
Solutions to Homework 3 - Probability Review

1 Conditional expectation of discrete random variables. Suppose p(x, y, z), the joint pmf of the random
variables (RVs) X , Y , and Z, is given by

p(1, 1, 1) =
1

8
, p(1, 1, 2) =

1

8
, p(1, 2, 1) =

1

16
, p(1, 2, 2) = 0,

p(2, 1, 1) =
1

4
, p(2, 1, 2) =

3

16
, p(2, 2, 1) = 0, p(2, 2, 2) =

1

4
.

The conditional expectation of X given that Y = 2 is defined as

E [X|Y = 2] =

2∑
x=1

xP [X = x|Y = 2]

and so we first need to compute the conditional pmf P [X = x|Y = 2]. From the definition of conditional probability
we find

P [X = 1|Y = 2] =
P [X = 1, Y = 2]

P [Y = 2]
=

∑
z P [X = 1, Y = 2, Z = z]∑

x,z P [X = x, Y = 2, Z = z]
=

1/16

1/16 + 1/4
=

1

5
,

P [X = 2|Y = 2] =
P [X = 2, Y = 2]

P [Y = 2]
=

∑
z P [X = 2, Y = 2, Z = z]∑

x,z P [X = x, Y = 2, Z = z]
=

1/4

1/16 + 1/4
=

4

5
.

So the final result is
E [X|Y = 2] = 1× 1

5
+ 2× 4

5
=

9

5
.

A similar approach can be followed to obtain the conditional expectation of X given that Y = 2 and Z = 1.
The relevant conditional pmf P [X = x|Y = 2, Z = 1] is

P [X = 1|Y = 2, Z = 1] =
P [X = 1, Y = 2, Z = 1]

P [Y = 2, Z = 1]
=

1/16∑
x P [X = x, Y = 2, Z = 1]

=
1/16

1/16
= 1,

P [X = 2|Y = 2, Z = 1] =
P [X = 2, Y = 2, Z = 1]

P [Y = 2, Z = 1]
= 0.

Therefore

E [X|Y = 2, Z = 1] =

2∑
x=1

xP [X = x|Y = 2, Z = 1] = 1× 1 + 2× 0 = 1.

2 Conditional expectation of continuous random variables. The joint pdf of X and Y is given by

f(x, y) =
e−x/ye−y

y
, x > 0, y > 0.

The conditional expectation of X given that Y = y is defined as

E [X|Y = y] =

∫ ∞
0

xf(x|y)dx

and so we first need to compute the conditional pdf f(x|y). We have from the definition that

f(x|y) =
f(x, y)

f(y)

where the marginal pdf f(y) can be obtain from the joint as

f(y) =

∫ ∞
0

f(x, y)dx =

∫ ∞
0

e−x/ye−y

y
dx =

e−y

y

∫ ∞
0

e−x/ydx = −e−ye−x/y
∣∣∣x=∞
x=0

= e−y, y > 0.

The resulting conditional pdf is

f(x|y) =
f(x, y)

f(y)
=
e−x/y

y



so the conditional expectation is given by

E [X|Y = y] =

∫ ∞
0

xf(x|y)dx =

∫ ∞
0

xe−x/y

y
dx.

We can resort to the method of integration by parts with u = x, du = dx, dv = (e−x/y/y)dx and v = −e−x/y to
finally obtain

E [X|Y = y] =

∫ ∞
0

xe−x/y

y
dx = −xe−x/y

∣∣∣x=∞
x=0

+

∫ ∞
0

e−x/ydx = −ye−x/y
∣∣∣x=∞
x=0

= y

which is the desired result.

3 Expected time to match the initial outcome. Let XN = X0, X1, . . . , Xn, . . . be an i.i.d. sequence of RVs with
pmf

p(j) = P [Xn = j], j = 1, . . . ,m,

m∑
j=1

p(j) = 1.

Define
N = min{n > 0 : Xn = X0}.

We want to calculate E [N ], which corresponds to the expected time till a RV Xn, n ≥ 1 equals the initial draw X0

for the first time. The idea is to condition on the outcome of the initial draw X0 = j, and use iterated expectations
to obtain

E [N ] =

m∑
j=1

E
[
N
∣∣X0 = j

]
P [X0 = j] =

m∑
j=1

E
[
N
∣∣X0 = j

]
p(j)

where the last equality follows from the definition of pmf of X0.
Towards obtaining the conditional expectation E

[
N
∣∣X0 = j

]
, the key observation is that the conditional dis-

tribution of N given that X0 = j is geometric with parameter p(j). This is because each Xn, n ≥ 1 can be
viewed as an independent trial, and we have a success (Xn = X0 = j) with probability p(j). Since N counts the
number of trials till Xn = j for the first time, then N is conditionally geometric. From this one readily obtains
E
[
N
∣∣X0 = j

]
= 1/p(j), and

E [N ] =

m∑
j=1

E
[
N
∣∣X0 = j

]
p(j) =

m∑
j=1

1

p(j)
p(j) = m

as we wanted to show.

4 The trapped miner. Let N denote the total number of doors selected before the miner reaches safety. It is clear
that N ∼ Geo(1/3), where p = 1/3 is the probability of opening the correct door that leads to the exit of the mine
(safety). Also, let Ti denote the travel time corresponding to the i−th choice, i ≥ 1. We recall that Ti can take the
values 2, 3 and 5 with equal probability. Finally, let X denote the time when the miner reaches safety.

Having defined these RVs it follows that

X =

N∑
i=1

Ti

where both the Ti’s and N are random (and not independent).
To calculate E [N ], recall that for a RV X ∼ Geo(p) then its expected value is E [X] = 1/p. Since N ∼ Geo(1/3),

then E[N ] = 3. Moving on to E [TN ], the key observation is that i = N corresponds to time where the miner picks
the first door and reaches safety (for the first time, of course). Then we have that

E [TN ] = E [Ti|N = i] = E [Ti|Ti = 2] = 2.

The idea is to obtain E [X] using iterated expectations, after first conditioning on N = n. The conditional expectation
E
[
X
∣∣N = n

]
is



E

[
N∑
i=1

Ti|N = n

]
= E

[
n∑

i=1

Ti|N = n

]
=

n∑
i=1

E [Ti|N = n]

=

n−1∑
i=1

E [Ti|N = n] + E [Tn|N = n]

=

n−1∑
i=1

E [T1|T1 6= 2] + E [Tn|Tn = 2] = (n− 1)E [T1|T1 6= 2] + 2

= (n− 1)

[
3× 1

2
+ 5× 1

2

]
+ 2 = 4n− 2.

Note that for the first equality of the first line we used the fact that N = n and then applied the linearity of
expectation. In obtaining the third line we used that given N = n, for i < n we know that Ti 6= 2 and the Ti’s are
i.i.d. with the following conditional pmf

P [Ti = 3|Ti 6= 2] = 1/2, P [Ti = 5|Ti 6= 2] = 1/2.

Using all the previous results we can easily compute E [X] by calculating the expectation of the RV E
[
X
∣∣N] =

4N − 2 over the distribution of N . In fact, we have that

E [X] = E

[
N∑
i=1

Ti

]
=

∞∑
n=1

E

[
N∑
i=1

Ti|N = n

]
P [N = n]

=

∞∑
n=1

(4n− 2)P [N = n] = 4

∞∑
n=1

nP [N = n]− 2

∞∑
n=1

P [N = n]

= 4E [N ]− 2 = 4× 3− 2 = 10.

5 Limit of a sequence of random variables. Suppose that XN = X1, X2, . . . , Xn, . . . is an i.i.d. sequence of
RVs, each with mean µ and variance σ2. Consider the limit

lim
n→∞

1

n

n∑
i=1

(X2i+1 +X2i)
2
.

Because XN is an i.i.d. sequence of RVs, then observe that YN = (X3+X2)2, (X5+X4)2, . . . , (X2n+1+X2n)2, . . .
is also i.i.d.. By the strong law of large numbers the limit exists and is equal to

lim
n→∞

1

n

n∑
i=1

(X2i+1 +X2i)
2

= E
[
(X3 +X2)

2
]
, w.p. 1.

To simplify the expression, expand the quadratic term and use linearity of expectation

E
[
(X3 +X2)

2
]

= E
[
X2

3 + 2X3X2 +X2
2

]
= E

[
X2

3

]
+ 2E [X3X2] + E

[
X2

2

]
.

Because X2 and X3 are independent, then 2E [X3X2] = 2E [X3]E [X2] = 2µ2. The second moments can be written
in terms of the variance and squared means as E

[
X2

3

]
= E

[
X2

2

]
= σ2 + µ2. All in all, the result is

lim
n→∞

1

n

n∑
i=1

(X2i+1 +X2i)
2

= 2(σ2 + µ2) + 2µ2 = 2σ2 + 4µ2.

6 The black box. Suppose we have a black box that generates realizations from distribution function F (x) that
has mean µ and variance σ2. One “experiment” consists of drawing a long sequence of i.i.d. realizations from the
box. We will perform the experiment many times. In the j−th experiment, denote the i−th i.i.d. draw from the
box by Xi,j . Finally we will suppose that m1,m2, n1, n2 are very large numbers with m2 � m1 and n2 � n1.

A First we define

Yj,k =
1

k

k∑
i=1

Xi,j



and want to argue whether Yj,m1
and Yj,m2

will be approximately equal. This quantities are sample averages of a
sequence of i.i.d. RVs Xi,j , and by virtue of the strong law of large numbers (SLLN) we know that

lim
k→∞

Yj,k = lim
k→∞

1

k

k∑
i=1

Xi,j = E [X1,1] = µ, w.p. 1.

So due to definition of limit and for very large m1,m2 we have that

Yj,m1
≈ Yj,m2

≈ lim
k→∞

Yj,k = µ

hence we expect them to be similar and equal to µ.

B Now we define
Qj,k =

kYj,k − kµ√
kσ2

and will argue whether Qj,m1
and Qj,m2

will be approximately equal. First we recall that E [Yj,k] = µ and
var [Yj,k] = σ2/k. Accordingly, E [Qj,k] = 0 and var [Qj,k] = 1. So by virtue of the central limit theorem (CLT)
we know that the random sequence Qj,k will converge in distribution to a standard normal, i.e., for very large k
then Qj,k ∼ N (0, 1). This allows us to conclude that Qj,m1 and Qj,m2 will correspond to independent samples
drawn from a distribution which is very close to the standard normal, and so there is no reason for them to be
approximately equal.

C Define the following sample average of indicator RVs

Uj,k(x) =
1

k

k∑
i=1

I {Xi,j ≤ x}, x ∈ R.

Because the Xi,j are i.i.d., then for a fixed x ∈ R the corresponding indicator RVs will also be i.i.d. The SLLN in
this case states that for every x ∈ R

lim
k→∞

Uj,k(x) = lim
k→∞

1

k

k∑
i=1

I {Xi,j ≤ x} = E [I {X1,1 ≤ x}] = P [X1,1 ≤ x] = F (x), w.p. 1.

So again Uj,k(x) converges almost surely as k →∞, and thus for very large m1,m2 we have that

Uj,m1
(x) ≈ Uj,m2

(x) ≈ lim
k→∞

Uj,k(x) = F (x), x ∈ R

and we expect them to be similar and equal to F (x).

D Finally we define

Vl,k(x) =
1

l

l∑
j=1

I {Qj,k ≤ x}, x ∈ R

and want to compare the quantities Vm1,n1
(x) and Vm1,n2

(x). First we note that due to our conclusions in Part
B, for very large m1 and due to the CLT, the random variables Qj,m1 will be approximately standard normal
distributed. Also for different values of j, they will be independent. So having realized this fact, then this problem
reduces to the one in Part C, for Xi,j ∼ N (0, 1) instead of Xi,j ∼ F .

From the SLLN we expect convergence of the sequences and thus for very large m1, n1, n2 we have that

Vm1,n1
(x) ≈ Vm1,n2

(x) ≈ lim
l→∞

Vm1,l(x) = Φ(x), x ∈ R

and we expect them to be similar and equal to the standard normal cdf Φ(x) = (1/
√

2π)
∫ x

−∞ e−u
2

du.

7 Decision making.

A Simulate individual experiment. Next, you can find three versions of the required Matlab function to simulate
an individual experiment, each one revealing a different programming technique.



Version 1:

Version 1, using a while loop

function [accepted_rank,time_of_acceptance]= car_sale_v1(J,K,L)

offers=randperm(J);
rejected_offers=offers(1:K);
sorted_rejected_offers=sort(rejected_offers);
Lth_best_amongst_rejected=sorted_rejected_offers(1,L);

i=K+1;
while (offers(i)>Lth_best_amongst_rejected && i<J)

i=i+1;
end % weird while!

accepted_rank=offers(i);
time_of_acceptance=i;

end

Version 2:

Version 2, using a for loop

function [accepted_rank,time_of_acceptance]= car_sale_v2(J,K,L)

offers=randperm(J);
rejected_offers=offers(1:K);
sorted_rejected_offers=sort(rejected_offers);
Lth_best_amongst_rejected=sorted_rejected_offers(1,L);

for i=K+1:J
if (offers(i)<Lth_best_amongst_rejected)

accepted_rank=offers(i);
time_of_acceptance=i;
return;

end
end
accepted_rank=offers(J);
time_of_acceptance=J;

end

Version 3:

Version 3, using "find" and no loop

function [accepted_rank,time_of_acceptance]= car_sale_v3(J,K,L)

offers=randperm(J);
rejected_offers=offers(1:K);
sorted_rejected_offers=sort(rejected_offers);
Lth_best_amongst_rejected=sorted_rejected_offers(1,L);



i=find(offers(K+1:end)<Lth_best_amongst_rejected,1);

if isempty(i)
time_of_acceptance=K+i;
accepted_rank=offers(time_of_acceptance);

else
time_of_acceptance=J;
accepted_rank=offers(J);

end

end

B Probability distribution of the rank of the selected offer. Here, we will estimate the pmf for the rank of the
selected offer by running the simulations multiple times. To run the simulations, we fix J = 50, K = 30 and vary
L = 1, 2, 5. Provided are two different versions, one that calculates relative frequencies directly as estimates of the
probabilities, and the second one that uses Matlab’s histogram functionality. Note specifically how one calls the
function developed for Part A.

Version 1:

% plots the pmf of the accepted ranks
% J,K,L: refer to HW3 for explanation
% N: number of repetitions of the experiment
% Version 1: counting the frequency of each rank

function []=pmf_of_ranks_v1(J,K,L,N)

frequencies=zeros(1,J); % initialization of the vector of frequencies of
% each rank

for i=1:N
[accepted_rank,ignore_the_time]=car_sale_v1(J,K,L);
frequencies(1,accepted_rank)=frequencies(1,accepted_rank)+1;

end

pmf_vector=frequencies/N;

bar(1:J,pmf_vector,’r’)
xlabel(’X’,’FontSize’,14)
ylabel(’pmf’,’FontSize’,14)
title([’N=’,num2str(N)],’FontSize’,14,’FontWeight’,’b’)
axis([0,51,0,0.4])

end

Version 2:

% plots the pmf of the accepted ranks
% J,K,L: refer to HW3 for explanation
% N: number of repetitions of the experiment
% Version 2: using "hist" to do the task of counting

function []=pmf_of_ranks_v2(J,K,L,N)



accepted_ranks=zeros(1,N); % initialization of the vector of the ranks of
% the selected offers of the experiments!

for i=1:N
[accepted_ranks(i),ignore_the_time]=car_sale_v1(J,K,L);

end

[frequencies, bins_locations]=hist(accepted_ranks,J);

pmf_vector=frequencies/N;

bar(1:J,pmf_vector,’r’)
xlabel(’X’,’FontSize’,14)
ylabel(’pmf’,’FontSize’,14)
title([’N=’,num2str(N)],’FontSize’,14,’FontWeight’,’b’)
axis([0,51,0,0.4])

end

The function is called in a separate .m-file:

close all
clear all
clc

J=50; K=30; L=1; % refer to HW3 for explanation
% number of repetitions of the experiment
i=1;
for N=10.ˆ[2 3 4 5]

figure(1)
subplot(2,2,i)
pmf_of_ranks_v1(J,K,L,N)
i=i+1;

end

The plots for L = 1 are depicted in Fig. 1. As you will see when plotting L = 2, 5, the first L ranks are
approximately equiprobable and the behavior for ranks L+ 1 to J = 50 is similar. When N = 100, the pmf does
not have a smooth shape, thus the number of experiments is increased from 102 to 105 with order-of-magnitude
steps. It is apparent from Fig. 1 that the difference from N = 104 to N = 105 is insignificant, so we will use
N = 104 in Part C.

As a general remark, observe that the proposed policy for selling the car performs quite favorably, since the
likelihood of accepting the offer from the best bidder is quite high (more than 0.3). Moreover, the likelihood of
accepting one of the top three offers is more than 0.4, and P (X = j), j > 4 is less than 0.015.

C Probability of selecting the best offer (L = 1). From Part B we observed that N = 104 yields acceptable
results for calculating the required probabilities. Here we will implement a function to determine the probability
of selecting the best offer, as a function of the number of rejected offers K, which is varied between 1 and J − 1.
As before, different implementations are provided.

Version 1:

% plots the probability of the best rank versus K for a given J, L
% J,K,L: refer to HW3 for explanation
% Version 1: adaptation of version 1 of Part B (counting frequency)
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Fig. 1. Estimated pmf of accepted ranks for J = 50, K = 30, L = 1, and varying N = 102, . . . , 105. (Part B)

function []=prob_1_versus_K_v1(J,L)

N=10000;

K_vector=L:J-1;
prob_of_rank_1=zeros(1,J-L);

K_index=1;
for K=K_vector

frequency_of_rank_1=0; % initialization of the number of time accepted
% rank has been 1, i.e., the best offer was accepted

for i=1:N
[accepted_rank,ignore_the_time]=car_sale_v1(J,K,L);
frequency_of_rank_1=frequency_of_rank_1 + (accepted_rank==1); %counter

end
prob_of_rank_1(1,K_index)=frequency_of_rank_1/N;
K_index=K_index+1;

end

bar(K_vector,prob_of_rank_1) %create figure
xlabel(’K’,’FontSize’,14)
ylabel(’P(X)=1’,’FontSize’,14)
title([’P(X)=1 for different K, J=’,num2str(J),...

’, L=’, num2str(L),’, N=’,num2str(N)],’FontSize’,...



14,’FontWeight’,’b’)
axis([0,J,0,0.4])

end

Version 2:

% plots the probability of the best rank versus K for a given J, L
% J,K,L: refer to HW3 for explanation
% Version 2: adaptation of version 2 of Part B (using hist() function)

function []=prob_1_versus_K_v2(J,L)

N=10000;

K_vector=L:J-1;
prob_of_rank_1=zeros(1,J-L);

K_index=1;
for K=K_vector

accepted_ranks=zeros(1,N); % initialization of the vector of the ranks of
% the selected offers of the experiments!

for i=1:N
[accepted_ranks(i),ignore_the_time]=car_sale_v1(J,K,L);

end
[frequencies, bins_locations]=hist(accepted_ranks,J);
pmf_vector=frequencies/N;
prob_of_rank_1(1,K_index)=pmf_vector(1,1);
K_index=K_index+1;

end

bar(K_vector,prob_of_rank_1) %create figure
xlabel(’K’,’FontSize’,14)
ylabel(’P(X)=1’,’FontSize’,14)
title([’P(X)=1 for different K, J=’,num2str(J),...

’, L=’, num2str(L),’, N=’,num2str(N)],’FontSize’,...
14,’FontWeight’,’b’)

axis([0,J,0,0.4])
end

The script to execute the simulations follows:

close all
clear all
clc

J=50; K=30; % refer to HW3 for explanation
% number of repetitions of the experiment

for L=[1 2 5]
figure
prob_1_versus_K_v2(J,L)

end



The results are depicted in Fig. 2. First, we observe that by selecting L = 1 and K ≈ 18 we achieve a likelihood
of accepting the best offer as high as 0.37. Also, for a wide range of 10 < K < 30 the chance of accepting the
best offer is at least one-third. Increasing L from 1 hurts the probability of accepting the best offer. For larger L,
K better be appropriately larger too.
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(b) L = 2
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Fig. 2. Probability of accepting the best offer for J = 50 as a function of K, varying L = 1, 2, 5. Here, N = 104 is the number of repeated
experiments performed to calculate the desired probability. Notice that the scale of the y-axis ranges from 0 to 0.4.



D Probability of selecting last offer (L=1). One accepts the last offer if the best offer is among the first K offers
we discard (X0 = 1), or, the second best offer is among the first K offers we discard and the best offer is the last
offer (hence X0 = 2 and XJ = 1). In terms of events this can be formally expressed as

P [X = XJ ] = P [{X0 = 1} ∪ {{X0 = 2} ∩ {XJ = 1}}]
= P [{X0 = 1}] + P [{X0 = 2} ∩ {XJ = 1}]

where the last equality follows readily since the events {X0 = 1} and {{X0 = 2} ∩ {XJ = 1}} are disjoint. The
first probability can be calculated by noticing that {X0 = 1} corresponds to the first offer being amongst the first
K slots, out of J possible equiprobable slots. This implies

P [{X0 = 1}] =
K

J
.

To calculate the second relevant probability, notice that {{X0 = 2} ∩ {XJ = 1}} is equivalent to the best offer
being at the last slot, and (i.e., fixing that) the second best offer being amongst the first K of the remaining J − 1
slots. Hence, from the definition of conditional probability

P [{X0 = 2} ∩ {XJ = 1}] = P [X0 = 2, XJ = 1]

= P
[
X0 = 2

∣∣XJ = 1
]

P [XJ = 1]

=
K

J − 1
× 1

J
.

Summing up both results yields the desired probability of selecting the last offer when L = 1, namely

P [X = XJ ] =
K

J
+

1

J
× K

J − 1
.

E Probability of selecting best offer (L = 1). To calculate P [X = 1] we will condition on Xn = 1, that is the
probability that the n-th being the best possible offer (something that happens with probability P [Xn = 1] = 1/J).
From the law of total probability we have

P [X = 1] =

J∑
n=1

P [X = 1|Xn = 1] P [Xn = 1] =

J∑
n=1

P [X = 1|Xn = 1]
1

J

and what is left is the calculation of the conditional probabilities P [X = 1|Xn = 1], 1 ≤ n ≤ J . To this end, notice
that P [X = 1|Xn = 1] = 0 for 1 ≤ n ≤ K because if the first offer is among the first K it would be discarded.
We can then adjust the index of summation and start from n = K + 1, that is

P [X = 1] =
1

J

J∑
n=K+1

P [X = 1|Xn = 1] .

To calculate P [X = 1|Xn = 1] for K + 1 ≤ n ≤ J , notice that the best offer will be chosen at time n only if X0

is not beaten by those offers made during times K+ 1, . . . , n−1. In other words, the best offer among those made
between times 1, . . . n − 1 must have occured during the first K slots, something that happens with probability
K/(n− 1). All in all, P [X = 1|Xn = 1] = K/(n− 1), K + 1 ≤ n ≤ J and the desired result follows

P [X = 1] =
K

J

J∑
n=K+1

1

n− 1
.

F Optimal number of rejected offers K (L=1). The optimal K∗ can be determined by maximizing P [X = 1], after
resorting to the suggested approximation

J∑
n=K+1

1

n− 1
≈
∫ J−1

K

1

x
dx = ln

(
J − 1

K

)
≈ ln

(
J

K

)
.



The last approximation follows by considering J � 1, which is acceptable for J = 50 in our experiments. The
approximate expression for the probability of selecting the best offer is

P [X = 1] =
K

J

J∑
n=K+1

1

n− 1
≈ K

J
ln

(
J

K

)
.

To find the maximizing K∗, we null the derivative of P [X = 1] with respect to K, and solve for K∗ (this actually
neglects that K is integer-valued, but we will live with that here). Using the product rule for the derivatives as well
as the chain rule, we find

d

dK
P [X = 1] ≈ d

dK

[
K

J
ln

(
J

K

)]
=

1

J
× ln

(
J

K

)
− K

J
×
(
K

J
× J

K2

)
=

1

J
× ln

(
J

K

)
− 1

J
.

Finding the root yields the desired result,

d

dK
P [X = 1] = 0⇔ ln

(
J

K∗

)
= 1⇒ K∗ ≈ J/e.

For J = 50, this number is about 18 corroborating what we observed in Fig. 2(a). Now, the maximum probability
is approximately

P∗[X = 1] ≈ K∗

J
ln

(
J

K∗

)
=
J/e

J
× ln

J

J/e
= 1/e ≈ 0.37

This is a remarkably high probability, which matches the simulated results in Fig. 2(a) as well.


