefore, requires innovative solutions to compensate for
noise in highly scaled technologies.

B. MCML

An ideal MCML gate, as shown in Fig. 1(a), comprises three
major parts: 1) a pair of pull-up load resistors; 2) a pull-down
logic network; and 3) a constant current source. The pull-up
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TABLE I

COMPARISON OF THE CMOS AND MCML GATE CHAINS FOR DELAY,

POWER, ENERGY, AND ED PRODUCT. α AND k ARE PROCESS AND

TRANSISTOR-SIZE-DEPENDENT PARAMETERS, C IS THE LOAD

CAPACITANCE, I IS THE CONSTANT CURRENT, AND

f IS THE FREQUENCY

load resistors are typically implemented with pMOS tran-
sistors, as shown in Fig. 1(b), for an MCML inverter. The
pull-down network is fully differential, and generates both
the true and the complementary forms of the output signal;
consequently, logic can often be simplified by eliminating
inverters. The constant current source can be implemented with
a single nMOS transistor and typically uses a separate control
voltage, Vbias. This constant current is steered between the
differential branches (i.e., the pull up loads) to allow the
outputs to change. The current drawn from the supply is
usually much smaller and more stable than the CMOS
switching current. This characteristic provides opportunities
for MCML gates to generate far less switching noise than
CMOS gates; it furthermore eases the constraints on the
power delivery system, which makes it possible to reduce the
design complexity and to lower the energy consumption of
the system. However, the constant current causes high static
power dissipation. The voltage swing for an MCML gate,
Vswing = I × R, can be adjusted by tuning the resistive loads
and the tail current of the constant current source. It is usually
not rail to rail and can be two to ten times lower than Vdd,
which provides higher gate speeds.

Energy and Delay Characteristics: To compare MCML and
CMOS gates, a set of basic properties is derived from a simple
MCML model [20]. A comparison between the CMOS and the
MCML gates in terms of delay, power, energy, and energy-
delay (ED) product is listed in Table I. Assume a linear chain
of N identical gates, each with a load capacitance C . The total
propagation delay of this chain of gates is proportional to

D = N × R × C (1)

where R is

R = Vswing

I
. (2)

For static CMOS, the current and voltage swing can be
expressed as

I = k

2
× (Vdd − Vth)

α, Vswing = Vdd. (3)

The delay of static CMOS for an N-gate chain is, therefore

DCMOS = N × C × Vdd
k
2 × (Vdd − Vth)α

. (4)

Similarly, for MCML, the delay of an N-gate chain is

DMCML = N × R × C = N × C × Vswing

I
. (5)

The dynamic energy for N static CMOS gates is
N × C × V 2

dd, and the frequency f of a pipeline stage is
constrained by 1/DCMOS. The static power of N MCML gates
is N ×Vdd × I . The energy and the power are listed in Table I.

One appealing property of MCML is that the gates
do not exhibit a theoretically minimum ED product [1].
By adjusting the constant current within an MCML gate
while maintaining the other parameters, the ED product
can significantly be reduced (the limiting factor would be
robustness). As suggested by the expressions listed in Table I,
both the energy and the ED product benefit from the low-
voltage swing, but the energy efficiency deteriorates with
logic depth N (i.e., the number of gates connected in series
in a single pipeline stage). It is, therefore, important for the
MCML gates to maintain a low logic depth in each pipeline
stage. This quality implies that the MCML circuits with
constant power consumption can significantly be more energy
efficient than the CMOS circuits (CMOS dynamic power
increases with frequency) when operating at high speeds [1].

C. C-Slow Retiming: A Complexity-Effective Methodology
for Designing Deep, Multithreaded Pipelines

C-slow retiming [38], [39] is a pipelining technique to
improve the throughput of a circuit with feedback loops.
It consists of an initial C-slow step, in which every register
is replaced with a sequence of C registers, followed by
a retiming step that balances the logic delay between the
pipeline registers. In the ideal case, this optimization process
improves the throughput of the pipeline by a factor of C
while introducing additional latency for a single data stream.
If C interleaved, independent data streams (e.g., threads) enter
the pipeline on a round robin basis, no new combinational
logic is needed to create new feedback loops between the
stages. In this paper, C-slow retiming is combined with SMT
to permit a digital processor to operate at high frequencies.
In C-slow retiming, the performance and the power can
both be improved by employing a low complexity circuit
(superpipelining without C-slow retiming on an MCML
processor would improve performance at the expense of
increased complexity and static power). C-slow retiming is
particularly important for MCML rather than static CMOS
in terms of energy efficiency, since the power of MCML is
static and independent of frequency.

Consider an in-order, five-stage-pipelined MIPS micro-
processor, and assume that this pipeline is C-slow retimed.
Each of the original pipeline stages is called a major pipeline
stage, and each of the C new stages within a major stage is
called a minor pipeline stage. After C-slow retiming, it takes
C cycles to complete the work in one major stage. Independent
instructions from different threads enter the pipeline in
consecutive cycles, while instructions from the same thread are
allowed to enter a major stage every C cycles. In other words,
a time division multiplexing (TDM) fetch policy is adopted to
enforce correct forwarding without any new bypassing paths
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TABLE II

DESIGN SPACE EXPLORATION. VARIABLES WITH SUBSCRIPT 1 ARE FOR

nMOS TRANSISTOR M1 IN THE DIFFERENTIAL PAIR, SUBSCRIPT s FOR

THE TAIL nMOS TRANSISTOR, AND SUBSCRIPT p FOR LOAD pMOS

TRANSISTORS, AS SHOWN IN FIG. 1(b), IN THIS PAPER

or control logic. The combination of C-slow retiming and
TDM multithreading enables a deep, multithreaded pipeline
with low complexity and few additional logic gates.

IV. FUNDAMENTAL BUILDING BLOCKS

In this section, the basic philosophy behind an MCML stan-
dard cell library and how this library differs from a
CMOS standard cell library are described. Two example
MCML gates (a two-input universal gate and a D-latch) and
the conversion circuitry between the static CMOS and the
MCML are discussed.

A. MCML Logic Gates

A 22-nm MCML standard cell library was developed to
evaluate tradeoffs in MCML-based processors. The design
space for each cell was explored by varying transistor sizes,
voltage swing, output current, and Vdd [for detailed guidelines
(see [20])]. Constraints obeyed in the design space exploration
include: 1) tolerance to process variations (Section VII-A);
2) a sufficient voltage gain and noise margin to ensure stable
signal regeneration; 3) a sufficient voltage swing ratio (defined
as the ratio of current in the ON branch to the total current)
for effective current steering; and 4) a signal slope ratio to
maintain the transition time sufficiently short with respect
to the propagation delay [54]. A detailed procedure is listed
in Table II.

Stacking is restricted to at most two levels for the MCML
gates to ensure robustness. This MCML library operates
at 0.55 V with a 100 mV voltage swing, and is compared with
two 22-nm static CMOS standard cell libraries: one operating
at 0.8 V (nominal supply voltage at 22 nm) and one operating
at 0.55 V—the same supply voltage as the MCML library.
Delay, area, and power comparisons for seven representative
cells are listed in Table III. The differential operation of
MCML requires in 2× more transistors and higher wiring
overhead in the inverter and NAND2 gates. However, for
XOR2 and MUX2 gates, the number of transistors in the MCML
version is similar to that of CMOS with comparable area.
MCML gates dissipate mostly static power (microwatt), while
CMOS gates consume dynamic power proportional to the
switching frequency (microwatt/gigahertz).

1) Universal Gates: A two-input universal gate [Fig. 1(c)]
can implement eight logic functions (AND, OR, XOR, MUX, and
complementary forms) by exchanging input signals. Different
input combinations are listed in Table IV to construct various
logic functions with the same gate. Three versions of this
universal gate with different drive strengths are incorporated
into the MCML library (capable of emulating 19 gates in the
CMOS library).

2) Storage Structures: In an MCML processor, a natural
way of implementing storage structures is to use MCML-based
latches and flip-flops. Fig. 1(d) shows an MCML-based
D-latch. The highest level differential pairs function differ-
ently. One of the pairs serves as a sample branch to sense the
input data, while the other cross-coupled pair serves as a hold
branch to store the data, as shown in Fig. 1(d). When the clock
is high, the current passes through the sample branch (left)
and changes the output to the inverted value of the input data.
When the clock is low, the hold branch is activated, and the
cross-coupled transistors with regenerative positive feedback
maintain the output in the same state. A simple MCML master-
slave D flip-flop (DFF) can be constructed by connecting two
of these D-latches. These storage cells maintain the low-noise
benefits of MCML, but suffer from constant static power
dissipation. This power is tolerable in DFFs in small structures
with a high activity factor (such as a pipeline register), but
is a problem for larger storage structures (such as L1 or L2
caches) with a low activity factor per cell. To reduce static
energy, the proposed architecture uses SRAM cells for L1 and
L2 caches, register files, and Translation Lookaside Buffers
(TLBs) and provides the appropriate support for interfacing
between the MCML and the SRAM domains.

B. MCML-Static CMOS Interface

Interfacing an MCML-based processor core to SRAM-based
storage structures requires signals to be translated between a
low-swing differential voltage domain and a full-swing single-
ended voltage domain. Conversion from MCML to static
CMOS requires a differential to single-ended amplifier with
low gain (usually no more than ten) plus a static CMOS
inverter that amplifies the low-voltage swing beyond the
switching threshold of a CMOS gate. For a small output load,
the amplifier can be fast despite the small source current [55],
as shown in Fig. 1(e). Voltage conversion from the CMOS to
the MCML is simpler: the CMOS voltage swings are larger
than the MCML, and the MCML gates can operate at a
higher voltage swing than the target operating point. Inserting
a single CMOS inverter to generate a complementary signal
and a single MCML inverter to balance the two signals is
sufficient to interface CMOS to MCML [Fig. 1(f)]. Area and
power overheads depend upon the total number of signals that
cross the boundary between the static CMOS and the MCML
modules, which is not significant according to the evaluation.

V. DESIGN PHILOSOPHY

Power dissipation in MCML circuits is roughly proportional
to the number of logic gates, but is independent of the
switching frequency. As a result, the intuition behind an
energy-efficient, current-mode microprocessor is: 1) to avoid
using a large number of gates and 2) to maintain a shallow
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TABLE III

DELAY, AREA, AND POWER COMPARISON OF MCML AND STATIC CMOS (0.8 AND 0.55 V) STANDARD CELL LIBRARIES. ASSUME A 100%

SWITCHING ACTIVITY FOR STATIC CMOS CELLS WHEN OPERATING AT A 1 GHz, 17 ps INPUT TRANSITION TIME, 1 fF

LOAD CAPACITANCE,3 AND THE SAME INPUT SWITCHING PATTERNS FOR ALL OF THE CELLS

TABLE IV

INPUT CONNECTIONS FOR A TWO-INPUT UNIVERSAL GATE TO

CONSTRUCT DIFFERENT LOGIC FUNCTIONS

logic depth in each pipeline stage to minimize the time each
gate remains idle within a clock period. Maintaining energy
efficiency in a current-mode processor, therefore, requires a
complexity-effective design that operates at a high frequency
to reduce execution time and static energy. A significant
challenge that often plagues a deeply pipelined datapath is the
problem of overcoming data dependence to keep the pipeline
highly utilized. A secondary problem that is particularly
important in the case of MCML is the static power overhead
of the extra pipeline latches and the control logic, which
can offset the energy-efficiency benefits of a deep pipeline.
To make a high-speed, deep pipeline viable for a current-
mode processor, two synergistic techniques are explored:
1) C-slow retiming and 2) multithreading. Recall that, in
C-slow retiming (Section III-C), each of the original pipeline
stages (except writeback) in a baseline circuit is partitioned
into C stages. The resulting pipeline (4C + 1 stages)
works correctly without any new forwarding paths or
control logic as long as the threads are interleaved, and the
instructions from a given thread are restricted to issuing every
C cycles.

Choosing the Optimum C: A critical parameter that deter-
mines the energy efficiency of the proposed C-slow MCML
processor is C . It is possible to derive a simple analytic
model that expresses system energy as a function of C and
other design parameters to understand the tradeoffs involved
in optimally selecting C .

Assume that a baseline MCML processor has a static
power dissipation of P0, and the static power of a C-slow
pipeline is Pc. Let the marginal increase in static power

3In an actual case during synthesis, a range of delays is dynamically
determined by the synthesis tool; the total load capacitance is typically smaller,
and the input transitions are faster after the synthesis process. In the deepest
evaluated pipeline (8C 32 T), a stage has exhibited a delay of about nine to
ten FO4s (Section VII-C).

(extra MCML latch power) from a C-slow circuit to
a (C + 1)-slow circuit be Pδ for the entire pipeline; thus

Pc = P0 + (Cβ − 1)Pδ (6)

where the factor β describes the increasing power overhead
with increasing pipeline depth (e.g., linear when β = 1 or
superlinear when β > 1) [56], [57]. The critical path delay is
composed of two elements: 1) the combinational delay d0 and
2) the pipeline latch delay dδ. Since the combinational portion
is composed of C stages by C-slow retiming, the critical path
delay of the new pipeline stage, dc, is d0/C + dδ. The static
energy consumed in one cycle by the C-slow pipeline, Ec, is

Ec = Pcdc = (P0 + (Cβ − 1)Pδ)

(
d0

C
+ dδ

)
. (7)

For example, if the latch overhead increases linearly with
C (β = 1), the energy can be expressed as

Ec = (P0 − Pδ)d0

C
+ C Pδdδ + (P0dδ + Pδd0 − Pδdδ). (8)

This expression indicates that the energy to run an application
on a C-slow MCML pipeline depends on two competing
factors: 1) the lower static energy wasted in each pipeline stage
as C is increased and 2) the lower energy overhead of latches
as C is decreased. Setting the derivative of Ec (with respect
to C) to zero yields the optimum C and Copt that minimizes
static energy per cycle

Copt =
√(

P0

Pδ
− 1

)
d0

dδ
. (9)

When the latch overhead (Pδ and dδ) is negligible as
compared with the baseline pipeline (P0 and d0), Copt is
large; in this regime, the deeper the pipeline, the lower
the energy. Practical limitations on the achievable energy
efficiency are the maximum reachable pipeline depth and
the available thread-level parallelism. If the latch overhead is
comparable with the energy of the baseline pipeline; however,
the energy efficiency decreases beyond provided by Copt. For
example, when P0 ≈ 8Pδ and d0 ≈ 9dδ, Copt is 8, indicating
that a 33-stage (4C + 1) pipeline is the most energy efficient
circuit. In the case, where the latch overhead increases
superlinearly (i.e., β is >1), the optimum C is smaller. The
energy efficiency is, therefore, primarily constrained by the
pipeline overhead and the required robustness.



BAI et al.: CURRENT-MODE PROCESSOR IN THE ERA OF DEEPLY SCALED CMOS 1271

Fig. 2. Proposed C-slow (C = 8) pipeline structure for the current-mode
processor.

Fig. 3. Scheduling multiple threads in a conventional deep pipeline and a
two-slow pipeline. (a) Consecutive instructions from the same thread require
a full set of forwarding paths. (b) Instructions from interleaved threads use a
simple forwarding path.

VI. PIPELINE ORGANIZATION

The proposed complexity-effective current-mode
microprocessor is a C-slow version of a single-issue, in-order,
and multithreaded core with five stages. Each of the fetch,
decode, execute, memory access, and writeback stages
constitutes a major pipeline stage, and each of the four
major pipeline registers is replaced with C pipeline registers
using C-slow retiming. This process converts the baseline
core into a deeply pipelined processor with 4C pipeline
registers and 4C + 1 stages (e.g., 33 stages in Fig. 2). To
avoid the need for extra forwarding and control logic, a
restriction is placed on when a thread can enter a major
pipeline stage. In particular, each clock cycle is assigned
a time slot identifier (ID) between 0 and C − 1 to ensure
that a clock cycle with a time slot ID of t is followed by
a clock cycle with a time slot ID of (t + 1) mod C . Each
thread is statically assigned to a time slot. For example,
if C = 8 and a thread is assigned to time slot 1 that thread is
eligible to enter the pipeline on cycles 1, 9, 17, 25, and so on.
Interleaving the threads obviates the need for extra forwarding
paths. From the point of view of a single thread, the processor
is logically equivalent to the baseline five-stage pipeline
running at 1/C of the actual clock rate. This concept is
shown in Fig. 3(b) and is compared with a conventional, more
complex pipeline with extra forwarding paths in Fig. 3(a).

A. Instruction Fetch

The instruction fetch stage implements a fair fetch policy
that allocates threads to each time slot in a round-robin
fashion. Each time slot is identified by a time slot ID
[Fig. 4(a)], and assigned a predesignated set of hardware
thread contexts. Fig. 4 shows how threads are interleaved.
In this example, threads 0, 1, and 9 are available for execution,
while other threads are stalled for memory. Thread 0 is
statically assigned to time slot 0, while threads 1 and 9 are

Fig. 4. Instruction assignment to time slots. (a) Assignment of the 16 threads
to C = 8 time slots. (b) Executing instructions for active threads (0, 1, and 9).

Fig. 5. Illustrative example of accessing the register files (eight-slow core
with 16 hardware threads). T0–T7: eight time slot enable signals.

assigned to time slot 1. Threads 1 and 9, therefore, take turns
sharing time slot 1. The rest of the slots carry no operations,
waiting for one of the assigned threads to become available.

1) Program Counters: Each hardware thread is assigned a
32-bit program counter (PC). Given T hardware threads, a set
of T/C PC registers is statically allocated to each time slot.
The fetch unit selects one of the ready PCs every cycle using
a two-level round-robin selection policy. The time slot ID is
initially used to select the corresponding set of PCs in round-
robin order; next, within the selected set, one of the ready
threads is selected (also in round-robin order).

2) Instruction Cache: The instruction cache consists
of C 16-KB cache banks. Each cache bank is dedicated to
a particular time slot and provides a throughput of one access
every C cycles. All threads assigned to the same time slot share
the same cache bank. Since a bank can only be accessed in a
dedicated time slot (i.e., every C cycles), there is never a bank
conflict among threads. One 32-entry, four-way set associative
instruction TLB is used for each of the C cache banks.

B. Instruction Decode

The decode stage accesses both the instruction decoder and
the register files.

1) Decoder: The decoder implements the MIPS instruction
set architecture. It detects hazards and updates the state of the
current thread. Since the architecture guarantees that a thread
is not assigned to more than one time slot and the original
five-stage pipeline handles the necessary operand bypassing,
no new hazards exist in the C-slow pipeline.

2) Register Files: The processor incorporates C separate
register files, each of which is dedicated to one time slot.
If the number of hardware threads is T , every register file
is partitioned into T /C banks that share two read ports and
a write port. As shown in Fig. 5, 16 hardware threads are
assigned to eight time slots. Each register file is enabled every
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eight cycles through shared input and output buses. Two banks
of the same register file (e.g., the banks for thread 0 and
thread 8 in register file 0) are never accessed within the
same eight-cycle period, and share the same read and write
ports. This process eliminates the need for extra register file
ports, large selection logic, and data routing for the inputs and
outputs between the register file banks.

C. Execute

The execute stage includes an integer ALU, an FPU,
a branch resolution unit, and the forwarding logic.

1) Integer ALU: The integer ALU consists of a logic unit,
an adder/subtracter, a shifter, and a multiplier/divider. The
multiplier/divider implements a 32-stage Booth algorithm,
which allows for a high clock rate with a relatively small
number of gates. Recall that, for an MCML circuit, a smaller
gate count translates to lower static power; hence, a small,
highly utilized unit delivers higher energy efficiency. The
multiplier/divider is C-slow retimed, which results in a latency
of 32C clock cycles. Since the path is pipelined, consecutive
multiply and divide instructions from different threads as well
as independent multiply/divide instructions from the same
thread do not need to wait. However, if the next instruction
from the same thread is not a multiply or a divide, this thread is
blocked to prevent out-of-order completion. This event results
in a thread switch within the corresponding time slot.

2) Floating Point Unit: The FPU is based on the open
source OR1K floating point unit [58], and implements a
four-stage, IEEE 754 compliant, single precision pipeline.
Each original FPU stage requires two baseline clock cycles
(2C cycles in the C-slow pipeline); this time amounts to
8C cycles for conversion, addition, and subtraction operations.
For multiply and divide, a 32-stage Booth algorithm is used
to minimize gate count; after C-slow retiming, this translates
to 38C cycles of delay.

3) Branch Resolution Unit: Branches are resolved in the
execution stage, which requires nullifying one over-fetched
instruction on a taken branch. This strategy results in a shorter
critical path, and consequently a higher frequency and better
overall performance than resolving branches in the decode
stage of the proposed architecture.

D. Data Memory Access

The memory stage implements load and store instructions
by interfacing to a shared store buffer and a shared L1 data
cache. The L1 data cache comprises C cache banks, each
supported by a 32-entry, four-way set associative data TLB.
A memory operation is initiated in a single cycle, and com-
pletes within C cycles on a cache hit. A data TLB or data cache
miss results in a context switch to another thread assigned to
the same time slot. Since L1 data cache banks are shared, there
exists a possibility of bank conflicts among different threads
when the clock period is shorter than the cache cycle time,
which can happen when C is large. When a bank conflict
is detected, the entire pipeline freezes for typically one or
two minor cycles until the conflicting bank becomes available
(the impact of bank conflicts was investigated and found to not

TABLE V

TOOL CHAIN USED IN THE EVALUATION

constitute a performance bottleneck; the conflict rate is 6.4%
when C = 8). After the conflict is resolved, the blocked
request is sent to the data cache bank and the pipeline restarts.

Store Buffer: The load-store unit implements a store buffer
with one entry per hardware context. By checking the physical
tags in the store buffer, a read-after-write hazard between the
loads and the stores can be detected, and resolved by store–
load forwarding.

E. Register Writeback

If necessary, the retiring thread writes the result to the
register file in the writeback stage. The time slot ID and the
thread ID determine, respectively, the destination register file
and the corresponding bank.

VII. EXPERIMENTAL SETUP

Assessing the performance, energy, area, and signal integrity
characteristics of an MCML processor requires both the archi-
tectural and circuit-level design and the evaluation. The exper-
imental setup used in the design of the MCML gates, RTL
implementation, and architectural simulations are described in
this section. Table V gives an overview of the tool chain used
in the evaluation.

A. Standard Cell Library

The MCML cells use a 0.55 V power supply, which is
the most energy-efficient voltage level from 0.8 to 0.4 V
based on the experimental results. First, a 22-nm CMOS cell
library operating at the nominal voltage (0.8 V) is imple-
mented by scaling the 45-nm FreePDK [64] standard cell
library to 22 nm. Next, a low-voltage CMOS library operating
at 0.55 V is used to compare MCML with CMOS at the same
operating voltage.

Since variability is a key concern in deeply scaled
technologies, MCML cells are evaluated under process
variations [20], [65]. A ±12% die-to-die threshold voltage
variation is assumed [66], and four process corners (fast–fast,
fast–slow, slow–fast, and slow–slow) are evaluated for
both the CMOS and the MCML processors. An important
difference between the static CMOS and the MCML gates
is that MCML is more sensitive to transistor mismatch. The
universal gate, which employs a symmetric differential style,
is chosen to implement most logic gates in the proposed
MCML-based system while considering structural balance and
possible branch mismatch. To consider the impact of mismatch
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between the differential branches of an MCML gate, a within-
die random threshold voltage variation (σ/μ) of 6.3%, and a
within-die random effective channel length variation of 3.2%
are assumed. Within-die systematic variation is assumed
independent and equal to the random variation, which results
in total within-die variations (σ/μ) of 9% (σ 2

rand + σ 2
sys)

1/2

and 4.5% for threshold voltage and effective channel length,
respectively [for model details (see [67])]. To tolerate up to 6σ
within-die variation, basic gates are upsized according to the
well-known σ ∝ 1/(

√
area) law [68]. Delay distributions

due to parameter variations are derived from Monte Carlo
simulations (SPICE) for each type of gate. The target processor
is synthesized 1000×; each time, the synthesis tool statistically
evaluates the critical path delay based on the cell delay
distribution in the library to determine the delay distribution
of the critical path of the processor (Section VIII-F).

B. RTL Design

A five-stage, in-order MIPS processor (C = 1) was designed
in Verilog RTL, and synthesized with the three libraries as a
baseline. The C-slow netlist (C = 2, 4, and 8) was retimed
with the design compiler [69] to achieve a minimum clock
period, and simulated and verified by NCSim [61]. A fixed
clock uncertainty (corresponding to clock skew and jitter),
which constrains the achievable frequency, is specified during
logic synthesis. In addition, high-performance microprocessors
utilize a clock mesh to minimize the clock skew by trading
off power dissipation. The mesh averages the arrival times
for adjacent nodes by balancing the current flowing through
the mesh [70], [71]. The energy and the power of a static
CMOS pipeline are determined from the netlist simulation,
and synthesis using PrimeTime [72]. The power of the MCML
pipeline is determined from the static power of each type
of gate and the gate count (including the MCML–CMOS
interface gates). All the SRAM structures for both the static
CMOS and the MCML processors use the same SRAM cells,
and operate at the nominal voltage (0.8 V); the energy and the
power estimates are calculated using CACTI 6.5 [62].

Due to the differential routing requirements of MCML,
a fair area comparison between the CMOS and the MCML
requires a physical layout. Similar to [73] and [74], a fat-wire
technique is adopted to consider the differential routing
overhead of MCML (this technique doubles the pitch width
of the wires, and supports minimal spacing rules). The 22-nm
core area for the CMOS and the MCML is scaled from the
45-nm layout area.4

C. Noise Model

Three single-core processors, implemented with 0.8 V
CMOS, 0.55 V CMOS, and 0.55 V MCML libraries, are
simulated for the noise evaluation. The system-level noise is
evaluated using a methodology similar to [75]–[78]. The noise
model decouples the linear (power and ground network),
and nonlinear (transistors) portions of the system, as shown

4FreePDK provides the design rules at a 45-nm technology, but not 32 nm
or 22 nm.

Fig. 6. Model for the system-level noise evaluation.

in Fig. 6. The power and ground networks are modeled
as resistive networks with parasitic capacitors, and the
nonlinear switching blocks (e.g., decode and execute stages)
are modeled as distributed current generators connected
in parallel between the power and the ground networks.
These current generators are implemented with representative
circuits (e.g., 32 bit adders, decoders) rather than ideal current
sources, and the current of each generator is proportional to
the power consumption of the relevant block [75].

The metrics of each cell include the peak-to-peak power/
ground voltage and the current noise. At the system level,
a noise model (see Fig. 6) mimics the primary components in
the noise generation process. The total capacitance, including
interconnect and decoupling capacitors on the power and
ground networks, is 0.4 pF/1000 gates.

D. Architecture

A modified version of the SESC simulator [63] is used
to model both the static CMOS and the MCML processors.
To explore the design space, several design choices (multicore
versus C-slow, optimal number of cores and hardware thread
contexts, and optimal frequency and supply voltage) are
evaluated for both the CMOS and the MCML.5 Note that the
best design choice for the static CMOS is multicore instead
of C-slow, while the opposite is true for MCML. As listed
in Table VI, a C-slow (C = 1, 2, 4, 8), a single-core MCML
processor is compared with a 2 GHz C-core CMOS (0.8 V)
processor. Both the processors support a maximum of T = 64
hardware threads. The total cache capacity, number of
threads, and other per-thread resources remain the same for
the CMOS and the MCML for a given C . The frequency of
the 0.55 V static CMOS processor is set to 667 MHz based
on synthesis results; the experimental setup for the 0.55 V
CMOS is otherwise identical to 0.8 V CMOS.

E. Applications

A mix of fourteen scalable parallel applications from
the Phoenix [81], SPLASH-2 [82], SPEC OpenMP [83],
and NAS [84] suites, as well as a batch self-organizing
map (BSOM) application [85] are evaluated, as listed
in Table VII.

VIII. EVALUATION

This section compares the MCML and CMOS processors
in terms of signal integrity, performance, energy, and area.

5C-slow multithreading was applied to the CMOS C-slow circuits during
the design space exploration.
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TABLE VI

EXPERIMENTAL SETUP FOR STATIC CMOS (0.8 V) AND MCML-BASED SYSTEMS

Fig. 7. Voltage noise of a single-core system implemented in the static CMOS (0.8 and 0.55 V) and the MCML. The y-axis is the noise percentage normalized
to the supply voltage. (a) Power network noise. (b) Ground network noise. (c) Power network noise. (d) Ground network noise.

Fig. 8. Performance and power comparison among CMOS 0.8, CMOS 0.55, and MCML processors. 2C 32 T: two-core 32-thread for CMOS, and two-slow
32-thread single core for MCML. All data are normalized to CMOS 0.8 V 1C 1 T.

TABLE VII

APPLICATIONS AND DATA SETS

The impact of process variations and the availability of
thread-level parallelism on the performance and the power are
also explored.

A. Signal Integrity

A full-swing static CMOS processor generates significant
switching noise that is transferred from the digital blocks

to the system through the power and ground networks,
substrate, and interconnect. In contrast, the MCML processor
draws a nearly constant current, which exhibits small
fluctuations due to charging and discharging parasitic junction
capacitances. A single static CMOS core at the nominal
voltage (0.8 V) generates a 40× larger peak-to-peak voltage
noise on the power and ground networks than an MCML core
with comparable performance [Fig. 7(a) and (b)]. A slow
low-voltage CMOS core (0.55 V) generates 10× larger peak-
to-peak voltage noise than the MCML core [Fig. 7(c) and (d)],
exhibiting 3× lower performance.

B. Performance and Energy

Fig. 8 shows the performance (1/execution time) and
average power over 14 benchmarks operating on 0.8 V
CMOS multicore, 0.55 V CMOS multicore, and MCML
C-slow processors. T is the number of hardware threads,
while C is the number of cores for CMOS and the C-slow
factor for MCML. Since the clock frequency is constrained
by the supply voltage in CMOS, the 0.55 V CMOS processor
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Fig. 9. Energy breakdown for the CMOS 0.8 V multicore and the MCML C-slow single-core processors. The energy for register files and TLBs are included
in the memory energy.

Fig. 10. Energy and Delay Pareto plots for representative benchmarks. Design points, including single core, multicore, multiple C-slow cores, and single
C-slow core are presented for both the CMOS (0.8 and 0.55 V) and the MCML. Points beyond the scales are truncated. Geometric mean plot: Pareto frontiers
of CMOS and MCML design points.

operates at 667 MHz, which results in lower performance than
the 0.8 V CMOS and the MCML processors. MCML gates
are generally faster than the static CMOS gates operating
at the same supply voltage, and match the speed of static
CMOS at nominal supply voltages. The MCML core
delivers better power efficiency (up to 1.78×) than the
0.8 V CMOS multicore system when C ≥ 2, because the
power overhead of increasing pipeline depth in the C-slow
MCML processor is lower than increasing the number of
cores in the CMOS processor.

Fig. 9 shows the energy breakdown for the C-slow MCML
and 0.8 V CMOS multicore processors. The MCML dynamic
core energy is not significant, because the MCML core
consumes nearly constant power regardless of the switching
activity. The fastest MCML processor (8C 32 T) consumes
2.7× lower energy in the cores, and 1.6× lower energy in the
system as compared with the fastest static CMOS processor
(8C 32 T) at 0.8 V. The energy in the memory subsystem is
over half of the total energy in the MCML processor, which
is a bottleneck to achieving larger energy gains. Since the
shared L1 data cache of MCML can suffer from conflicts, the
dynamic memory energy of MCML is slightly higher than
the corresponding CMOS processor. The small difference in
static memory energy is due to the different execution times.
The interface gates operate in parallel and negligibly increase

the critical path delay. The total power and the area overhead
of all of the interface circuits are, respectively, 3.7 mW
and 0.0036 mm2.

C. Exploration of Design Space

In this section, the design space of CMOS and MCML
processors are explored to determine Pareto optimal
configurations. The design space considers four design
parameters: 1) supply voltage (0.8 and 0.55 V for CMOS and
0.55 V for MCML); 2) C-slow factor (C = 1, 2, 4, or 8);
3) number of cores (one, two, four, or eight); and 4) number
of hardware threads (up to 64). Fig. 10 shows the system-
wide ED for both the static CMOS and the MCML circuits.
The individual benchmarks can roughly be categorized
into two groups depending upon whether the MCML has
a superior Pareto frontier than the CMOS. For clarity and
space considerations, Fig. 10 only shows two representative
benchmarks—LINEAR-REGRESSION and LU—from each
group, as well as the geometric mean of all 14 benchmarks.
As shown in the geometric mean plot, MCML processors
generally exhibit higher performance and lower energy than
the CMOS counterparts. The 0.8 and 0.55 V multicore
circuit is constitute the boundary on the CMOS Pareto curve
instead of the C-slow CMOS circuits, since the increased
frequency and the pipeline overheads of C-slow retiming
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Fig. 11. (a) Power crossing. (b) Area comparison between the 0.8 V CMOS multicore and the MCML C-slow designs. (c) Monte Carlo simulation of
within-die variations for 1000 MCML chips (eight-slow).

Fig. 12. Energy and power comparison of the CMOS and MCML processors when hardware threads are underutilized. 2C : two cores for CMOS, and a
single two-slow core for MCML. 32 T: 32 available hardware threads. The numerical value under each column shows the number of software threads running
on the system. All data are normalized to the 0.8 V 1C 1 T CMOS baseline. Idle cores of the 0.8 V CMOS processors are powered OFF.

significantly increase the power consumption of the static
CMOS circuits (note that C-slow can be considered a form
of superpipelining). For MCML, C-slow circuits are better
than multicore circuits in energy, because the static power
overhead from increasing the number of cores is larger than
increasing the pipeline depth. Since MCML power dissipation
is mostly static, reducing the execution time directly leads
to energy savings in scalable parallel applications, such as
BARNES, BSOM, CG, FFT, LINEAR, OCEAN, SWIM,
and WATER. In LINEAR-REGRESSION, the static CMOS
multicore processor suffers from false sharing in the memory
subsystem, resulting in lower energy efficiency than the single-
core MCML processor. However, in applications, such as LU,
EQUAKE, FT, CHOLESKY, HISTOGRAM, and MG, C-slow
MCML does not offer a clear energy advantage because of
the relatively weak performance due to the high bank conflict
rate (LU), and high miss rate (CHOLESKY and MG) in the
shared L1 data cache (not the case for the CMOS processor,
which has a private L1 data cache per core).

Due to process variations and clock skew, however, it is
challenging to further deepen the C-slow pipeline: the
eight-slow processor achieves a clock frequency of 13 GHz,
which corresponds to nine to ten FO4s. By incorporating a
small number of C-slow cores, MCML circuits (dual-core
eight-slow, 32 and 64 T) outperform the fastest CMOS
processor (8C 32 T) by 16%, and achieve energy savings
of 19% (the top two points on the GEOMEAN).

A crossover point in the design space separates the
regions where either MCML or CMOS is more power

efficient [Fig. 11(a)]. As expected, C-slow MCML is more
power efficient than multicore CMOS processors at the
high-performance regions of the design space.

D. Underutilization

Underutilization of the available hardware threads in
an MCML processor can degrade the energy efficiency
advantages over CMOS. Fig. 12 compares energy and power
between the CMOS and the MCML processors when the
number of software threads is fewer than the number of
hardware threads. Both the MCML and the CMOS consume
more energy and less power when hardware threads are
underutilized. The MCML power, however, is largely static
and independent of the number of threads, whereas CMOS
power scales with fewer threads. The energy of MCML
and CMOS processors are similar to one to two software
threads running at 2C (CMOS two-core and MCML two-slow
single core), and two to four threads at 4C and 8C . The energy
and power advantage of MCML processors is maintained, and
the maximum energy benefit is obtained when all hardware
threads are fully utilized. Hence, systems expected to run
workloads with varying degrees of thread-level parallelism
would likely benefit from heterogeneous hardware that
incorporates both the MCML and the static CMOS cores.

E. Area

An area breakdown of a single-core, a C-slow MCML
processor, and a C-core CMOS processor at 0.8 V is shown
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in Fig. 11(b). All the memory structures are the same capacity
for CMOS and MCML for a given C . A single MCML
core, excluding the cache subsystem, consumes 1.89× greater
area than a CMOS core due to the differential signaling
(wiring area), relatively large MCML gates, and additional
MCML–CMOS circuit interfaces. As C increases, the MCML
area grows due to the greater number of pipeline registers,
interfaces, and extra SRAM resources for more hardware
threads. At the same performance level, however, eight static
CMOS cores consume 1.47× more area than the eight-slow
MCML core, since the area overhead of increasing cores is
larger than increasing the pipeline depth. By including the area
overhead of larger devices to mitigate the impact of process
variability, the eight-slow MCML processor consumes 9% less
area than the eight-core CMOS processor.

F. Process Variability

Variability, which includes device die-to-die and within-die
process variations (systematic and random), supply voltage
fluctuations, and temperature variations inevitably affect the
performance and power of both the static CMOS and the
MCML circuits. Variations in MCML circuits are primarily
due to the imperfections of the bias voltage generator for
a constant current, voltage drops in the power and ground
networks (typically much less than static CMOS), transistor
mismatch between the pMOS load transistors, or the
nMOS transistors in the same differential pair, and local
temperature differences. MCML circuits can tolerate some
variation by adjusting bias voltages. A typical on-chip voltage
generator provides the bias voltages to maintain the voltage
swing and tail current nearly constant [3].

Four process corners are evaluated to assess the impact
of die-to-die variability for both the static CMOS (0.8 V)
and the MCML processors. MCML performs worse than
CMOS in terms of performance variability, but better than
CMOS in terms of power variability due to lower voltage and
current fluctuations. Among all corners, the worst performance
variation is 24% for CMOS and 43% for MCML, while the
worst power variation is 25% for CMOS and 16% for MCML.

To demonstrate robustness under both the random and the
systematic within-die variations, 1000 Monte Carlo simula-
tions (Section VII-A) are performed on the eight-slow MCML
processor. A histogram of the resultant clock frequency
distribution is shown in Fig. 11(c). The mean of the frequency
drifts from the nominal 13 to 12.85 GHz, because the critical
path differs among the 1000 simulations due to variability.
The standard deviation of the critical path frequency is within
4% (s = 0.473) of the mean due to averaging effects.

IX. CONCLUSION

A 22-nm MCML standard cell library has been developed
for MCML microprocessors incorporating multithreading
and C-slow retiming. A 10–40× reduction in power and
ground noise over static CMOS processors at both the
low (0.55 V) and the nominal voltages (0.8 V) is observed.
An eight-slow (33 stages) single-core MCML microprocessor
delivers 1.6× lower energy and 9% less area than an

eight-core static CMOS processor, while the performance is
within 13%. A dual-core, eight-slow MCML microprocessor
outperforms an eight-core CMOS processor by 16% with a
19% improvement in energy. Furthermore, the operation of
the MCML processor is robust under both the systematic and
the random device variations. Current-mode microprocessors
have the potential to significantly improve signal integrity
and energy efficiency of future computer systems.
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