
Homework 2 - Probability review

1) Obtaining the pmf from the cdf of a discrete random variable. Consider a discrete random variable
(RV) X with cumulative distribution function (cdf) given by

F (x) = P [X ≤ x] =


0, x < 0
1
2 , 0 ≤ x < 1
1, 1 ≤ x < ∞

Use the identity p(x) = F (x) − limy→x− F (y) to obtain the probability mass function (pmf) p(x) =
P [X = x] of X . Plot both F (x) and p(x).

2) Continuous random variables. Let X be a continuous RV with probability density function (pdf)

f(x) =

{
c(4x− 2x2), 0 < x < 2

0, otherwise

Determine the value of c, P [1/2 < X < 3/2], E [X], var [X], and var [5X + 2].

3) Expectation of nonnegative integer-valued random variables. If X is a nonnegative integer-valued
RV, show that

E [X] =

∞∑
n=1

P [X ≥ n] =

∞∑
n=0

P [X > n] .

(Hint: Define the indicator RVs In = I {X ≥ n}, n ≥ 1, and express X in terms of the In.)

4) Joint pmf, marginal pmfs, and independence. Suppose X and Y have the following joint pmf

P [X = −1, Y = 2] = 1/4, P [X = −1, Y = 4] = 1/6

P [X = 0, Y = 2] = 1/3, P [X = 0, Y = 4] = 1/4.

Derive the marginal pmfs of X and Y . Are X and Y independent? Compute Cov [X,Y ].

5) Conditional probability satisfies the axioms. Consider a probability space (S,F ,P [·]) and let F ∈ F
be a fixed event with P [F ] > 0. For each E ∈ F define µ[E] = P

[
E
∣∣F ]

. Show that µ[·] satisfies the
axioms of probability.

6) A variance paradox? For independent identically distributed (i.i.d.) RVs X1, . . . , Xn, each with
distribution F and variance σ2 we know that var [X1 + . . .+Xn] = nσ2. On the other hand, if X ∼ F ,
then var [X +X] = var [2X] = 4σ2. Is there a contradiction here? Explain.

7) Bernoulli, binomial, Poisson and normal distributions. In this exercise we deal with Bernoulli,
binomial, Poisson and normal RVs. A Bernoulli RV X models experiments, such as a coin toss, where
success happens with probability p and failure with probability 1 − p. Success is indicated by X = 1
and failure by X = 0. Therefore, the pmf of X is

P [X = 0] = 1− p, P [X = 1] = p. (1)

A binomial RV with parameters (n, p) counts the number of successes in n independent Bernoulli trials
that succeed with probability p. Thus, we can write a binomial RV Y as

Y =

n∑
i=1

Xi (2)



where the Xi are Bernoulli RVs with pmfs as in (1). The pmf of a binomial RV is easily derived by
noting that we have X = x for some integer x between 0 and n if and only there are x successful
Bernoulli trials – something that happens with probability px – and n − x failed experiments – which
happens with probability (1− p)n−x – and that there are

(
n
x

)
different ways in which this could happen.

Thus

p(x) := P [X = x] =

(
n

x

)
px(1− p)n−x =

n!

(n− x)!x!
px(1− p)n−x, x = 0, 1, . . . , n. (3)

A Poisson RV X takes values in the nonnegative integers. We say that X is Poisson with parameter λ
it its pmf is

p(x) = e−λλ
x

x!
, x = 0, 1, . . . (4)

Different from the other two, a normal RV X can take any real value (not just 0 or 1 like the Bernoulli
or integers between 0 and n for the binomial or nonnegative integers for the Poisson). We say X is a
continuous RV. Probabilities are described now using a pdf. For a normal RV with mean µ and variance
σ2, the pdf is

f(x) =
1√
2πσ

e−(x−µ)2/2σ2

, x ∈ R. (5)

Another concept of interest here is that of a cdf defined as the probability of X not exceeding x, i.e.,
F (x) = P [X ≤ x]. For nonnegative discrete RVs (Bernoulli, binomial and Poisson) we can write

F (x) =

x∑
u=0

p(u). (6)

For the continuous normal cdf, the sum is replaced by an integral to write

F (x) =

∫ x

u=−∞
f(u) du. (7)

Unlikely as it may seem binomial, Poisson and normal RVs are in fact closely related. You will explore
these connections in this exercise.

A) Binomial distribution. Prove that the expected value of a binomial RV Xn with parameters (n, p) is
E [Xn] = np and that the variance is E

[
(Xn − E [Xn])

2
]
= np(1 − p). You are advised to start from

(2). Fix the expected value at E [Xn] = np = 5 and plot the pmf and cdf for n = 6, 10, 20, 50. Values of
p have to be modified appropriately.

B) Binomial and Poisson distributions. Prove that the expected value of a Poisson RV XP with parameter
λ is E [XP ] = λ. Plot the pmf of a Poisson distribution with parameter λ = 5. Notice that this pmf is
quite similar to the binomial pmfs of Part A when n is large. In fact we can quantify this proximity by
evaluating the following mean-squared error (MSE)

∆(Xn, XP ) =

∞∑
x=0

(
P [Xn = x]− P [XP = x]

)2 P [XP = x] . (8)

To evaluate the MSE in (8) numerically the infinite sum needs to be truncated. You can neglect proba-
bilities smaller than 5× 10−2. Compute ∆(Xn, XP ) for n = 6, 10, 20, 50.

C) Binomial and Poisson distributions again. Having noticed this interesting fact, consider binomial RVs
Xn with parameters n and p = λ/n. Prove that as n → ∞ the pmf of Xn converges to the pmf of XP .



D) Binomial and normal distributions. An important result in probability theory is the central limit
theorem (CLT). The CLT concerns sum of i.i.d. RVs Xi with mean E [Xi] = µ and variance var [Xi] = σ2.
Specifically, define

Zn :=

∑n
i=1Xi − nµ

σ
√
n

. (9)

The CLT states that the pdf of Zn is approximately standard normal for sufficiently large n. Formally

lim
n→∞

P [Zn ≤ z] =
1√
2π

∫ z

−∞
e−u2/2 du. (10)

Now, since a binomial RV is a sum of i.i.d Bernoulli RVs it is possible to approximate a binomial cdf
with a normal cdf. You are asked to approximate a binomial cdf with a normal pdf for p = 0.5 and n =
10, 20, 50. Show the equations you used for the approximations and corresponding plots.

E) Normal and Poisson approximations. In parts B and C you showed that for large n it is possible to
approximate a binomial RV with a Poisson RV. In part D you showed that it is possible to approximate
a binomial RV with a normal RV. Poisson and normal RVs are clearly different but this results cannot
contradict each other because both are true. Please explain why these two approximations do not contradict
each other. The answer is not that Poisson and normal are similar.


