
Homework 4 - Markov chains

1) Transforming a random process into a Markov chain. Consider the random process XN = X0, X1, . . . , Xn, . . .
with state space S = {0, 1, 2}. Suppose

P
[
Xn+1 = j

∣∣Xn = i,Xn−1 = in−1, . . . , X0 = i0
]
=

{
P e
ij , n even
P o
ij , n odd
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e
ij =
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j=0 P

o
ij = 1, i ∈ S. Is XN a Markov chain (MC)? Explain. If not, then show how, by augmenting

the state space, we may transform it in a MC. Give the resulting transition probability matrix.

2) Coin flips. Suppose that coin 1 has probability 0.7 of coming up heads, and coin 2 has probability 0.6 of coming
up heads. If the coin flipped today comes up heads, the we select coin 1 to flip tomorrow, and if it comes up tails, then
we select coin 2 to flip tomorrow. If the coin initially flipped is equally likely to be coin 1 or coin 2, then what is the
probability that the coin flipped on the third day after the initial flip is coin 1? Suppose that coin flipped on Monday
comes up heads. What is the probability that the coin flipped on Friday of the same week also comes up heads?

3) Positive transition matrices remain positive. Let P be the transition probability matrix of a MC. Show that if Pr

has all positive entries for some positive integer r, then so does Pn for all n ≥ r.

4) Communication classes. Specify the communication classes of the following MCs, and determine whether they are
transient or recurrent. Are the MCs irreducible?

P1 =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 , P2 =


0 0 0 1
0 0 0 1
1/2 1/2 0 0
0 0 1 0

 ,

P3 =


1/2 0 1/2 0 0
1/4 1/2 1/4 0 0
1/2 0 1/2 0 0
0 0 0 1/2 1/2
0 0 0 1/2 1/2

 , P4 =


1/4 3/4 0 0 0
1/2 1/2 0 0 0
0 0 1 0 0
0 0 1/3 2/3 0
1 0 0 0 0

 .

5) Multi-step, unconditional, and joint MC probabilities. Suppose that XN = X0, X1, . . . , Xn, . . . is a MC with state
space S = {1, 2}, transition probability matrix

P =

(
1/5 4/5
2/5 3/5

)
and initial distribution P [X0 = 1] = 3/4 and P [X0 = 2] = 1/4. You are asked to calculate P

[
X3 = 1

∣∣X1 = 2
]
,

P
[
X3 = 1

∣∣X2 = 1, X1 = 1, X0 = 2
]
, P [X2 = 2], P [X0 = 1, X2 = 1] and E [X2].

6) Something the Markov property does not imply. Suppose that XN = X0, X1, . . . , Xn, . . . is a MC, j, in−1, . . . , i1, i0
are elements of the state space S, and A is a subset of the state space. Give an example for which

P
[
Xn+1 = j

∣∣Xn ∈ A,Xn−1 = in−1, . . . , X1 = i1, X0 = i0
]
6= P

[
Xn+1 = j

∣∣Xn ∈ A
]
.

(Hint: construct a MC where state in−1 communicates with a single state in ∈ A, and let A = S.)

7) A branching process. Mitochondrial DNA is passed from mother to children without genetic contribution from the
father. All the variability in mitochondrial DNA is due to random mutations accumulated over time. Using estimates
of the mutation rate and differences on mitochondrial DNA between humans it becomes possible to estimate the time
at which groups became distinct populations. We are not computing these times here but a few facts about a MC that
models the propagation of mitochondrial DNA. Since male mitochondrial DNA is not passed to children, it suffices to
focus on female descendants of females, i.e., from mothers to daughters to daughters of daughters and so on.

Let us start denoting as Xn the total number of women in the n-th generation and as Xrn the total number whose
mitochondrial DNA is of type r. Assign indexes i = 1, 2, . . . , Xn to the n-th generation individual. Independently of
time and her type r woman i has Di daughters with probability distribution

P [Di = j] = pj , for all i. (1)



In most cases daughters’ types coincide with their mothers’ types. Once in a while, though, a mother of type r bears
a daughter of a different type s. When this happens, we assume that type s is novel, i.e., different from other types
present in the population. This is a reasonable assumption because mutations are rare and can happen in a large number
of genes. The probability of the same mutation appearing twice can thus be discounted. The appearance of a new group
happens with probability q. To simplify calculations we still count the mother as being of type r, and start counting
type s on the daughters’ generation. We can then separate the probability of bearing Dir daughters of type r or Dis

daughters of type s as
P [Dir = j] = (1− q)pj , P [Dis = j] = qpj (2)

where in the above equation the woman i is assumed to be of type r. The first probability accounts for the case when
no mutations occur. The second one accounts for the daughters of a woman in which the mutation first arises. If at
generation n none of the Xrn type r women bears any daughter of type r, we say type r goes extinct and accordingly
Xrk = 0, for all k ≥ n+ 1.

For future use define ν as the expected value of the number of daughters, and νr as the expected number of daughters
that share their mother’s type, i.e.,

ν := E [Di] =

∞∑
j=1

jpj , νr := E [Dir] = (1− q)
∞∑
j=1

jpj . (3)

A) Is the count of women a Markov chain? Consider first the total number of women Xn. Is the process XN a MC? If
the answer to this question is positive, what are the transition probabilities Pij := P

[
Xn+1 = j

∣∣Xn = i
]

from states
Xn = 0 and Xn = 1, i.e, for i = 0, i = 1 and any j? What are the transition probabilities into state Xn = 0, i.e., for
j = 0 and any i? Is the probability Pii := P

[
Xn+1 = i

∣∣Xn = i
]

of a state transitioning into itself strictly positive? Is
this MC recurrent?

B) Is the count of women classified by mitochondrial DNA type a Markov chain? Consider now the count of women
Xrn with mitochondrial DNA of type r. As defined the process XrN is not a MC. Why? (Hint: state Xrn = 0 can either
represent that a mutation onto type r has yet to occur, or, that the type r population is extinct. Hence, do transition
probabilities P

[
Xr,n+1 = j

∣∣Xrn = i
]

depend only on i = 0 and j?) Suppose we are given the information that at some
time n, Xrn > 0. Define the random process Xr,n:∞ := Xrn, Xr,n+1, . . . that starts at time n with the information
that Xrn > 0. This process is a MC. Why? What are the transition probabilities Pij := P

[
Xr,n+1 = j

∣∣Xrn = i
]

from
states Xrn = 0 and Xrn = 1, i.e, for i = 0, i = 1 and any j? What are the transition probabilities into state Xrn = 0,
i.e., for j = 0 and any i? Is the probability Pii := P

[
Xr,n+1 = i

∣∣Xrn = i
]

of a state transitioning into itself strictly
positive? Is this MC recurrent?

C) System simulation. Write a simulation of this stochastic system. You can model the number of children as Poisson
with mean λ = 1.05 (i.e., pj = e−1.05(1.05)j/j!), which is half the fertility rate in the United States. Your function
should take as inputs λ, the rate of mutation q, the duration of the experiment nmax (in number of generations), and
the initial number of individuals X0 all having different mitochondrial DNA types. The outputs should be a matrix with
entries Xrn, and two vectors of length nmax indicating: i) the total number of mitochondrial DNA types by generation
n (including those that went extinct); and ii) the total number of extinct types by generation n. Hand in your code.
Optional: If you are up for a challenge, you can approximate probabilities from the following distribution of the number
of children ever born to women in the age group 40-441:

Number of children Percentage Number of children Percentage
0 0.179 1 0.174
2 0.354 3 0.189
4 0.068 5,6 0.028
> 7 0.008

If you decide to use the data in this table, notice that the above distribution is for all children, male and female, and
that you are interested in girls only.

D) Simulation tests one. Run a simulation with q = 10−2 as the rate of mutation, initialize generation 0 with X0 = 100
individuals all having different mitochondrial DNA types. Run for nmax = 50 generations – approximately 1,000 years
at 20 years per generation. Show a plot for the number of women in each type as a function of generation index. Plot

1US Census Bureau, “Distribution of Women by Average Number of Children Ever Born, by Race, Marital Status, and Age,” June 2002



your two output vectors to show the number of types present and accumulated number of extinct types as as a function
of generation index. For n = 50, show a histogram of the number of individuals per type (including those extinct types).

E) Simulation tests two. Repeat Part D with rate of mutation q = 0 and X0 = 400 individuals of different types, so
here the number of types present is constant and equal to 400 for all n ≥ 0. This tells you about the chances of your
direct female line surviving into the next 10 centuries. Notice that most of the types go extinct, a few have a moderate
number of individuals and 1 or 2 have a large number of individuals. This means that far into the future, most of your
direct female lines will be extinct, but one of you will have a very large number of survivors. But who among you is
the one surviving into the future is determined by chance.

F) Expected value of the number of direct line female descendants. The number of individuals in the (n+1)-st generation
can be written in terms of the corresponding number Xn for the n-th generation and the numbers of daughters Di of
each individual. The expression is

Xn+1 =

Xn∑
i=1

Di. (4)

Use (4) to prove that if the number of women in the first generation (n = 0) is X0 then the expected number of female
individuals in the n-th generation is

µn = E [Xn] = X0ν
n. (5)

Compare this expected value with the number of individuals as a function of time that you obtained in Parts D and E.
If they’re similar explain the similarity. If they’re not similar explain the differences. Likewise, prove that the expected
number of descendants of a generation 0 individual sharing her mitochondrial type is

µrn = E [Xrn] = νnr = (1− q)nνn. (6)

G) Extinction in probability. Show that if νr < 1 then type r goes extinct in probability independently of the number
of individuals in the original generation, i.e,

lim
n→∞

P [Xrn = 0] = 1. (7)

H) Probability of eventual extinction (q = 0). Fix q = 0. Denote as Pe(j) the probability of eventual extinction of
mitochondrial type r, when the number of generation 0 type r individuals is Xr0 = j, i.e.,

Pe(j) := lim
n→∞

P
[
Xrn = 0

∣∣Xr0 = j
]
. (8)

To explain this definition consider a single individual at time 0, Pe(1) is the probability that her direct female line
eventually dies out. We already showed that for ν < 1, then Pe(j) = 1 independent of j. When ν > 1 is turns out that
Pe(j) < 1, and the equation determining Pe(1) can be obtained by conditioning on the number of daughters in the first
generation, and using the law of total probability. Show that Pe(1) is a solution of the following equation

Pe(1) =

∞∑
j=0

pj P
j
e (1). (9)

Argue that in general Pe(j) =
[
Pe(1)

]j
.


