Homework 1-Introduction

1) Lower bounded random walk. Consider a game in which players bet $\$ 1$ to win $\$ 1$ with probability p and loose their bets with probability $q=1-p$. The wealth of a player as a function of time is a random process. If the player's wealth at time t is $w(t)$ (which denotes a realization of the random variable $W(t)$), the wealth at time $t+1$ is either $w(t)+1$ or $w(t)-1$. Moreover, the probability of the wealth increasing to $w(t)+1$ is p and the probability of the wealth decreasing to $w(t)-1$ is q. We write this as

$$
\begin{align*}
& \mathbf{P}[W(t+1)=w(t)+1 \mid W(t)=w(t)]=p, \\
& \mathbf{P}[W(t+1)=w(t)-1 \mid W(t)=w(t)]=q . \tag{1}
\end{align*}
$$

The first equation, e.g., is read as "the probability of $W(t+1)$ taking the value $w(t)+1$, given $W(t)=w(t)$ is p." The expression in (1) is true as long as $W(t) \neq 0$. When $W(t)=0$ the gambler is ruined and $W(t+1)=0$. A rather sophisticated, yet sometimes useful way of expressing this fact is

$$
\begin{equation*}
\mathrm{P}[W(t+1)=0 \mid W(t)=0]=1 \tag{2}
\end{equation*}
$$

We saw in class that if $p>1 / 2$ then it is likely that the sample paths $w(t)$ of the random process diverge making this a rather good game to play. In this exercise p can take any value. This process can be called a lower bounded random walk. Wealth can be reinterpreted as position on a line and wealth variations as steps taken randomly to left and right. The origin is home, in that if the walker reaches 0 it stays there. It is asked that:
A) Simulation of a process realization. Write a function that accepts as parameters the probability p, the initial wealth $W(0)=w_{0}$ and a maximum number of bets T. The function returns a vector of length at most $T+1$ containing the wealth's history $w(0), \ldots, w(T)$ randomly computed according to the probabilities in (1) and (2). If the wealth is depleted at time $t<T$, that is, if $w(t)=0$ for some $t<T$, the function returns a vector of length $t+1$ with the wealth's history up to time t, i.e., $w(0), \ldots, w(t)$. Optionally, you can also return a boolean variable to distinguish between a run that resulted in a broken player and one that did not. This might be useful for parts B-E. Show plots with simulated processes for $w_{0}=20, T=10^{3}$ and $p=0.25, p=0.5$ and $p=0.75$.
B) Probability of reaching home. Fixing $p=0.55$ and $w_{0}=10$ compute the probability $B\left(p, w_{0}\right)$ of eventually reaching home (going broke in the betting context), that is the probability of having $W(t)=0$ for some t. Notice that because once $W(t)=0$ wealth stays at 0 this probability can be written as the limit

$$
\begin{equation*}
B\left(p, w_{0}\right)=\lim _{t \rightarrow \infty} \mathrm{P}\left[W(t)=0 \mid W(0)=w_{0}\right] . \tag{3}
\end{equation*}
$$

Strictly speaking, you would need to run the simulation forever to make sure the gambler does not run out of money. However, you can truncate simulations at time $T=100$ for this exercise. With this approximation you would be aiming to compute the probability of reaching home between times 0 and T, which we assume approximates the probability of reaching home between times 0 and ∞ reasonably well. Put differently, we are assuming that $\mathrm{P}\left[W(T)=0 \mid W(0)=w_{0}\right]$ for $T=100$ is a good approximation of the limit in (3). To estimate $\mathrm{P}\left[W(T)=0 \mid W(0)=w_{0}\right]$ we run the simulation code of part A multiple times. Each of these runs results in a wealth path $w_{n}(t)$, we then define the indicator function $\mathbb{I}\left\{w_{n}(T)=0\right\}$ which equals 1 if wealth at time T is $w_{n}(T)=0$ and 0 if not. The probability of reaching home is then estimated as (N is the number of simulations ran)

$$
\begin{equation*}
\hat{B}_{N}\left(p, w_{0}\right)=\frac{1}{N} \sum_{n=1}^{N} \mathbb{I}\left\{w_{n}(T)=0\right\} \tag{4}
\end{equation*}
$$

The expression in (4) is just the average number of times home was reached across all experiments. The function $\mathbb{I}\left\{w_{n}(T)=0\right\}$ is called the indicator function of the event $w_{n}(T)=0$ because it "indicates" the event by taking the value 1 .

To compute $\hat{B}_{N}\left(p, w_{0}\right)$ you need to decide on a number of experiments N. The more experiments N you run the more accurate your estimation. Alas, the larger you need to wait. Report your probability estimate and the number of experiments N used. Explain your criteria for selecting N.
C) Probability of reaching home as a function of initial wealth. We want to study the probability of reaching home as a function of initial wealth. Fix $p=0.55$ and vary initial wealth between $w_{0}=1$ and $w_{0}=20$. Show a plot of your probability estimates $\hat{B}_{N}\left(p, w_{0}\right)$ as a function of initial wealth. The number of experiments N run to compute probability estimates for different initial wealths need not be the same.
D) Probability of reaching home as a function of p. The goal is to understand the variation of the probability of reaching home for different values of the probability p. Fix $w_{0}=10$ and vary p between 0.3 and 0.7 - increments 0.02 should do. Show a plot of your probability estimates $\hat{B}_{N}\left(p, w_{0}\right)$ as a function of p. You should observe a fundamentally different behavior for $p<1 / 2$ and $p>1 / 2$. Comment on that.
E) Time to reach home. Fix $p=0.4$. With this value of p it is possible to see that gamblers eventually deplete their wealth independently of their initial wealth w_{0}. This is something remarkable, despite the process being random it is possible to say that $W(t)$ eventually becomes 0 . This needs to be qualified, though. Unlikely as it may be there is a chance of winning all hands. Of course, the probability of this happening becomes smaller as the gambler plays more hands. What we can say about a lower bounded random walk is that with probability 1 , wealth $W(t)$ approaches 0 as t grows. More formally, the $\operatorname{limit}^{\lim _{t \rightarrow \infty} W(t) \text { satisfies }}$

$$
\begin{equation*}
\mathbf{P}\left[\lim _{t \rightarrow \infty} W(t)=0\right]=1 \tag{5}
\end{equation*}
$$

We say that $\lim _{t \rightarrow \infty} W(t)=0$ almost surely. Different wealth paths are possible, but almost all of them result in a broken gambler. If we think of probabilities as measuring the likelihood of an event, the measure of the event $W(t) \neq 0$ is asymptotically null. An important quantity here is the time at which $W(t)=0$ for the first time which we can write as

$$
\begin{equation*}
T_{0}=\min _{t}(W(t)=0) \tag{6}
\end{equation*}
$$

For $w_{0}=10$ and $w_{0}=20$, estimate the probability distribution of T_{0} and its average value.

