
Solutions to Homework 10 - Gaussian processes

1) Arbitrages. Consider bets in different outcomes of a random event. An arbitrage is an opportunity to realize a
gain independently of the outcome of the event. Consider for example the upcoming Soccer World Cup (to be held
in Russia in 2018) in which the two favorite teams according to British bookies are Germany and Argentina. With
the event still so far ahead in time, bookers at this point bias their odds towards the outcome of the most recent
World Cup held in Brazil. Suppose you can place bets on Germany (G), Argentina (A) or “neither Germany, nor
Argentina” (O). Booker 1 is offering the following odds for these three outcomes:

Germany Argentina Other
6.6:1 8.1:1 1.2:1

A) Arbitrage with single booker. Our goal is to look for arbitrage opportunities by placing mixed bets on all three
possible outcomes. We bet x on Germany, y on Argentina and z on other. The total money invested is a given
constant x+ y + z = c. Accordingly, an arbitrage opportunity exists if

Germany wins: 6.6x− (x+ y + z) = 6.6x− c > 0 ⇒ x > c/6.6

Argentina wins: 8.1y − (x+ y + z) = 8.1y − c > 0 ⇒ y > c/8.1

Other wins: 1.2z − (x+ y + z) = 1.2z − c > 0 ⇒ z > c/1.2.

Summing-up all the inequalities in the right-hand-side yields the arbitrage condition

x+ y + z > c

(
1

6.6
+

1

8.1
+

1

1.2

)
⇒ c > 1.1083c

which cannot be satisfied for c > 0. Hence, arbitrage is not possible for the odds given above.

B) Arbitrage with many bookers. There are many bookers accepting bets, so it may then be possible to find arbitrages
by placing bets on different outcomes with different bookers. In particular, consider three different bookers offering
the following odds:

Booker Germany Argentina Other
1 6.6:1 8.1:1 1.2:1
2 6.4:1 7.8:1 1.3:1
3 5.9:1 8.4:1 1.1:1

From the odds given it is apparent that the best strategy is to bet x on Germany from Booker 1, y on Argentina
from the Booker 3, and z on other from Booker 2. An arbitrage opportunity exists if

Germany wins: 6.6x− (x+ y + z) = 6.6x− c > 0 ⇒ x > c/6.6

Argentina wins: 8.4y − (x+ y + z) = 8.4y − c > 0 ⇒ y > c/8.4

Other wins: 1.3z − (x+ y + z) = 1.3z − c > 0 ⇒ z > c/1.3.

Summing-up all the inequalities in the right-hand-side yields the arbitrage condition

x+ y + z > c

(
1

6.6
+

1

8.4
+

1

1.3

)
⇒ c > 1.0398c

which cannot be satisfied for c > 0. Even with multiple bookers arbitrage is not possible for the odds given above.

2) Option pricing.

A) Derivation of (3) and (4). To determine the option’s price start with a geometric Brownian motion model for
the evolution of the stock price X(t). Specifically, we assume that changes in prices are according to the expression

X(t+ s) = X(t)eYt(s) (1)



where Yt(s) is Gaussian distributed with mean µs and variance σ2s independently of t. We further assume that
relative price changes Yt(s) in disjoint time intervals are independent. An important observation to make here is
to consider a discretization in time steps of fixed duration h, say h = 1 day or h = 1/365 years, and to define the
discrete-time random process YN = Y1, Y2, . . . , Yn, . . . as

Yn := log
[
X(nh)

]
− log

[
X
(
(n− 1)h

)]
= Y(n−1)h(h). (2)

It follows from the model in (1) that RVs Yn are i.i.d. normals with mean µh and variance σ2h, since different
samples Yn = Y(n−1)h(h) belong to disjoint intervals of length h. This is an important observation because it allows
us to infer the parameters µ and σ2 from empirical data. In fact, the mean µh and variance σ2h of the normal
distribution from where samples Yn are drawn can be estimated using the sample mean and variance estimators.
Accordingly, since h is a fixed known constant the drift parameter µ can be estimated by the scaled sample mean

µ̂ =
1

Nh

N∑

n=1

Yn (3)

and the volatility parameter σ can be estimated by the scaled sample variance

σ̂2 =
1

(N − 1)h

N∑

n=1

(Yn − µ̂h)
2
. (4)

B) Determination of drift and volatility. Using the data provided for CSCO, here we estimate the drift and volatility
parameters for X(t) using the sample mean and variance expressions in (3) and (4). The Matlab script to carry out
these calculations follows:

% Load CSCO data
cisco_stock_price

Z=log(close_price);
Y=Z(2:end)-Z(1:end-1);
N=length(Y);
h=1/365;
mu_hat=sum(Y)/(N*h) % Sample mean
sigma_sqr_hat=sum((Y-mu_hat*h).ˆ2)/((N-1)*h) % Sample variance

The results obtained are µ̂ = 0.6275 and σ̂2 = 0.2174. (Notice that in the above code and henceforth we assume
the unit for time to be one year, not one day. Daily samples thus correspond to h = 1/365 years.)

C) Is geometric Brownian motion a good model? If a geometric Brownian motion with drift µ̂ and volatility σ̂2

is a good model for the evolution of CSCO stock price, then the variables Yn have a N
(
µ̂h, σ̂2h; y

)
pdf. To

corroborate this fact, the following Matlab script estimates the pdf of Yn using a histogram and compares it with
the pdf N

(
µ̂h, σ̂2h; y

)
. We also carry out the corresponding comparisons for the cdfs. In all cases we select values

of Yn between −0.1 and 0.1, and use a bin size of 0.01 for the histogram.

% Load CSCO data
cisco_stock_price

Z=log(close_price);
Y=Z(2:end)-Z(1:end-1);
N=length(Y);
h=1/365;

x=-0.1:0.01:0.1;
n_elements = histc(Y,x);

% Comparison of pdfs
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Fig. 1. Part C: The comparison shows that the geometric exponential model is just barely acceptable.

For the parameters given, we have:

E [(discounted return)] = (0.6275 + 0.2174/2 − 0.0375) × 1 = 0.6987

P

{
log(

e−αtX(t)

X(0)
) ≥ 0.05

}
= FX(t)/X(0)(0.05 + 0.0375)

knowing that X(t)/X(0) ∼ N (µt, σt) we get:

P {(disountedreturn) ≥ 0.0875} = 1 − Φ(
0.0875 − µ̂ × 1√

σ̂ × 1
)

Using Matlab’s normcdf command, the number we obtain is:

1-normcdf(0.0875,mu_hat,sqrt(sigma_sqr_hat))= 0.8766

E Risk neutral measure.

Referring to slide 26 of arbitrage stock and option pricing, the risk neutral measure is a re-scaled geometric

Brownian motion (GBM) whose drift is α−σ2/2 and whose variance is σ2. So, the risk neutral measure is a geometric
Brownian motion with drift −0.0712 and variance 0.2174.

F Expected return for risk neutral measure.

Following the concept of risk-neural measure, expected discounted rate of return in the alternative reality is zero,
non-discounted rate of return would be α.

G Derive Black-Scholes formula.

Refer to slide 40.

H Determine option price.

The following code calculates the risk neural price of the buying option (based on Black-Scholes formula is
slide 40.):

alpha=0.0375;

X_0=close_price(1,1);

EX=X_0*exp(mu_hat+sigma_sqr_hat/2);

K=[0.8 1 1.2]*EX;

a=(log(K/X_0)-(alpha-sigma_sqr_hat/2))/(sqrt(sigma_sqr_hat));

b=a-sqrt(sigma_sqr_hat);

Q_a=1-normcdf(a,0,1);

Q_b=1-normcdf(b,0,1);

c=X_0*Q_b-exp(-alpha)*K.*Q_a;

The resulting prices are:

c =

0.7190 0.2941 0.1243
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For the parameters given, we have:

E [(discounted return)] = (0.6275 + 0.2174/2 − 0.0375) × 1 = 0.6987

P

{
log(

e−αtX(t)

X(0)
) ≥ 0.05

}
= FX(t)/X(0)(0.05 + 0.0375)

knowing that X(t)/X(0) ∼ N (µt, σt) we get:

P {(disountedreturn) ≥ 0.0875} = 1 − Φ(
0.0875 − µ̂ × 1√

σ̂ × 1
)

Using Matlab’s normcdf command, the number we obtain is:

1-normcdf(0.0875,mu_hat,sqrt(sigma_sqr_hat))= 0.8766

E Risk neutral measure.

Referring to slide 26 of arbitrage stock and option pricing, the risk neutral measure is a re-scaled geometric

Brownian motion (GBM) whose drift is α−σ2/2 and whose variance is σ2. So, the risk neutral measure is a geometric
Brownian motion with drift −0.0712 and variance 0.2174.

F Expected return for risk neutral measure.

Following the concept of risk-neural measure, expected discounted rate of return in the alternative reality is zero,
non-discounted rate of return would be α.

G Derive Black-Scholes formula.

Refer to slide 40.

H Determine option price.

The following code calculates the risk neural price of the buying option (based on Black-Scholes formula is
slide 40.):

alpha=0.0375;

X_0=close_price(1,1);

EX=X_0*exp(mu_hat+sigma_sqr_hat/2);

K=[0.8 1 1.2]*EX;

a=(log(K/X_0)-(alpha-sigma_sqr_hat/2))/(sqrt(sigma_sqr_hat));

b=a-sqrt(sigma_sqr_hat);

Q_a=1-normcdf(a,0,1);

Q_b=1-normcdf(b,0,1);

c=X_0*Q_b-exp(-alpha)*K.*Q_a;

The resulting prices are:

c =

0.7190 0.2941 0.1243

Fig. 1. The comparison of the pdf (left) and cdf (right) shows that the geometric Brownian motion model is acceptable. (Part C.)

figure(1)
bar(x,n_elements/N/0.01,’r’)
hold on
x_padded=-0.1:0.001:0.1;
plot(x_padded,normpdf(x_padded,mu_hat*h,sqrt(sigma_sqr_hat*h)),’Linewidth’,3)
grid on
axis([-0.1 0.1 0 25])

% Comparison of cdfs
figure(2)
c_elements = cumsum(n_elements)/N;
bar(x,c_elements,’r’)
hold on
x_padded=-0.1:0.001:0.1;
plot(x_padded,normcdf(x_padded,mu_hat*h,sqrt(sigma_sqr_hat*h)),’Linewidth’,3)
grid on
axis([-0.1 0.1 0 1])

The result of the comparison is depicted in Fig. 1, and the conclusion is that – while not great – the geometric
Brownian motion model for X(t) is acceptable.

D) Expected return. The formula for the expected return of an investment on CSCO as a function of time t and
the parameters µ̂ and σ̂2 is

E
[
e−αtX(t)

X(0)

∣∣X(0)

]
= e(µ̂+σ̂

2/2−α)t.

Notice that we have corrected the returns by the return of a risk-free money market investment. (Denoting as α
the money market rate of return, the present value of a gain r at time t is re−αt.) Thus the expected return for
α = 3.75% and time t = 1 year is

E
[
e−αtX(t)

X(0)

∣∣X(0)

]
= e(0.6275+0.2174/2−0.0375)×1 = 2.01.

The rate of return is given by the logarithm of the discounted return, so the probability of having a rate of return
of at least 5% in the next year is

P
[
log

(
e−αX(1)

X(0)

)
≥ 0.05

∣∣X(0)

]
= P [Y (1) ≥ 0.05 + 0.0375] .

Since Y (1) ∼ N (µ̂, σ̂2) the probability is simply

P [Y (1) ≥ 0.0875] = Φ

(
0.0875− µ̂

σ̂

)
= 0.8766



where Φ(·) is the ccdf of a standard Gaussian RV.

E) Risk neutral measure. The risk neutral measure for CSCO’s stock is a Brownian motion with drift µ = α−σ̂2/2 =
−0.0712, and variance parameter σ2 = σ̂2 = 0.2174.

F) Expected return for risk neutral measure. If we assume we are living in an alternative reality where the stock’s
price evolves according to the risk neutral measure, then the expected discounted rate of return for an investment
in CSCO is 0. The non-discounted rate of return is α.

G) Derive the Black-Scholes formula. A European style option on the stock X(t) is a contract to have the option
to buy the stock at a predetermined price on a predetermined future time. The option is described by the strike
price K, the strike time t and its price c. Paying c to buy an option at time 0 gives us the opportunity to buy the
stock for the strike price K at the strike time t. At time t the worth of the option depends on the value of the stock
X(t). If the stock has fallen below the strike price K, i.e., if X(t) ≤ K the option becomes worthless. If, on the
contrary, the price has risen beyond K, i.e., if X(t) > K we can realize a gain X(t)−K by exercising the option
to buy the stock at price K. We can thus write the worth of the option w as

w =
[
X(t)−K

]+
, (5)

where [x]+ = max(0, x) denotes projection on the positive numbers.
In this context, the Black-Scholes formula to price an option is obtained by determining the price c that yields

zero expected return (hence no arbitrage opportunities) with respect to the risk neutral measure q, i.e., c is chosen
as the solution of

Eq

[
e−αt

[
X(t)−K

]+ − c
]

= 0.

Note that the expected value is with respect to the risk neutral measure q specified in part E, not the actual geometric
Brownian motion followed by the stock price X(t). As derived in class, the closed form expression for the option’s
price c is

c = X(0)Φ

(
log(K/X(0))− µt√

σ2t
−
√
σ2t

)
− e−αtKΦ

(
log(K/X(0))− µt√

σ2t

)

which depends on the risk-free rate of return α, volatility of stock σ2, the strike price K, option’s strike time t,
and current price X(0). Notice that the price c is independent of the drift parameter µ.

H) Determine option price. Using the Black-Scholes formula, the following Matlab script calculates the option
price c for t = 1 year, when the strike price coincides with the expected value of the stock by the strike time, i.e.,
K = E [X(t)]. The code also repeats the calculation when K = 1.2E [X(t)] and K = 0.8E [X(t)].

% Load CSCO data
cisco_stock_price

Z=log(close_price);
Y=Z(2:end)-Z(1:end-1);
N=length(Y);
h=1/365;
mu_hat=sum(Y)/(N*h) % Sample mean
sigma_sqr_hat=sum((Y-mu_hat*h).ˆ2)/((N-1)*h) % Sample variance

alpha=0.0375;

X_0=close_price(1,1);
EX=X_0*exp(mu_hat+sigma_sqr_hat/2);
K=[0.8 1 1.2]*EX;
a=(log(K/X_0)-(alpha-sigma_sqr_hat/2))/(sqrt(sigma_sqr_hat));
b=a-sqrt(sigma_sqr_hat);
Q_a=1-normcdf(a,0,1);
Q_b=1-normcdf(b,0,1);



c=X_0*Q_b-exp(-alpha)*K.*Q_a;

The price for K = E [X(t)] is c = 0.2941. Likewise we obtaine c = 0.7190 for K = 0.8E [X(t)], while c = 0.1243
for K = 1.2E [X(t)]. Options with strike prices K = 1.2E [X(t)] and K = 0.8E [X(t)] are products that could
be more or less appealing to investors depending on their risk preferences. For instance, for K = 0.8E [X(t)] it
is more likely that by the strike time the option will be exercised (meaning that K is below X(t)), thus realizing
a gain. Of course, because this option bears the least risk it is the most expensive and its corresponding c is the
largest.


