
Homework 7 - Continuous-time Markov chains

1) Machine repair times. The time T required to repair a machine is an exponentially-distributed random
variable (RV) with mean 1/2 (hours). What is the probability that a repair time exceeds 1/2 hour? What
is the probability that a repair takes at least 12 and 1/2 hours given that its duration exceeds 12 hours?

2) The post office. Consider a post office that is run by two clerks. Suppose that when Mr. Smith enters
the system he discovers that Mr. Jones is being served by one of the clerks, and Mr. Brown by the other.
Mr. Smith is told that his service will begin as soon as either Jones or Brown leaves. Suppose that the
time that clerk i = 1, 2 spends with a customer is exponentially distributed with rate λi. Show that

P [Smith is not the last to leave the office] =
(

λ1

λ1 + λ2

)2

+

(
λ2

λ1 + λ2

)2

.

3) Conditional expectation of exponential random variables. Suppose T is an exponentially-distributed
RV with parameter λ. Use the identity

E [T ] = E
[
T
∣∣T < t

]
P [T < t] + E

[
T
∣∣T > t

]
P [T > t]

to calculate E
[
T
∣∣T < t

]
, t > 0.

4) Sum of i.i.d. exponential random variables. Suppose that T1, . . . , Tn are i.i.d. exponential RVs with
parameter λ. In this problem, we will show that the sum T =

∑n
i=1 Ti has the gamma distribution with

parameters n and λ; i.e. T has pdf

fT (t) = λe−λt (λt)
n−1

(n− 1)!
, t ≥ 0.

To that end, we will argue by mathematical induction.

A) Base case: Show that the claim holds true for n = 1.

B) Inductive step: Supposing the claim is true for n−1, i.e., T (n−1) := T1+ . . .+Tn−1 has the gamma
distribution with parameters n− 1 and λ; show it also holds for n. (Hint: Notice that T = T (n−1) + Tn,
and recall that for independent, non-negative, continuous RVs Y and Z, the pdf fX(x) of X = Y + Z
is given by the convolution

fX(x) =

∫ x

0
fY (y)fZ(x− y)dy

of the pdfs fY (x) and fZ(x) of Y and Z.)

5) Sum of a random number of exponential random variables. Suppose TN = T1, T2, . . . is an i.i.d.
sequence of exponential RVs, each with parameter λ. Suppose N is a geometric RV with parameter p.
Assume that N and TN are independent, and let

X =

N∑
n=1

Tn.

Show that X has the exponential distribution, and determine its parameter.

6) Poisson process. Let N(t) be a Poisson process with rate λ, and let Si denote the i-th arrival time.
Determine E [S4], E

[
S4

∣∣N(1) = 2
]
, and E

[
N(4)−N(2)

∣∣N(1) = 3
]
.



7) Arrivals to a subway station. Consider the operation of a subway station during a time interval T .
Our goal is to study the arrival of public transportation users to the station. For that purpose divide the
time interval in n subintervals of duration h. Notice that the i-th subinterval, for i = 1, . . . , n consists
of times ((i − 1)h, ih] and that it must be T = nh. The total number of potential customers is very
large but only a small random fraction arrive at the station during time interval T . The probability of one
customer arriving in a small time interval of duration h is λh, and we assume that potential customers
make independent decisions as to when to arrive to the station. For sufficiently small time interval h the
probability of having more than one arrival can be ignored leading to the approximation

P [Ni(h) = 1] = λh, P [Ni(h) = k] = 0, for all k > 1 (1)

where we have introduced Ni(h) as the number of customers that arrive in the i-th time interval of
duration h.

In principle the arrival of a customer in the i-th time interval, is not independent of the arrival of a
customer in the j-th time interval. However, if the number of potential customers is very large, it is a
reasonable assumption to suppose that the arrival of a customer in the i-th time interval is independent
of the corresponding arrival in the j-th interval, allowing us to write

P [Ni(h) = 1/0, Nj(h) = 1/0] = P [Ni(h) = 1/0]P [Nj(h) = 1/0] . (2)

The expressions in (1) and (2), are accepted as the definition of the random process describing the arrival
of passengers to the subway station. Implicit in this definition is the assumption that T is sufficiently
small to allow the assumption that the probability of a customer arriving is independent of time.

The two quantities of interest in this problem are the number N(t) =
∑t/h

i=1Ni(h) of customers arriving
by time t, with N(t) = 0; and the time S1 elapsed until the first customer arrival at the train station.
According to (1), N(t) must satisfy

P
[
N(t+ h)−N(t) = 1

∣∣N(t)
]
= λh. (3)

To obtain time S1 from N(t) we must notice that S1 is the time at which N(t) transitions from 0 to 1.
Thus,

S1 = min
t
(N(t) ≥ 1). (4)

We will see in this exercise that for sufficiently small h, the first arrival time S1 is exponentially distributed
with parameter λ, and that the number of arrivals N(t) for any time t is Poisson with parameter λt.

A) Write a Matlab function to simulate an arrival process. Use T = 10 minutes, λ = 1 customer per
minute, and n = 103. Compare the histogram of N(T ) obtained from 104 experiments with the Poisson
pmf with parameter λT . Compare also the histogram of N(T )/2 with the Poisson pmf with parameter
λT/2.

B) The comparisons in Part A should have yielded accurate fits. Use the Poisson approximation of the
binomial distribution to justify why this is true. Argue that this implies that the pmf of N(t) is Poisson
with parameter λt for all t, i.e.,

P [N(t) = k] = e−λt (λt)
k

k!
. (5)

C) Compute a cumulative histogram of the first arrival time S1 to estimate the cdf of S1. Compare with
the cdf of an exponential RV with parameter λ. A good fit should be observed.

D) Use the fact that the probability of having no arrivals by time t is approximately given by e−λt [cf.
(5)], to explain the good fit observed in Part C. Notice that we have S1 > t if and only if there are no
arrivals by time t.


