
Solutions to Homework 2 - Probability Review

1 Obtaining the pmf from the cdf of a discrete random variable. We consider the discrete RV X with
distribution function

F (x) = P (X ≤ x) =

 0, x < 0
1
2 , 0 ≤ x < 1
1, 1 ≤ x < ∞

.

A plot of the cdf is shown in Fig. 1 (left).
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Fig. 1. Plot of the (left) cdf and (right) pmf.

We want to obtain the corresponding pmf for X . It is clear from Fig. 1 (left) that the random variable only has
probability mass at x = 0 and x = 1 and the resulting pmf is

p(x) = P (X = x) =

{
1
2 , x = 0
1
2 , x = 1

. (1)

For all other values of x that are not specified, then p(x) = 0.

We can derive the same somehow more formally by relying on the result p(x) = F (x) − limy→x− F (y). It is
clear that for all values of x where F (x) is continuous, then the left limit will coincide with the functional value
and thus p(x) = 0. For those value where the function is discontinuous, i.e., x = 0 and x = 1 then we find

p(0) = F (0)− lim
y→0−

F (y) =
1

2
− 0 =

1

2
,

p(1) = F (1)− lim
y→1−

F (y) = 1− 1

2
=

1

2
.

So finally we recover the previous result in (1), which is plotted in Fig. ?? (right).

2 Continuous random variables. We consider a continuous RV X with pdf given by

f(x) =

{
c(4x− 2x2), 0 < x < 2

0, otherwise .

We must first determine the value of c such that f(x) is a valid pdf. In fact we must have
∫∞
−∞ f(x)dx = 1 and

therefore we obtain

1 = c

∫ 2

0

(4x− 2x2)dx = c

[
2x2 − 2

3
x3

]x=2

x=0

= c

[
8− 16

3

]
⇒ c =

3

8
.



To evaluate P (1/2 < X < 3/2), we integrate the pdf in the appropriate interval yielding

P (1/2 < X < 3/2) =
3

8

∫ 3/2

1/2

(4x− 2x2)dx =
3

8

[
2x2 − 2

3
x3

]x=3/2

x=1/2

=
3

8

[
9

2
− 1

2
− 9

4
+

1

12

]
=

66

96
=

11

16
.

Next, to compute the expected value of X we apply the definition

E [X] =

∫ ∞

−∞
xf(x)dx =

3

8

∫ 2

0

(4x2 − 2x3)dx =
3

8

[
4

3
x3 − 1

2
x4

]x=2

x=0

=
3

8

[
32

3
− 8

]
= 1.

Likewise for the variance, we rely on the identity

var [X] = E
[
(X − E [X])2

]
= E

[
X2
]
− E [X]

2

and thus we are only left with the computation of the second moment E
[
X2
]
. This boils down to another integral,

E
[
X2
]
=

∫ ∞

−∞
x2f(x)dx =

3

8

∫ 2

0

(4x3 − 2x4)dx =
3

8

[
x4 − 2

5
x5

]x=2

x=0

=
3

8

[
16− 64

5

]
=

6

5
.

All in all, the required variance is

var [X] =
6

5
− 1 =

1

5
.

Finally, using properties of the variance we have

var [5X + 2] = var [5X] = 52var [X] = 5.

3 Expectation of nonnegative integer-valued random variables. Let X be a nonnegative integer-valued RV and
we want to show that

E [X] =

∞∑
n=1

P (X ≥ n) =

∞∑
n=0

P (X > n) .

For that purpose we introduce for every n ≥ 1 the indicator random variables

In = I {X ≥ n} :=

{
1, if X ≥ n
0, if X < n

.

Given this definition, it should be straightforward to recognize that

X =
∞∑

n=1

In.

Now, applying the linearity of expectation we obtain

E [X] = E

[ ∞∑
n=1

In

]
=

∞∑
n=1

E [In] =

∞∑
n=1

P (X ≥ n)

which is the desired result. In obtaining the last equality, we used that for the indicator functions In the expected
value is given by E [In] = P (In = 1) = P (X ≥ n) . A change of variable n = m + 1 in the summation index
yields

E [X] =

∞∑
n=1

P (X ≥ n) =

∞∑
m=0

P (X ≥ m+ 1) =

∞∑
m=0

P (X > m) .

4 Joint pmf, marginal pmfs, and independence. Suppose X and Y have the following joint pmf

P (X = −1, Y = 2) = 1/4, P (X = −1, Y = 4) = 1/6

P (X = 0, Y = 2) = 1/3, P (X = 0, Y = 4) = 1/4.

We first want to determine the marginal pmfs of X and Y . These are obtained in the following way



P (X = −1) =
∑
y

P (X = −1, Y = y) =
1

4
+

1

6
=

5

12

P (X = 0) =
∑
y

P (X = 0, Y = y) =
1

3
+

1

4
=

7

12
.

In summary

p(x) = P (X = x) =

{
5
12 , x = −1
7
12 , x = 0

.

Likewise for Y we find

P (Y = 2) =
∑
x

P (X = x, Y = 2) =
1

4
+

1

3
=

7

12

P (Y = 4) =
∑
x

P (X = x, Y = 4) =
1

6
+

1

4
=

5

12

and therefore
p(y) = P (Y = y) =

{
7
12 , y = 2
5
12 , y = 4

.

As usual, it is implicitly understood that for all other unspecified values p(x) = p(y) = 0.
To check for independence, we observe

P (X = −1, Y = 2) =
1

4
6= P (X = −1)P (Y = 2) =

5

12

7

12
=

35

144
.

The conclusion is that X and Y are not independent. Finally, to compute Cov [X,Y ] we rely on the identity

Cov [X,Y ] = E [XY ]− E [X]E [Y ] .

First we obtain the expected values

E [X] =
∑
x

xp(x) = (−1)× 5

12
+ 0× 7

12
= − 5

12

E [Y ] =
∑
y

yp(y) = 2× 7

12
+ 4× 5

12
=

17

6

and then the correlation

E [XY ] =
∑
y

∑
x

xyp(x, y) = (−1)× 2× 1

4
+ (−1)× 4× 1

6
+ 0× 2× 1

3
+ 0× 4× 1

4
= −1

2
− 2

3
= −7

6
.

The final result is
Cov [X,Y ] = −7

6
+

5

12
× 17

6
=

1

72
.

5 Conditional probability satisfies the axioms. Consider a probability space (S,F ,P (·)) and let F ∈ F be a
fixed event with P (F ) > 0. For each E ∈ F define µ(E) = P

(
E
∣∣F ) and we want to check if µ(·) satisfies the

three axioms of probability. We will check them one at a time.

Axiom 1: µ(E) ≥ 0 for all E ∈ F . This axiom is satisfied, as can be readily seen from the definition of µ. In fact

µ(E) =
P (E ∩ F )

P (F )

with P (F ) > 0. Also we must have P (E ∩ F ) ≥ 0 for all E ∈ F , because (S,F ,P (·)) is a probability space
which implies P (·) satisfies the axioms of probability. From this two inequalities it follows that µ(E) ≥ 0 as desired.

Axiom 2: µ(S) = 1. Again due to the definition

µ(S) =
P (S ∩ F )

P (F )
=

P (F )

P (F )
= 1



where the second equality follows from F ⊆ S. Thus the second axiom is satisfied as well.

Axiom 3: Let E1, E2, . . . be a collection of (disjoint) events (all included in F) which verify Ei ∩Ej = ∅, i 6= j.
Then

µ

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

µ(Ei).

Again, starting from the definition of µ(·), write

µ

( ∞⋃
i=1

Ei

)
=

P ({
⋃∞

i=1 Ei} ∩ F )

P (F )
=

P (
⋃∞

i=1 {Ei ∩ F})
P (F )

where the last equality follows from the distributive laws of set algebra. Also note that {Ei ∩ F} ⊆ Ei for all i
and therefore {Ei ∩ F} ∩ {Ej ∩ F} = ∅, i 6= j, i.e., they are disjoint events. Because P (·) satisfies the axioms of
probability, we have

µ

( ∞⋃
i=1

Ei

)
=

P (
⋃∞

i=1 {Ei ∩ F})
P (F )

=

∑∞
i=1 P (Ei ∩ F )

P (F )
=

∞∑
i=1

µ(Ei)

and the last axiom is also satisfied.

6 A variance paradox? There is no contradiction at all, because X is certainly not independent of itself, and
thus the first result does not apply.

7 Bernoulli, binomial, Poisson and normal distributions.

A Binomial distribution. Since Xn is a binomial RV with parameters (n, p), it can be written as

Xn =

n∑
i=1

Bi (2)

where B1, . . . , Bn are i.i.d. Bernoulli RVs with parameter p (i.e., P (Bi = 1) = p). From the linearity of the
expectation operator, we have from (2)

E [Xn] = E

[
n∑

i=1

Bi

]
=

n∑
i=1

E [Bi] = nE [B1] .

The expectation of the Bernoulli RVs is E [B1] = 1× P (B1 = 1) + 0× P (B1 = 0) = p. Hence, it follows that

E [Xn] = nE [B1] = np.

Now for the variance, since B1, . . . , Bn are independent and hence uncorrelated RVs we can write

var [Xn] = var

[
n∑

i=1

Bi

]
=

n∑
i=1

var [Bi] = nvar [B1] .

To calculate var [B1] = E
[
(B1 − E [B1])

2
]
= E

[
B2

1

]
− E [B1]

2 we should find the second moment E
[
B2

1

]
(we

already know E [B1]
2
= p2). But this is straightforward because for Bernoulli B1, it holds that B1 = B2

1 . Hence
E
[
B2

1

]
= p and the sought variance of Xn is

var [Xn] = nvar [B1] = n(p− p2) = np(1− p).

The following Matlab function calculates the pmf of a binomial RV.

% This function returns a vector the same size as u where entries
% are the binomial pmf with parameters n and p, calculated
% at each element of u. This tries to mimic Matlab’s
% built-in function f=pdf(’bino’,u,n,p)
% For how Matlab itself calculates the binomial pdf, see binopdf.m



function f=my_binomial_pmf(u,n,p)
f=zeros(size(u)); %initialization of f
for i=1:length(u)

if (u(i)>=0) && (u(i)<=n) % since support of binomial(n,p) is 0,1,..,n
f(i)=nchoosek(n,u(i))*pˆu(i)*(1-p)ˆ(n-u(i));

% pmf expression of binomial RV with parameters (n,p)
end

end
end

Using the function my_binomial_pmf the following main script plots the required pmfs and cdfs, for fix
E [Xn] = 5 and n = 6, 10, 20, 50. Notice that for discrete RVs, we can use the command stem for plotting the
pmf and stairs for the cdf.

clear all; close all; clc;

n_vector=[6,10,20,50];
i=1;
for n=n_vector

p=5/n;

figure(1) % pmfs
subplot(2,2,i);
% stem(0:n,pdf(’bino’,0:n,n,p),’.’); % cheat line!
stem(0:n,my_binomial_pmf(0:n,n,p),’.’);
title([’n=’,num2str(n)]); xlabel(’x’); ylabel(’pmf’);
grid on; axis([0,50,0,0.5]);

figure(2) % cdfs
subplot(2,2,i);
% stairs(0:n,cdf(’bino’,0:n,n,p),’.’); % cheat line!
% stairs(0:n,my_binomial_cdf(0:n,n,p),’.’); % see my_binomial_cdf below
stairs(0:n,cumsum(my_binomial_pmf(0:n,n,p)),’LineWidth’,1); % with cumsum
title([’n=’,num2str(n)]); xlabel(’x’); ylabel(’cdf’);
grid on; axis([0,50,0,1]);

i=i+1;
end

In case you prefer a separate function to calculate the binomial cdf:

% function takes vector u, and scalars n and p,
% and returns a vector of the same size as u, where entries
% are the binomial cdf with parameters n and p, calculated
% at the points of elements of u. trying to mimic Matlab’s
% built-in function f=cdf(’bino’,u,n,p)
% This function calls my_binomial_pdf and calculates a cumulative sum
% over possible values up to u(i) for each entry of u.

function F=my_binomial_cdf(u,n,p)
F=zeros(size(u)); %initialization of F
for i=1:length(u)

F(i)=sum(my_binomial_pdf(0:u(i),n,p));
end



The obtained pmf and cdf plots are shown in Figs. 2 and 3.
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Fig. 2. Binomial pmf for n = 6, 10, 20, 50 and p = 5/n. (Part A).
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Fig. 3. Binomial cdf for n = 6, 10, 20, 50 and p = 5/n. (Part A).

B Binomial and Poisson distributions. For a Poisson RV Xp with parameter λ, we went through the calculation



of E [XP ] in class (check the lecture slides). A different way of evaluating the expected value is

E [XP ] =

∞∑
k=0

kP (Xp = k) =

∞∑
k=0

k
e−λλk

k!
= λe−λ

∞∑
k=0

kλk−1

k!
. (3)

Recall the Taylor series expansion eλ =
∑∞

k=0
λk

k! , and from the linearity of the differentiation operator we have
∞∑
k=0

kλk−1

k!
=

d

dλ

( ∞∑
k=0

λk

k!

)
=

d

dλ

(
eλ
)
= eλ.

Plugging this result back in (3) yields

E [XP ] = λe−λ
∞∑
k=0

kλk−1

k!
= λe−λeλ = λ.

The Matlab code to plot the pmf of a Poisson distribution with parameter λ = 5 follows.

clear all; close all; clc;
figure
lambda=5;
x=0:50;
% stem(x,pdf(’poiss’,x,lambda),’.’); % cheat line!
my_poisson_pmf=exp(-lambda)*(lambda.ˆx)./factorial(x);

% Note the use of "dot" for element-wise operation
% Thus, my_poisson_pmf is now a vector with the same size as x.

stem(x,my_poisson_pmf,’.’);
title([’Poisson distribution with \lambda = ’,num2str(lambda)]);
xlabel(’x’); ylabel(’pmf’);
grid on; axis([0,50,0,0.5]);

The obtained pmf is depicted in Fig. 4.
Now we need to calculate the mean-squared error (MSE) between the binomial and Poisson pmfs. The MSE is

defined as ∆(Xn, XP ) =
∑∞

x=0

(
P (Xn = x)− P (XP = x)

)2
P (XP = x). To numerically evaluate the MSE, the

infinite sum needs to be truncated by e.g., neglecting probabilities smaller than 5× 10−2. To identify those small
probabilities, the following code reveals that we need not go beyond x = 8 in the MSE summation (note from
Fig. 4 that the Poisson distribution has a declining tail, which meas that as x → ∞, P (XP = x) → 0).

clear all; close all; clc;
x=0:20;
lambda=5;
my_pdf_poisson=exp(-lambda)*lambda.ˆx./factorial(x);
test=my_pdf_poisson<5e-2 % Entries equal to one indicate small probabilities

More precisely, it turns out we should consider only the terms for x = 2, . . . , 8 since P (XP = 0) and P (XP = 1)
are also small. Note that by looking at Fig. 4, you can also identify those values for which the probability mass is
greater that 5× 10−2. The following Matlab script evaluates the MSE, and generates the plot in Fig. 5.

close all; clear all; clc;
lambda=5;
x=2:8;
n_index=0;
n_vector=[6 10 20 50];
my_MSE=zeros(1,4);
for n=n_vector

n_index=n_index+1;
my_poisson_pmf=exp(-lambda)*(lambda.ˆx)./factorial(x);
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Fig. 4. Pmf of the Poisson distribution with λ = 5. Note that the support of a Poisson RV are the nonnegative integers. However, the pmf for
only the first 50 points is shown. Note the similarity with Fig. 2 for large n.

my_MSE(1,n_index)=sum((my_binomial_pmf(x,n,lambda/n)...
-my_poisson_pmf).ˆ2.*my_poisson_pmf);

end
stem(n_vector,my_MSE,’*’);
xlabel(’n’); ylabel(’MSE’);
grid on; axis([0,50,0,0.02]);

The results reported in Table I show the MSE between the binomial and Poisson distributions for n = 6, 10, 20, 50.
As n increases, the MSE falls rapidly to zero, indicating the distributions become more and more similar for larger
ns. It is critical here that for given λ in the Poisson distribution, p = λ/n in the binomial. The decreasing MSE is
also apparent from Fig. 5.

TABLE I
MEAN-SQUARED ERROR (MSE) BETWEEN THE PMFS OF A POISSON WITH λ = 5 AND BINOMIALS WITH PARAMETER (n, λ/n) FOR

n = 6, 10, 20, 50. THE POISSON PROBABILITIES SMALLER THAN 0.05 ARE NEGLECTED.

n MSE
6 0.01727
10 0.00179
20 0.00027
50 0.00003
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Fig. 5. Mean-Square-Error between pdf of a Poisson with λ = 5 and Binomials of (n, λ/n) for n = 6, 10, 20, 50. The probabilities in the
Poisson less than 0.05 are neglected. As we see, by increasing n, the MSE rapidly vanishes. (part B)

C Binomial and Poisson distributions again. This is an interesting situation where we can analytically establish
what simulations are suggesting. Specifically, as we did in class we will show here that the pmf of a binomial RV
Xn with parameters (n, λ/n) converges to the pmf of a Poisson RV with parameter λ, as n → ∞. Starting from
the expression for the pmf of Xn we have

pXn
(x) =

(
n

x

)(
λ

n

)x(
1− λ

n

)n−x

=
n!

(n− x)!x!

(
λ

n

)x(
1− λ

n

)n−x

. (4)

From the definition of factorials, we can simplify

n!

(n− x)!
=

n(n− 1) . . . (n− x+ 1)(n− x)!

(n− x)!
= n(n− 1) . . . (n− x+ 1) (5)

and rewrite (4) after some reordering of terms to obtain

pXn
(x) =

n!

(n− x)!x!

(
λ

n

)x(
1− λ

n

)n−x

=
n(n− 1) . . . (n− x+ 1)

nx

(
λx

x!

) (
1− λ

n

)n(
1− λ

n

)x . (6)

In order to take the limit as n → ∞ it is useful to recognize that

lim
n→∞

n(n− 1) . . . (n− x+ 1)

nx
= 1, and lim

n→∞

(
1− λ

n

)x

= 1.

In addition to the Taylor series e−λ =
∑∞

k=0
(−λ)k

k! , the function e−λ can be equivalently defined as the limit of
the sequence

lim
n→∞

(
1− λ

n

)n

= e−λ.

Using all these results when taking the limit as n → ∞ in (7) yields the desired result, namely

lim
n→∞

pXn(x) = lim
n→∞

n(n− 1) . . . (n− x+ 1)

nx

(
λx

x!

) (
1− λ

n

)n(
1− λ

n

)x =
λxe−λ

x!
. (7)



D Binomial and normal distributions. Recall that a binomial RV Xn with parameters (n, p) can be written as

Xn =

n∑
i=1

Bi

where B1, . . . , Bn are i.i.d. Bernoulli RVs with parameter p. We also showed that E [Bi] = p and var [Bi] = p(1−p).
From the CLT, for sufficiently large n the distribution of

Zn =

∑n
i=1 Bi − np√
np(1− p)

=
Xn − np√
np(1− p)

(8)

is approximately standard normal. From the properties of normal RVs, (8) also implies that

Xn =
√
np(1− p)Zn + np

is approximately normal distributed with mean np and variance np(1 − p). In conclusion, for sufficiently large n
the cdf of Xn can be approximated as

FXn(x) = P (Xn ≤ x) ≈ 1√
2πnp(1− p)

∫ x

−∞
e−(u−np)2/2np(1−p) du.

The Matlab code to approximate a binomial cdf with a normal pdf for p = 0.5 and n = 10, 20, 50 follows:

close all; clear all; clc;
n_vector=[10 20 50];
p=0.5;
n_index=0;
for n=n_vector

n_index=n_index+1;
mean_normal=n*p; %defining the mean
std_normal=sqrt(n*p*(1-p)); %defining the standard deviation
x=0:n;
subplot(3,1,n_index); %plotting graphs
stairs(x,[(my_binomial_cdf(x,n,p))’ , ...
normcdf(x,mean_normal,variance_normal)’],’LineWidth’,2);
title([’n=’,num2str(n)]); xlabel(’x’); ylabel(’cdf’);
legend(’Binomial’,’Normal’);
grid on; axis([0,50,0,1]);

end

The resulting plots are depicted in Fig 6. As expected from the CLT, by increasing n the normal distribution
offers an increasingly accurate approximation of the binomial distribution.

E Normal and Poisson approximations. I provide you with a hint for this part: the Poisson limit theorem (also
known as law of rare events) is about accumulation of increasingly improbable events. In particular, note that for
convergence of the distribution of sum of i.i.d. Bernoulli RVs (which is a binomial RV) to a Poisson distribution
with mean λ, we needed the success probability in the Bernoulli RV to be p = λ/n. Accordingly, as n → ∞ this
probability goes to zero. On the other hand, for the CLT p is fixed and not necessarily small. Hence, the CLT and
Poisson limit theorem are addressing basically different limits. I leave more contemplation on this matter to you!
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Fig. 6. Cdf of the binomial RV Xn for n = 10, 20, 50, and its approximation by a normal cdf. As we can see, by increasing n the normal
distribution offers an increasingly accurate approximation of the binomial distribution. This follows from the CLT. (Part D).


