
Solutions to Homework 6 - Markov Chains

1) Discrete-time queueing model for a service station. Suppose customers can arrive to a service station at times
n = 0, 1, 2, . . . In any given period, independent of everything else, there is one arrival with probability p, and there
is no arrival with probability 1− p. Suppose customers are served one-at-a-time on a first-come-first-served basis.
If at the time of an arrival, there are no customers present, then the arriving customer immediately enters service.
Otherwise, the arrival joins the back of the queue.

In a time period n, events happen in the following order: (i) arrivals, if any, occur; (ii) service completions, if
any, occur; and (iii) service begins on a new customer if there has been an arrival to an empty queue or a service
has just finished and there is another customer present.

Assume that service times are i.i.d. geometric RVs (each with parameter q) that are independent of the arrival
process. Note that a customer who enters service in time n can complete service, at the earliest, in time n+ 1 (in
which case his service time is 1). Let Xn denote the number of customers at the station at the end of time period n;
i.e., after the time-n arrivals and services. Note that Xn includes both customers waiting as well as any customer
being served.

A) Let Y be a geometric-distributed RV, with parameter q. We want to show that P
[
Y = i

∣∣Y ≥ i
]
= q for

i = 1, 2, From the definition of conditional probability we obtain

P
[
Y = i

∣∣Y ≥ i
]
=

P [Y = i, Y ≥ i]

P [Y ≥ i]
=

P [Y = i]

P [Y ≥ i]
=

P [Y = i]

1− P [Y < i]
=

(1− q)i−1q

1−
∑i−1

k=1(1− q)k−1q
(1)

where in obtaining the last equality we have substituted the expression for the pmf of a geometric RV. To simplify
the denominator, just sum the finite geometric series

1−
i−1∑
k=1

(1− q)k−1q = 1− q

1− q

i−1∑
k=1

(1− q)k = 1− q

1− q

(
1− q − (1− q)i

q

)
= (1− q)i−1.

Substituting this result back in (1), we obtain

P
[
Y = i

∣∣Y ≥ i
]
= q

which is what we wanted to show.

B) Service times are assumed i.i.d. geometric RVs with parameter q. Suppose that a particular customer begins
service at time n, and does not complete service in periods n+ 1, n+ 2 or n+ 3. If we let Y denote the service
time, then we want to compute

P
[
Y = (n+ 4)− n

∣∣Y 6= (n+ 1)− n, Y 6= (n+ 2)− n, Y 6= (n+ 3)− n
]
= P

[
Y = 4

∣∣Y ≥ 4
]

But this is exactly what we calculated in part A), and therefore it readily follows that

P
[
Y = 4

∣∣Y 6= 1, Y 6= 2, Y 6= 3
]
= q

The conclusion in the context of the problem is that the probability that a user being served since time instant n−1
(or any other value in the past) completes service and exits the system at time n is equal to q. Note that this is the
case conditioned on the information that we know that the user was still being served at time instant n− 1.

C) Given the current state, the next state is determined by whether or not we have an arrival and/or a service.
The occurrence of an arrival has probability p and is independent of past events. Similarly, if the system is in state
i > 0, there will be a service with probability q, conditionally independent of past events given the system is in
state i > 0. In particular, because of the geometric service times it does not matter how long the customer currently
being served has been in service.

More formally, let Xn be the number of customers at the station at the end of time period n, and let An be a
Bernoulli-distributed RV with parameter p indicating the arrival of a customer at time n. Likewise, let Dn be a
Bernoulli-distributed RV with parameter q indicating the departure of a customer that completed service at time n.
Both AN and DN are i.i.d. and independent of each other. Also, for each n both An and Dn are independent of Xn.

(Notice that the fact that service times are geometric is crucial towards modeling departures as an i.i.d. sequence;
see also the discussion at the end of the previous part.) From the problem description, we find that Xn satisfies the
following recursion

Xn = Xn−1 +An −min(Xn−1, Dn).

Observe how the last term min(Xn−1, Dn) accounts for the fact that if Xn−1 = 0 (the service station is empty),
then no user is being served and consequently no user can eventually exit the system at time instant n. Because
Xn obeys a recursion of the general form

Xn = f(Xn−1, An, Dn)

for the function f(a, b, c) = a+ b−min(a, c), and the i.i.d. processes AN and DN (which are also independent of
X0), then we know that XN is a MC.

D) The transition probabilities can be derived as follows. First we consider the case where the present state is
Xn = 0, where the possibilities are:

1) If an arrival does not occur at time instant n + 1 then Xn+1 = 0. Note that because Xn = 0, then it is
also impossible that some user exits the system after being served because the system was empty. Then we
conclude that P00 = 1− p.

2) If an arrival occurs at time instant n+ 1 then Xn+1 = 1. Then we conclude that P01 = p.
All the rest of the transition probabilities from state 0 should be equal to zero, as they correspond to state transitions
that cannot happen. The general case where the present state is Xn = i > 0, gives rise to the following possibilities:

1) If an arrival does not occur at time instant n+ 1 and the user being served does not complete service, then
Xn+1 = i. This will happen with probability (1− p)(1− q). Furthermore, if an arrival occurs at time instant
n+1 and the user currently being served exits the system after service completion, then also Xn+1 = i. This
will happen with probability pq. The conclusion is that Pii = pq + (1− p)(1− q) = 1 + 2pq − p− q.

2) If an arrival occurs at time instant n+1 and the user being served does not complete service, then Xn+1 = i+1.
Then we conclude that Pi,i+1 = p(1− q).

3) If an arrival does not occur at time instant n + 1 and the user currently being served exits the system after
service completion, then Xn+1 = i− 1. Then we conclude that Pi,i−1 = (1− p)q.

All the rest of the transition probabilities will be zero. As a sanity check, note that Pii + Pi,i−1 + Pi,i+1 = 1. The
general form of the transition matrix is

P =

1− p p 0 0 . . .

(1− p)q 1 + 2pq − p− q p(1− q) 0 . . .

0 (1− p)q 1 + 2pq − p− q p(1− q)
. . .

...
.

which has a banded tri-diagonal structure.

2) Probability of the instant when a state is visited for the first time. Suppose that XN = X0, X1, . . . , Xn, . . .
is a MC with state space S, and for i, j ∈ S define

g1ij = P
[
X1 = j

∣∣X0 = i
]
,

gnij = P
[
Xn = j,Xn−1 6= j, . . . ,X2 6= j,X1 6= j

∣∣X0 = i
]
, n ≥ 2.

A) To derive a recursion that relates gnij to gn−1
ij , start from gnij and condition on the first transition to obtain

gnij = P
[
Xn = j,Xn−1 6= j, . . . ,X1 6= j

∣∣X0 = i
]

=
∑
k∈S
k 6=j

P
[
Xn = j,Xn−1 6= j, . . . ,X1 = k

∣∣X0 = i
]

=
∑
k∈S
k 6=j

P
[
Xn = j,Xn−1 6= j, . . . ,X2 6= j

∣∣X1 = k,X0 = i
]

P
[
X1 = k

∣∣X0 = i
]

=
∑
k∈S
k 6=j

P
[
Xn = j,Xn−1 6= j, . . . ,X2 6= j

∣∣X1 = k
]
g1ik =

∑
k∈S
k 6=j

gn−1
kj g1ik.

Notice that the fourth equality follows from the Markov property, while the fifth equality is a consequence of the
time-homogeneity of the MC so that P

[
Xn = j,Xn−1 6= j, . . . ,X2 6= j

∣∣X1 = k
]
= gn−1

kj .

B) The quantities gnii represent the probabilities that starting from X0 = i, the MC revisits i for the first time after
exactly n transitions. Accordingly, it follows that the probability fi that the MC ever revisits state i is given by

fi = P

[∞⋃
n=1

Xn = i
∣∣X0 = i

]
=

∞∑
n=1

gnii.

Hence, we have that state i in is recurrent if fi =
∑∞

n=1 g
n
ii = 1, and transient if fi =

∑∞
n=1 g

n
ii < 1.

3) Expected discounted costs. Suppose that XN = X0, X1, . . . , Xn, . . . is a MC with state space S, and transition
probabilities Pij for i, j ∈ S. Suppose that c(·) is a cost function so that we are charged cost c(i) when we are in
state i ∈ S. Suppose that 0 < λ < 1 is a discount factor. Let

v(k, i) = E

[
k∑

n=0

λnc(Xn)
∣∣X0 = i

]
.

By first using the given conditioning on X0 = i, and then conditioning on the first transition we obtain for k ≥ 0

v(k + 1, i) = E

[
k+1∑
n=0

λnc(Xn)
∣∣X0 = i

]

= E

[
c(X0) +

k+1∑
n=1

λnc(Xn)
∣∣X0 = i

]
= E

[
c(i) +

k+1∑
n=1

λnc(Xn)
∣∣X0 = i

]

= c(i) +
∑
j∈S

E

[
k+1∑
n=1

λnc(Xn)
∣∣X1 = j,X0 = i

]
P
[
X1 = j

∣∣X0 = i
]

= c(i) + λ
∑
j∈S

E

[
k+1∑
n=1

λn−1c(Xn)
∣∣X1 = j

]
Pij

= c(i) + λ
∑
j∈S

Pijv(k, j)

which is the desired result. In obtaining the last equality we used that v(k, j) = E
[∑k+1

n=1 λ
n−1c(Xn)

∣∣X1 = j
]
,

which follows from a change of variables m = n− 1.

4) Ranking of nodes in graphs.

A) Markov chain model. The random process of agent visits AN is a MC because it satisfies the Markov property.
Specifically, it follows from the description of the agent’s actions that

P
[
An+1 = j

∣∣An = i,An−1 = a
]
= P

[
An+1 = j

∣∣An = i
]
=

1

Ni
, j ∈ n(i)

depends only on i and j, and is conditionally independent on the history of the process An−1 = a.
Next, we give conditions under which the itemized statements are true:
• State i, meaning visit of agent to node i, of this MC is transient. Since the MC is finite (it has J states), the

only possibility for a state i to be transient is that it can reach some other state j through a path of nonzero
probabilities, but not vice versa. Hence assuming n(i) is not empty, this could happen if there are no nodes in
its incoming neighborhood n−1(i), or if the nodes in its incoming neighborhood have no incoming neighbors,
and so forth.

• All states of this MC are transient. It is impossible that all states in a finite MC are transient.
• All the states of this MC are recurrent. All states in the MC are recurrent if the graph is strongly connected,

meaning that there is a directed path from each node to each other node. This way, all states communicate and
the MC is irreducible. Because the MC is finite, then the single class should be recurrent. On the other extreme,
if there are no edges between different nodes in the graph, then each (absorbing) state is a class, and each
class is recurrent. Something in between is obtained when the graph comprises 1 < K < J communicating

classes (strongly connected components using graph parlance), and there are no edges connecting states from
the different classes. (Otherwise, if an edge connects two different communicating classes, then the class from
which the edge originates has to be transient.) This way, all states in all classes are recurrent.

• All states of this MC are aperiodic. Although not said explicitly, it is reasonable to assume that the graph has
no self loops, meaning that Pii = 0 for all states i. (Note that we must have self loops in the extreme and
uninteresting case that there are no edges among different nodes in the graph, otherwise we do not have a MC.
In this trivial case, all states are aperiodic.) Because periodicity is a class property, then e.g., all states will be
periodic if all connections are reciprocal (meaning the presence of edge (i, j) implies that (j, i) is present),
and there is at least one loop of odd length within each class. This way P 2

ii 6= 0 and P 2n+1
ii 6= 0 for some

n > 0, and since the greatest common divisor between 2 and any odd number is 1, then all states must be
aperiodic. This is just one set of conditions, and of course there are others.

• All states are positive recurrent. Because the MC is finite, recurrent states are positive recurrent. So the
aforementioned conditions under which all states are recurrent also imply that all states are positve recurrent.

• All states are ergodic. Ergodic states are aperiodic and positive recurrent. Hence, joint satisfaction of the
aforementioned conditions under which all states are positive recurrent and aperiodic imply that all states are
ergodic.

• The MC is irreducible. As stated earlier, the MC is irreducible when the graph comprises a single strongly
connected component. This way all states communicate since there is a directed path between any two nodes
in the graph.

B) Implement random walk. The following Matlab function implements the random walk in the graph, and calculates
the node ranks for a given network. The initial state is passed as a parameter.

function ranks=ranks_by_random_walk(graph,N,initial_state)

J=min(size(graph)); % J : total number of states
nr_neighbors = sum(graph); % number of neighbours of each state

% Here we construct a matrix which contains the indices of the states
% that each state is linked to.
% This matrix called "Neighbors" will serve as a lookup-table
% in order to find out to which state exactly should the random walker
% go. Specifically Neighbors(m,n)=f , if f is not zero, means that
% state m is linked to state f

k=max(nr_neighbors);
Neighbors=zeros(J,k);
for i=1:J

temp=find(graph(i,:));
Neighbors(i,1:length(temp))=temp;

end

i=initial_state; % Starting State
nr_visits=zeros(J,1);
for n=1:N

nr_visits(i)=nr_visits(i)+1;
i=Neighbors(i,randi(nr_neighbors(i)));

end
ranks=nr_visits/N;
end

The Matlab script below calls the function for the provided homework collaboration network. This network is
reducible, meaning there are disjoint “collaboration communities” amongst the whole class. For two initial states,
namely A0 = 1 and A0 = 6 (belonging to different communication classes), the results are depicted in Fig. 1. As

0 5 10 15 20 25 30 35 40
0

0.05

0.1

N=10
5
 Computation time is 0.47263sec

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

N=10
6
 Computation time is 2.3001sec

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

N=10
7
 Computation time is 22.1086sec

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

N=10
5
 Computation time is 0.22785sec

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

N=10
6
 Computation time is 2.2314sec

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

N=10
7
 Computation time is 22.2656sec

Fig. 1. Ranks calculated based on the random walk on the graph, and taking the time average of the number of visits to each state. Estimated
fraction of visits are reported for N = 105, 106, and 107, where N is the total duration of the experiment. Initial states are A0 = 1 (left), and
A0 = 6 (right). Both states belong to different communication classes, and as expected the obtained ranks are different. (Part B)

expected, since the MC is reducible the ranks depend on the initial condition, and in this particular case they are
quite different. The length of the experiment is also varied, using values N = 10i for i = 5, 6, and 7.

We can investigate the disjoint classes by looking at the resulting ranks in Fig. 1. We observe from Fig. 1 (left)
that some of the states receive zero rank when A0 = 1 (see e.g., states 6, 11, 16, 28, 33). The conclusion is that
these states do not belong to the same communication class as state 1. Starting from state 6, we obtain the ranks
in Fig. 1 (right) which shows that states 6, 16 and 33 comprise a separate class. Starting from states 11 and 28
shows that each of them are singleton (absorbing) states, and hence separate classes.

clc;close all;clear all;
collaboration_matrix % Loads the collaboration graph

J=min(size(graph));

figure
for j=1:3

N=10ˆ(4+j);
tic
ranks=ranks_by_random_walk(graph,N,1);
t=toc

subplot(3,1,j)
bar(1:J,ranks,’r’)
title([’N=10ˆ’,num2str(j+4), ’ Computation time is ’,...

...num2str(t),’sec’],’FontSize’,12)
end

To obtain an irreducible MC so that ranks do not depend on the initial state A0, we add an artificial node
(the professor) that is connected to all other nodes. The following Matlab script implements the required change;
see the 3rd line which adds an extra row and column consisting of all ones. The resulting ranks are depicted in Fig. 2.

clc;close all;clear all;
collaboration_matrix % Loads the collaboration graph
graph=[graph ones(J,1);ones(1,J) 0]; % Augmenting with the

% fully connected node (professor)

J=min(size(graph));

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

N=10
5
 Computation time is 0.50457sec

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

N=10
6
 Computation time is 2.231sec

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

N=10
7
 Computation time is 21.9787sec

Fig. 2. Ranks calculated based on the random walk on the graph, and taking the time average of the number of visits to each state. Estimated
fraction of visits are reported for N = 105, 106, and 107, where N is the total duration of the experiment. Initial state is A0 = 1, and the
MC is irreducible. (Part B)

figure
for j=1:3

N=10ˆ(4+j);
tic
ranks=ranks_by_random_walk(graph,N,1);
t=toc

subplot(3,1,j)
bar(1:J,ranks,’r’)
title([’N=10ˆ’,num2str(j+4), ’ Computation time is ’,...

...num2str(t),’sec’],’FontSize’,12)
end

C) Probability update. Let pi(n) := P [An = i] denote the unconditional probability that the outside agent is at
node i at time n. It is possible to express pi(n+ 1) in terms of the probabilities at time n of those nodes that can
transition into i. In fact, using the law of total probability after conditioning on the state at time n, one obtains

P [An+1 = i] =
∑

j∈n−1(i)

P
[
An+1 = i

∣∣An = j
]

P [An = j]

which is
pi(n+ 1) =

∑
j∈n−1(i)

Pjipj(n).

Defining the column vector p(n) := [p1(n), . . . , pJ(n)]
T , the update equation can be compactly expressed in matrix

form as
p(n+ 1) = PTp(n).

D) Find ranks using the probability update. The limiting probabilities limn→∞ pi(n) exist provided the MC is
aperiodic (when it is periodic, the probabilities oscillate and do not settle into steady-state values). Since the MC

0 5 10 15 20 25 30 35 40
0

0.05

0.1

N=50 Computation time is 0.0030097sec

0 5 10 15 20 25 30 35 40
0

0.05

0.1

N=100 Computation time is 0.00023108sec

0 5 10 15 20 25 30 35 40
0

0.05

0.1

N=150 Computation time is 0.00030451sec

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

N=50 Computation time is 0.0032867sec

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

N=100 Computation time is 0.00023767sec

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

N=150 Computation time is 0.00031811sec

Fig. 3. Ranks calculated based on the probability updates for the reducible network (left), and the irreducible case (right). Estimated times for
N = 50, 100, and 150 are reported, where N is the total number of iterations. The initial distribution is p(0) = [1, 0, . . . , 0]T . (Part D)

under study is aperiodic, these limits always exist. Suppose pA0(0) = 1, that is the outside agent begins at node
A0 almost surely. Then from the conditional version of the ergodic theorem (that is, restricting the evolution of the
MC to the ergodic class to which A0 belongs), the rank of state i can be obtained as

ri(A0) = lim
n→∞

1

n

n∑
m=1

I(Am = i) = lim
n→∞

Pn
A0,i = lim

n→∞
pi(n). (2)

Notice that if state i belongs to a different class than A0, then ri(A0) = 0 because state i is never visited. The
Matab function to compute the ranks using the probability updates as suggested by (2) follows.

function ranks=ranks_by_probability_update(graph,N,initial_distribution)

J=min(size(graph)); % J : total number of states
pi_D=initial_distribution; % given initial distribution

nr_neighbors = sum(graph);

transition_probabilities = graph;
for k=1:J

if nr_neighbors(k)>0
transition_probabilities(k,:)=graph(k,:)/nr_neighbors(k);

else
transition_probabilities(k,k)=1;

end
end

for n=1:N
pi_D=transition_probabilities’*pi_D; % Probability updates

end
ranks=pi_D;
end

The results for the reducible MC are shown in Fig. 3 (left). The calculated ranks coincide with those obtained in
part B, see also Fig. 1 (left). Interestingly, convergence is attained after only around 100 iterations, whereas using
the random walk model it takes at least 106 iterations (you can also check the running times from the plots).

For the limiting probabilities to be independent of the initial distribution, the MC must be ergodic. By adding a
fully connected node (the professor), the MC becomes irreducible and also ergodic because all states are aperiodic.

In this case, we know from the ergodic theorem that

ri = lim
n→∞

1

n

n∑
m=1

I(Am = i) = lim
n→∞

Pn
ji = lim

n→∞
pi(n) (3)

independent of the initial condition, i.e., for all 1 ≤ j ≤ J in (3). So (3) justifies why the ranks can be computed
using probability updates. To do so, one can run the Matlab function above with the irreducible graph as an input.
The results are shown in Fig. 3 (right), and again they coincide with those obtained in part B, see also Fig. 2.

E) Recast as system of linear equations. Focusing on the modified, irreducible graph we can compute the ranks
from the system of linear equations defining the MC’s unique stationary distribution π = [π1, . . . , πJ]

T . Again,
notice that in the ergodic case one has

ri = lim
n→∞

1

n

n∑
m=1

I(Am = i) = πi

where the stationary distribution satisfies

π = PTπ, πT1 = 1 (4)

and 1 is the J × 1 vector of all ones. It follows from (4) that π is the unique solution to the following system of
linear equations (

I− PT

1T

)
π =

(
0
1

)
where I is the J × J identity matrix, and 0 is the (J + 1)× 1 vector of all ones. In a nutshell, the above system
implies that one can find π as a normalized vector (entries should sum up to one) spanning the null-space of the
matrix (I−PT). The script to implement such procedure follows. The resulting ranks are shown in Fig. 4 (left).

clc;close all;clear all;
collaboration_matrix % Loads the collaboration graph
graph=[graph ones(J,1);ones(1,J) 0]; % Augmenting with the

% fully connected node (professor)

J=min(size(graph)); % J : total number of states
nr_neighbors = sum(graph);
transition_probabilities = graph;
for k=1:J

if nr_neighbors(k)>0
transition_probabilities(k,:)=graph(k,:)/nr_neighbors(k);

else
transition_probabilities(k,k)=1;

end
end

figure
tic
pi=null(eye(J)-transition_probabilities’); % Find vector in the nullspace
ranks=pi/sum(pi); % Normalize
t=toc

% Plot results
bar(1:J,ranks,’r’)
title([’Recasting as Linear system problem,’, ’ Computation time is ’,...

...num2str(t),’sec’],’FontSize’,12)
xlabel(’states’,’Fontsize’,12)
ylabel(’ranks’,’Fontsize’,12)

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Recasting as Linear system problem, Computation time is 0.0053576sec

states

ra
n
k
s

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Recasting as eigenvector problem Computation time is 0.0028673sec

states

ra
n
k
s

Fig. 4. Ranks calculated as the solution to a system of linear equations (left), and an eigenvalue problem (right). (Parts E and F.)

F) Recast as eigenvalue problem. From (4) it follows that π can also be computed as the normalized eigenvector
(entries should sum up to one) of matrix PT , associated with the eigenvalue 1. The Matlab script to implement
such procedure follows, and the obtained ranks are shown in Fig. 4 (right).

clc;close all;clear all;
collaboration_matrix % Loads the collaboration graph
graph=[graph ones(J,1);ones(1,J) 0]; % Augmenting with the

% fully connected node (professor)

J=min(size(graph)); % J : total number of states
nr_neighbors = sum(graph);
transition_probabilities = graph;
for k=1:J

if nr_neighbors(k)>0
transition_probabilities(k,:)=graph(k,:)/nr_neighbors(k);

else
transition_probabilities(k,k)=1;

end
end

figure
tic
[V,D]=eig(transition_probabilities’); % Perform eigendecomposition of P’
ranks=V(:,1)/sum(V(:,1)); % Normalize dominant eigenvector
t=toc

% Plot results
bar(1:J,ranks,’r’)
title([’Recasting as Linear system problem,’, ’ Computation time is ’,...
...num2str(t),’sec’],’FontSize’,12)
xlabel(’states’,’Fontsize’,12)
ylabel(’ranks’,’Fontsize’,12)

G) Discuss advantages of each method. Restricting our attention to the modified (irreducible) graph containing the
fully connected node, we have seen that all four methods in parts B-F yield the same results. But each of them has
particular advantages that make them suitable for different applications, as summarized next.

• Random walk on the graph. The random walk approach is preferable in that it is secure, meaning that rank or

graph topology information is not shared between nodes. For a node to determine its own rank, it only needs
to know its outgoing neighborhood and the state of a global synchronization clock (yielding the value of n).
This also means that implementation can be distributed, i.e., global network information need not be compiled
and processed in a central location.

• Probability update. The probability update, motivated by probability propagation in a MC is similar to the
random walk in that implementation can be distributed and it is fairly secure (but less secure than the random
walk algorithm, since probability updates require exchanging current ranks with neighbors). The main advantage
is that it converges to the true ranks markedly faster than the random walk implementation. If the MC is very
large, the iterations can be halted at any time to save computations, thus providing an approximation for the
ranks of all J states. This should be compared with the algorithms that either solve a linear system or an
eigenvalue problem, where in principle one does not have the flexibility to control the accuracy of the solution.
We also observed that probability updates boil down to simple matrix times vector multiplications, for which
fast algorithms are available. (This is at the heart of Matlab’s success story, since its routines are designed and
optimized specifically to carry out such matrix computations remarkably fast.)

• System of linear equations. Solving the system of linear equations eliminates the problem of slow convergence,
because (in theory) it does require an iterative procedure. In practice, be aware that Matlab’s routines to solve
linear systems are iterative. As a disadvantage, solving the linear system requires having the whole network
topology centrally available to carry out the computations, which is the least secure and robust. The worst
case complexity of solving a linear system is cubic in the input size (J), so for moderate-to-large graphs this
approach could become infeasible.

• Eigenvalue problem. For the most part, the eigendecompostion approach shares the advantages and disadvantage
of its system of linear equations counterpart.

