
Homework 1 - Introduction

1) Lower bounded random walk. Consider a game in which players bet $1 to win $1 with probability p and
loose their bets with probability q = 1 − p. The wealth of a player as a function of time is a random process. If
the player’s wealth at time t is w(t) (which denotes a realization of the random variable W (t)), the wealth at time
t + 1 is either w(t) + 1 or w(t) − 1. Moreover, the probability of the wealth increasing to w(t) + 1 is p and the
probability of the wealth decreasing to w(t)− 1 is q. We write this as

P
[
W (t+ 1) = w(t) + 1

∣∣W (t) = w(t)
]
= p,

P
[
W (t+ 1) = w(t)− 1

∣∣W (t) = w(t)
]
= q. (1)

The first equation, e.g., is read as “the probability of W (t + 1) taking the value w(t) + 1, given W (t) = w(t) is
p.” The expression in (1) is true as long as W (t) 6= 0. When W (t) = 0 the gambler is ruined and W (t+ 1) = 0.
A rather sophisticated, yet sometimes useful way of expressing this fact is

P
[
W (t+ 1) = 0

∣∣W (t) = 0
]
= 1. (2)

We saw in class that if p > 1/2 then it is likely that the sample paths w(t) of the random process diverge making
this a rather good game to play. In this exercise p can take any value. This process can be called a lower bounded
random walk. Wealth can be reinterpreted as position on a line and wealth variations as steps taken randomly to
left and right. The origin is home, in that if the walker reaches 0 it stays there. It is asked that:

A) Simulation of a process realization. Write a function that accepts as parameters the probability p, the initial
wealth W (0) = w0 and a maximum number of bets T . The function returns a vector of length at most T + 1
containing the wealth’s history w(0), . . . , w(T ) randomly computed according to the probabilities in (1) and (2).
If the wealth is depleted at time t < T , that is, if w(t) = 0 for some t < T , the function returns a vector of length
t+1 with the wealth’s history up to time t, i.e., w(0), . . . , w(t). Optionally, you can also return a boolean variable
to distinguish between a run that resulted in a broken player and one that did not. This might be useful for parts
B-E. Show plots with simulated processes for w0 = 20, T = 103 and p = 0.25, p = 0.5 and p = 0.75.

B) Probability of reaching home. Fixing p = 0.55 and w0 = 10 compute the probability B(p, w0) of eventually
reaching home (going broke in the betting context), that is the probability of having W (t) = 0 for some t. Notice
that because once W (t) = 0 wealth stays at 0 this probability can be written as the limit

B(p, w0) = lim
t→∞

P
[
W (t) = 0

∣∣W (0) = w0

]
. (3)

Strictly speaking, you would need to run the simulation forever to make sure the gambler does not run out
of money. However, you can truncate simulations at time T = 100 for this exercise. With this approximation
you would be aiming to compute the probability of reaching home between times 0 and T , which we assume
approximates the probability of reaching home between times 0 and ∞ reasonably well. Put differently, we are
assuming that P

[
W (T ) = 0

∣∣W (0) = w0

]
for T = 100 is a good approximation of the limit in (3). To estimate

P
[
W (T ) = 0

∣∣W (0) = w0

]
we run the simulation code of part A multiple times. Each of these runs results in

a wealth path wn(t), we then define the indicator function I {wn(T ) = 0} which equals 1 if wealth at time T is
wn(T ) = 0 and 0 if not. The probability of reaching home is then estimated as (N is the number of simulations
ran)

B̂N (p, w0) =
1

N

N∑
n=1

I {wn(T ) = 0}. (4)

The expression in (4) is just the average number of times home was reached across all experiments. The function
I {wn(T ) = 0} is called the indicator function of the event wn(T ) = 0 because it “indicates” the event by taking
the value 1.

To compute B̂N (p, w0) you need to decide on a number of experiments N . The more experiments N you run the
more accurate your estimation. Alas, the larger you need to wait. Report your probability estimate and the number
of experiments N used. Explain your criteria for selecting N .



C) Probability of reaching home as a function of initial wealth. We want to study the probability of reaching home
as a function of initial wealth. Fix p = 0.55 and vary initial wealth between w0 = 1 and w0 = 20. Show a plot of
your probability estimates B̂N (p, w0) as a function of initial wealth. The number of experiments N run to compute
probability estimates for different initial wealths need not be the same.

D) Probability of reaching home as a function of p. The goal is to understand the variation of the probability of
reaching home for different values of the probability p. Fix w0 = 10 and vary p between 0.3 and 0.7 – increments
0.02 should do. Show a plot of your probability estimates B̂N (p, w0) as a function of p. You should observe a
fundamentally different behavior for p < 1/2 and p > 1/2. Comment on that.

E) Time to reach home. Fix p = 0.4. With this value of p it is possible to see that gamblers eventually deplete their
wealth independently of their initial wealth w0. This is something remarkable, despite the process being random
it is possible to say that W (t) eventually becomes 0. This needs to be qualified, though. Unlikely as it may be
there is a chance of winning all hands. Of course, the probability of this happening becomes smaller as the gambler
plays more hands. What we can say about a lower bounded random walk is that with probability 1, wealth W (t)
approaches 0 as t grows. More formally, the limit limt→∞ W (t) satisfies

P
[
lim
t→∞

W (t) = 0
]
= 1. (5)

We say that limt→∞ W (t) = 0 almost surely. Different wealth paths are possible, but almost all of them result in
a broken gambler. If we think of probabilities as measuring the likelihood of an event, the measure of the event
W (t) 6= 0 is asymptotically null. An important quantity here is the time at which W (t) = 0 for the first time which
we can write as

T0 = min
t

(
W (t) = 0

)
. (6)

For w0 = 10 and w0 = 20, estimate the probability distribution of T0 and its average value.


