
Solutions to Homework 8 - Continuous-Time
Markov Chains

1) A single-server station. Potential customers arrive at a single-server station in accordance to a Poisson process
with rate λ. However, if the arrival finds n customers already in the station, then she will enter the system with
probability αn. Assuming an exponential service rate µ, we will set this up as a birth and death process and
determine the birth and death rates.

Specifically, if we let the state {X(t) : t ≥ 0} be the number of customers in the system at any given time instant
t, then clearly this system (which is very similar to an M/M/1 queue) can be modeled as a birth and death process
with state space S = {0, 1, 2, . . .}. From the problem description, whenever the system state is n then arrivals occur
with exponential rate λ, but only a fraction αn of them will actually enter the system. Thus, the effective arrival
rate is αnλ. As in the M/M/1 queue, for all system states we have that customers will leave with exponential rate
µ. Summarizing our previous discussion, then {X(t) : t ≥ 0} is a birth and death process with

µ0 = 0,

µn = µ, n ≥ 1,

λn = αnλ, n ≥ 0.

2) Model and analysis of a barbershop. A small barbershop, operated by a single barber has room for at most
two customers. Potential customers arrive at a Poisson rate of three per hour, and the successive service times are
independent exponential random variables (RVs) with mean 1/4 per hour.

A) Letting {X(t) : t ≥ 0} be the number of customers in the barbershop at any given time instant t, we can model
the system as a birth and death process with finite state space S = {0, 1, 2} and transition rates

µ0 = 0,

µn = 4, n = 1 and 2,

λn = 3, n = 0 and 1,

λ2 = 0.

A state transition diagram for this simple CTMC model of the barbershop is shown in Fig. 1.
To compute the average number of customers in the barbershop, and we must first compute the limiting distribution

(notice that the CTMC is ergodic)
Pj = lim

t→∞
Pij(t), j = 0, 1, 2.

To that end, state the balance equations

State Rate out Rate in
0 3P0 4P1

1 7P1 3P0 + 4P2

2 4P2 3P1

which yield

P1 =
3

4
P0,

P2 =

(
3

4

)2

P0.

To solve for P0, recall that
∑2

j=0 Pj = 1 from where it follows that

P0 =
16

37
, P1 =

12

37
, P2 =

9

37
.



Fig. 1. State transition diagram for the CTMC model of the barbershop.

Given the previous stationary distribution, the long-run average number of customers in the shop is

lim
t→∞

E [X(t)] = 0× 16

37
+ 1× 12

37
+ 2× 9

37
=

30

37
.

B) Exactly as in the model in problem 1), here arrivals occur at an exponential rate λ = 3 but customers will not
be admitted to the system with probability P2 = 9/37 (when the barbershop is full). In other words, the proportion
of potential customers that enter the shop is

α = 1− 9

37
=

28

37
= 0.757.

C) The barber working twice as fast can be modeled as a new birth and death process with

µ0 = 0,

µn = 8, n = 1 and 2,

λn = 3, n = 0 and 1,

λ2 = 0.

Repeating all the calculations in A) and B) yields the new limiting distribution

P0 =
64

97
, P1 =

24

97
, P2 =

9

97

so that the proportion of admitted customers increases to

α∗ =
88

97
= 0.907.

Because the arrival rate remains invariant, the barbershop is admitting 0.907−0.757
0.757 × 100 = 19.8% more customers

than in the original setting.

3) Discrete-time and continuous-time queueing models. The interarrival and service time distributions in the
discrete-time queuing model described in problem 1 of homework 6 are geometric. The geometric distribution has
the memoryless property and can be viewed as a discrete analog of the exponential distribution. Accordingly, the
the queue described in problem 1 of homework 6 can be viewed as a discrete-time analog of the M/M/1 queue.

To obtain the stationary distribution π for the discrete-time queue, we need to solve

π = PTπ, 1Tπ = 1

where the matrix of transition probabilities obtained for that model was

P =


1− p p 0 0 . . .

(1− p)q 1 + 2pq − p− q p(1− q) 0 . . .

0 (1− p)q 1 + 2pq − p− q p(1− q)
. . .

...
. . . . . . . . . . . .

 .



These equations can be written as

π0 = (1− p)π0 + (1− p)qπ1, (1)
π1 = pπ0 + (1 + 2pq − p− q)π1 + (1− p)qπ2, (2)
π2 = p(1− q)π1 + (1 + 2pq − p− q)π2 + (1− p)qπ3,

...
πi = p(1− q)πi−1 + (1 + 2pq − p− q)πi + (1− p)qπi+1, i ≥ 2.

From (1) we find
π1 =

p

q(1− p)
π0

which can be used along (2) to obtain

π2 =
p2(1− q)

q2(1− p)2
π0.

Since the structure of the balance equations repeats from now onwards, proceeding sequentially yields

πi =
pi(1− q)i−1

qi(1− p)i
π0, i ≥ 1. (3)

To solve for π0, we resort as usual to
∑∞

i=0 πi = 1. Using (3) and summing the geometric series after some
manipulations yields

1 = π0 +

∞∑
i=1

pi(1− q)i−1

qi(1− p)i
π0

= π0 + π0
p

q(1− p)

∞∑
i=1

[
p(1− q)

q(1− p)

]i−1

= π0 + π0
p

q(1− p)

 1

1− p(1−q)
q(1−p)

 . (4)

The last equality uses the fact that p(1−q)
q(1−p) < 1, which is true since p < q. The condition that p < q ensures services

can “catch up” with arrivals, and is an analog to λ < µ in the M/M/1 queue. Absent the stability condition, the
queue will grow unbounded. Back to the pursuit of π0, solving (4) yields

π0 = 1− p

q

so that the stationary distribution is [cf. (3)]

πi =

(
1− p

q

)
pi(1− q)i−1

qi(1− p)i
, i ≥ 1.

To make a final connection with the M/M/1 queue, suppose that p and q are both very small (reasonable when
the duration of the discrete-time slots vanishes and we approach the continuous-time limit) and define the traffic
intensity ρ = p/q. This way, π1 ≈ (1− ρ)ρi as in the M/M/1 queue.

4) Comparing occupancies of two M/M/1 queues. Consider two separate M/M/1 queues. In the first (called
“system 1”) the arrival rate is λ1, and the mean service time is µ−1. In the second (called “system 2’) the arrival
rate is λ2, and the mean service time is µ−1. Suppose that λ1 < λ2 < µ. In order to argue formally, that on the
average, there will be less customers in system 1 than in system 2; we first note that given the assumptions both
queues will be stable and the limiting distributions are well defined.

Furthermore, it follows that for ρi := λi/µi, i = 1, 2, then ρ1 < ρ2. Finally we recall that for these M/M/1
queues, the average number of customers in the system is given by

E [Li] =
ρi

1− ρi
, i = 1, 2. (5)

Therefore, it immediately follows that E [L1] < E [L2], which is what we wanted to show.



Fig. 2. State transition diagram for the CTMC model of an M/M/1 queue with on/off server switching.

5) An M/M/1 queue with on/off server switching. Consider the following variation of an M/M/1 queue with
arrival rate λ, service rate µ, and traffic intensity ρ = λ/µ < 1. The server is turned off whenever the system
becomes empty, and the server remains off until there are k (k is a fixed number) customers in the system, at
which time the server is turned on. The server then remains on until the system empties, at which time the process
repeats. We can model the system as a CTMC with states 0 (system empty), (i, B) [system busy, i.e., i ∈ (0, k)
customers present and server on], (i, I) [system idle, i.e., i ∈ (0, k) customers present and server off], i (i ≥ k
customers present). From the given problem description, the state transition diagram describing the CTMC is given
in Fig. 2.

To determine the limiting distribution, write down the balance equations that readily follow from the previous
diagram, namely

State Rate out Rate in
0 λP0 µP1,B

1, I λP1,I λP0

...
...

...
i, I λPi,I λPi−1,I

...
...

...
k − 1, I λPk−1,I λPk−2,I

1, B (λ+ µ)P1,B µP2,B

...
...

...
i, B (λ+ µ)Pi,B λPi−1,B + µPi+1,B

...
...

...
k − 1, B (λ+ µ)Pk−1,B λPk−2,B + µPk

k (λ+ µ)Pk λ(Pk−1,I + Pk−1,B) + µPk+1

...
...

...
i (λ+ µ)Pi λPi−1 + µPi+1

...
...

...

From the balance equations involving the idle states, it follows that

Pi,I = P0, i ∈ (0, k)

From the balance equations involving the busy states, we obtain that the limiting probabilities satisfy the following
second-order recursion for i+ 1 ∈ (2, k)

Pi+1,B = (ρ+ 1)Pi,B − ρPi−1,B

with the specific initial conditions P1,B = ρP0 and P2,B = (1 + ρ)ρP0. Using standard techniques for solving
second-order difference equations with constant coefficients, we finally obtain that

Pi,B =
ρ

ρ− 1

[
ρi − 1

]
P0, i ∈ (0, k).



From the balance equation for state (k − 1, B), it follows from the above expression for Pi,B that

Pk = (1 + ρ)Pk−1,B − ρPk−2,B =
ρ

ρ− 1

[
ρk − 1

]
P0.

Likewise, from the balance equation for state k and using our previous results for Pk, Pk−1,I and Pk−1,B ; we find
that

Pk+1 = (ρ+ 1)Pk − ρ(Pk−1,I + Pk−1,B) =
ρ2

ρ− 1

[
ρk − 1

]
P0 = ρPk.

Finally, for i > k the limiting probabilities satisfy again the second-order recursion given by

Pi+1 = (ρ+ 1)Pi − ρPi−1

with initial conditions Pk = ρ
ρ−1

[
ρk − 1

]
P0 and Pk+1 = ρPk. Solving the difference equation (exactly as we did

before for the busy states) we find for i ≥ k that

Pi =
ρ

ρ− 1

[
ρk − 1

]
ρi−kP0.

At this point we have been able to express all limiting probabilities as a function of P0. Using all limiting
probabilities should sum up to one, we can solve for P0 after summing the corresponding geometric sums

1 =

1 + (k − 1) +
k∑

j=1

ρ

ρ− 1

[
ρj − 1

]
+

∞∑
j=k+1

ρ

ρ− 1

[
ρk − 1

]
ρj−k

P0

=

[
k +

ρ

(ρ− 1)

[
ρ− ρk+1

]
(1− ρ)

− ρ

ρ− 1
k +

ρ1−k

(ρ− 1)

ρk+1

(1− ρ)

[
ρk − 1

]]
P0

=

[
k − ρ

ρ− 1
k

]
P0 =

k

1− ρ
P0.

From the last equality, it follows that P0 = 1−ρ
k . Substituting this value of P0 in the previous expressions for the

limiting probabilities, we arrive at the desired result

P0 = (1− ρ)/k,

Pi,I = (1− ρ)/k, i ∈ (0,K),

Pi,B = ρ(1− ρi)/k, i ∈ (0,K),

Pi = ρi+1−k(1− ρk)/k, i ≥ k.

6) A hiring decision. The manager of a market can hire Mary or Alice. Mary, who gives service at an exponential
rate of 20 customers per hour, can be hired at a rate of $3 per hour. Alice, who gives service at an exponential
rate of 30 customers per hour, can be hired at a rate of $C per hour. The manager estimates that on average each
customer’s time is worth $1 per hour, and should be accounted for in the model. Assume customers arrive at a
Poisson rate of 10 per hour.

First we want to compute what is the average cost per hour if Mary is hired. Given the model description, the
system can be modeled as an M/M/1 system with traffic intensity of ρMary = 1/2. We also note that the average
number of customers in the system is given by

E [LMary] =
ρMary

1− ρMary
= 1

Therefore the expected cost is
E [CostMary] = $3 + $1× E [LMary] = $4

On the other hand, when Alice is the server then the traffic intensity is ρAlice = 1/3 and the resulting average
number of customers in the system is E [LAlice] = 1/2. So the expected cost is

E [CostAlice] = $C + $1× E [LAlice] = $C +
1

2

From the previous calculations, it follows that for E [CostMary] = E [CostAlice] to hold true, we need C = $7/2.



7) Insurance cash flow.

A) CTMC states. Since we assume that c, d and Xmax are integers, while the premiums that the customers pay
are worth 1, every integer between 0 and Xmax is achievable. Accordingly, given our assumptions every cash
flow consists of an integer value of money. Thus, the CTMC cannot reach any non-integer state. We are obviously
assuming that the initial amount of cash X(0) is also an integer. Consequently, the state space of the CTMC consists
of every nonnegative integer number between 0 and Xmax.

B) Transition times out of given state. We now compute the probability distribution of the transition times out of
an arbitrary state x ∈ {0, 1, . . . , Xmax}. It is immediate that this probability depends on the range to which the
current state x belongs; see the range reference table in the problem statement. For example, if x = 0, i.e. x is in
range (A), the only possible event triggering a transition out of this state is the payment of a premium. Recall that
the time between premiums Tp is exponentially distributed with parameter λ = N . Thus, the time until a transition
out of x = 0 is given by Tx = Tp.

When X(t) = x and x is in range (B), the transition time out of state x is also exponential because it is the
minimum among the times for the next claim (Tc) or premium (Tp) being paid, and both Tc and Tp are exponentially
distributed. Therefore

Tx = min(Tp, Tc)

meaning that we transition out of x whenever the first of the two events occurs. To obtain the distribution of Tx,
notice that for a transition not to occur by time t, i.e. Tx > t, none of the two possible events must have occurred.
Since both events are independent, it follows that

P [TX > t] = P [Tp > t]P [Tc > t] = e−λte−αt = e−(λ+α)t.

We conclude that the cumulative distribution function of Tx is e−(λ+α)t, therefore it is exponentially distributed
with rate νx = (λ+ α). Following the same reasoning, we may derive the probability distribution of the transition
times out of any state by carefully identifying those events that can occur in each state range. All of them are
exponentially distributed with different parameters νx. The results are summarized in the following table:

Range Possible events Rate νx of exponential time Tx

A premium λ
B premium, claim paid at X(t) λ+ α
C premium, claim λ+ α
D premium, claim, dividend λ+ α+ β
E claim, dividend α+ β

C) Possible states going out of X(t) = x. Given that X(t) = x, where x is in range (D), the possible states after
a transition out of x occurs are

x → x+ 1 (a premium is paid),
x → x− c (a claim is paid),
x → x− d (a dividend is paid).

The possible states going out of X(t) = x for each other range are summarized in the following table:

Range Possible events Possible states out of X(t) = x
A premium 1
B premium, claim paid at X(t) x+ 1, 0
C premium, claim x+ 1, x− c
D premium, claim, dividend x+ 1, x− c, x− d
E claim, dividend x− c, x− d

D) Transition probabilities When x is in range (D), the transition probabilities from state x to y, Pxy , for each



possible state y out of x as determined in part C are

Px,x+1 = P [Tp = min(Tp, Tc, Td)] =
λ

λ+ α+ β
,

Px,x−c = P [Tc = min(Tp, Tc, Td)] =
α

λ+ α+ β
,

Px,x−d = P [Td = min(Tp, Tc, Td)] =
β

λ+ α+ β
.

In calculating the above transition probabilities, we have used that Tp, Tc and Td are independent, exponentially-
distributed RVs. The transition probabilities out of state X(t) = x for each other range are summarized in the
following table:

Range Event State y out of x Transition probabilities, Pxy

A premium 1 λ
λ = 1

B premium x+ 1 λ
λ+α

B claim 0 α
λ+α

C premium x+ 1 λ
λ+α

C claim x− c α
λ+α

D premium x+ 1 λ
λ+α+β

D claim x− c α
λ+α+β

D dividend x− d β
λ+α+β

E claim x− c α
α+β

E dividend x− d β
α+β

E) System simulation. Two different Matlab functions that simulate the stochastic system are provided next. Please
notice the nuances, as each of them offers a different interpretation of the CTMC.

% Method 1: Following the suggested procedure in Homework 8, Problem 7-E
function [X,T]=cashflow1(X_0,lambda,alpha,beta,c,d,X_r,X_max,T_max)
index=1;
X(index)=X_0;
T(index)=0;
while T(index)<T_max

x=X(index);
if x==0 %only premium is possible

tau=exprnd(1/lambda);
T(index+1)=T(index)+tau;
X(index+1)=x+1;

elseif 0<x && x<c %premium, claim payed at X(t) not c
tau=exprnd(1/(lambda+alpha));
T(index+1)=T(index)+tau;
u=rand;
if u<(lambda/(lambda+alpha)) % premium

X(index+1)=x+1;
else % claim

X(index+1)=0;
end

elseif c<=x && x<X_r %premium, claim
tau=exprnd(1/(lambda+alpha));
T(index+1)=T(index)+tau;
u=rand;
if u<(lambda/(lambda+alpha)) %

X(index+1)=x+1;
else



X(index+1)=x-c;
end

elseif X_r<=x && x<X_max %premium, claim, dividend
tau=exprnd(1/(lambda+alpha+beta));
T(index+1)=T(index)+tau;
u=rand;
if u<(lambda/(lambda+alpha+beta)) % premium

X(index+1)=X(index)+1;
elseif u<((lambda+alpha)/(lambda+alpha+beta)) % claim

X(index+1)=X(index)-c;
else % dividend

X(index+1)=X(index)-d;
end

elseif x==X_max % claim, dividend
tau=exprnd(1/(alpha+beta));
T(index+1)=T(index)+tau;
u=rand;
if u<(alpha/(lambda+alpha)) % claim

X(index+1)=x-c;
else % dividend

X(index+1)=x-d;
end

else
disp(’Out Of Range’)
break

end
index=index+1;

end

end

An alternative second approach is also provided for completeness.

% Method 2: Based on the "alarm clock" interpretation
function [X,T]=cashflow2(X_0,lambda,alpha,beta,c,d,X_r,X_max,T_max)
index=1;
X(index)=X_0;
T(index)=0;
while T(index)<T_max

x=X(index);
if x==0 %only premium is possible

t_premium=exprnd(1/lambda);
T(index+1)=T(index)+t_premium;
X(index+1)=x+1;

elseif 0<x && x<c %premium, claim payed at X(t) not c
t_premium=exprnd(1/lambda);
t_claim=exprnd(1/alpha);
T(index+1)=T(index)+min(t_premium,t_claim);
X(index+1)=x+1*(t_premium<t_claim)-x*(t_premium>t_claim);

elseif c<=x && x<X_r %premium, claim
t_premium=exprnd(1/lambda);
t_claim=exprnd(1/alpha);
T(index+1)=T(index)+min(t_premium,t_claim);
X(index+1)=x+1*(t_premium<t_claim)-c*(t_premium>t_claim);



elseif X_r<=x && x<X_max %premium, claim, dividend
t_premium=exprnd(1/lambda);
t_claim=exprnd(1/alpha);
t_dividend=exprnd(1/beta);
[t_min,I]=min([t_premium,t_claim,t_dividend]);
T(index+1)=T(index)+t_min;
X(index+1)=x+(1:3==I)*[1;-c;-d];

elseif x==X_max % claim, dividend
t_claim=exprnd(1/alpha);
t_dividend=exprnd(1/beta);
[t_min,I]=min([t_claim,t_dividend]);
T(index+1)=T(index)+t_min;
X(index+1)=x+(1:2==I)*[-c;-d];

else
disp(’Out Of Range’)
break

end
index=index+1;

end

end

See below a Matlab script that calls one of the functions and plots the results. The code is run for an initial
capital of X0 = 200, number of clients N = 200, risk r = 4%, dividends payed quarterly; claim and dividend costs
c = 20 and d = 30; capital thresholds, Xr = 200, and Xmax = 300; and maximum amount of time Tmax = 5 years.

clc; clear all; close all;
X_0=200;
N=200;
r=0.04;

lambda=N;
alpha=r*N;
beta=4;

X_r=200;
X_max=300;

T_max=5;
d=30;
c=20;

[X,t]=cashflow2(X_0,lambda,alpha,beta,c,d,X_r,X_max,T_max);

% Plotting the results
hold on
grid on
xlabel(’time’,’Fontsize’,14)
ylabel(’Cash Level’,’Fontsize’,14)
title(’(a sample) Evolution of Cash Level over 5 Years’,’Fontsize’,14)
axis([0 5 0 310])
stairs(t,X,’Linewidth’,2,’Color’,’r’);

Fig. 3 depicts a sample realization of the described CTMC. For the simulated 5 years, the company did not go
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Fig. 3. A sample evolution of the cash flow of the insurance company for 5 years (left) and zoomed representation of the first year (right).
(Part E)

bankrupt or reach the maximum cash threshold. The small increases in cash are due to premiums received while
the drops in cash are given either by claims or dividends paid. For instance, the drop of 30 units of cash just before
0.4 years occurred due to the payment of dividends whereas the next decrease of 20 units is attributable to the
payment of a claim.

F) Kolmogorov’s forward equation. We are now interested in finding Pxy(t), i..e, the probability of transitioning
from state x to state y between times s and s+ t for every starting time s. To do so, we must solve Kolmogorov’s
equations. The transition rates qxy from state x into state y are parameters of these equations and and are given
by qxy = νx Pxy , where νx is the rate of transition out of state x, and Pxy is the probability of transitioning from
state x into state y. For example, when the current state x is in the capital range (B) and we want to compute the
transition rate to y = x+ 1 (premium payment), we have that

qx x+1 = νxPx x+1 = (λ+ α)
λ

λ+ α
= λ

where νx was obtained from the table of transition rates in part B, and the transition probability Px x+1 is tabulated
in part D. If we repeat the above computation for all combinations of origin and destination states, we obtain the
transition rates summarized in the following table:

Range Event State y out of x Transition rates qxy
A premium 1 λ
B premium x+ 1 λ
B claim 0 α
C premium x+ 1 λ
C claim x− c α
D premium x+ 1 λ
D claim x− c α
D dividend x− d β
E claim x− c α
E dividend x− d β

Using the aforementioned transition rates, we can write Kolmogorov’s forward equations

∂Pxy(t)

∂t
= P ′

xy(t) =

∞∑
k=0,k 6=y

qkyPxk(t)− νyPxy(t)

for each range. Henceforth, we will drop the time dependency in the transition probability functions for notational



simplicity. For transitioning into range (A), i.e., y = 0:

P ′
xy = α

c∑
k=1

Pxk − λPxy.

For transitioning into range (B), i.e., 0 < y < c:

P ′
xy = λPx,y−1 + αPx,y+c − (λ+ α)Pxy.

For transitioning into range (C), i.e., c ≤ y < Xr:
• When y < Xr−d, the transition into y cannot be the result of dividend payment since, after paying dividends,

the smallest possible amount of cash if Xr − d:

P ′
xy = λPx,y−1 + αPx,y+c − (λ+ α)Pxy.

• When y ≥ Xr − d, transition into y could have occurred due to a dividend payment:

P ′
xy = λPx,y−1 + αPx,y+c + βPx,y+d − (λ+ α)Pxy.

For transitioning into range (D), i.e., Xr ≤ y ≤ Xmax:
• When y ≤ min(Xmax − c,Xmax − d), the transition could have been a result of a claim payment, premium

payment, or dividend payment:

P ′
xy = λPx,y−1 + αPx,y+c + βPx,y+d − (λ+ α+ β)Pxy.

• When y > max(Xmax − c,Xmax − d), the transition could only have been a result of a premium payment:

P ′
xy = λPx,y−1 − (λ+ α+ β)Pxy.

• When c < d and Xmax − d < y ≤ Xmax − c, the transition could have been a result of a claim payment or a
premium payment, but not a dividend payment:

P ′
xy = λPx,y−1 + αPx,y+c − (λ+ α+ β)Pxy.

• When d < c and Xmax − c < y ≤ Xmax − d, the transition could have been a result of a dividend payment
or a premium payment, but not a claim payment:

P ′
xy = λPx,y−1 + βPx,y+d − (λ+ α+ β)Pxy.

For transitioning into range (E), i.e., y = Xmax:

P ′
xy = λPx,y−1 − (α+ β)Pxy.

G) Kolmogorov’s backward equation. Similarly, we may state the Kolmogorov’s backward equations

∂Pxy(t)

∂t
= P ′

xy(t) =

∞∑
k=0,k 6=x

qxkPky(t)− νxPxy(t).

This is an alternative set of coupled linear differential equations whose solutions is also the transition probability
function Pxy(t). For transitioning out of range (A), i.e., x = 0, the only possible state y is y = 1:

P ′
xy = λPx+1,y − Px,y.

For transitioning out of range (B), i.e., 0 < x < c:

P ′
xy = λPx+1,y + αP0,y − (λ+ α)Px,y.

For transitioning out of range (C), i.e., c ≤ x < Xr:

P ′
xy = λPx+1,y + αPx−c,y − (λ+ α)Px,y.

For transitioning out of range (D), i.e., Xr ≤ x < Xmax:

P ′
xy = λPx+1,y + αPx−c,y + βPx−d,y − (λ+ α+ β)Px,y.



For transitioning out of range (E), i.e., x = Xmax:

P ′
xy = αPx−c,y + βPx−d,y − (α+ β)Px,y.

H) Solution of Kolmogorov’s equations A Matlab function is provided to construct the matrix R such that
Kolmogorov’s forward equations are represented by Ṗ = RP.

function [R]=Kolmogrov_F(lambda,alpha,beta,c,d,X_r,X_max)

R=zeros(X_max+1); % initialization

% Range A:
R(1,1)=-lambda;
R(1,2:c+1)=alpha;

% Range B:
for i=2:c

R(i,i-1)=lambda;
R(i,i+c)=alpha;
R(i,i)=-(lambda+alpha);

end

% Range C-1:
for i=c+1:X_r-d

R(i,i-1)=lambda;
R(i,i+c)=alpha;
R(i,i)=-(lambda+alpha);

end

% Range C_2:
for i=X_r-d+1:X_r

R(i,i-1)=lambda;
R(i,i+c)=alpha;
R(i,i+d)=beta;
R(i,i)=-(lambda+alpha);

end

% Range D_1:
for i=X_r+1:X_max-d+1

R(i,i-1)=lambda;
R(i,i+c)=alpha;
R(i,i+d)=beta;
R(i,i)=-(lambda+alpha+beta);

end

% Range D_2:
for i=X_max-d+2:X_max-c+1

R(i,i-1)=lambda;
R(i,i+c)=alpha;
R(i,i)=-(lambda+alpha+beta);

end

% Range D_3:
for i=X_max-c+2:X_max
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Fig. 4. The probability distribution p(t) for the times corresponding to the end of each quarter for the 5 years analyzed.

R(i,i-1)=lambda;
R(i,i)=-(lambda+alpha+beta);

end

% Range E:
R(X_max+1, X_max)=lambda;
R(X_max+1, X_max+1)=-(alpha+beta);

For the same parameters used in part E, we use the matrix exponential to find the probability distribution p(t)
between years 0 and 5 in quarterly increments; see Fig. 4. The Matlab script that calls the function to construct R,
calculates P(t) = eR(t) and plots the obtained probability distribution p(t) is given next. In the figure we present
a number of pmfs for the states in the CTMC. Each of these pmfs correspond to different quarters of the period
studied. The mass function corresponding to the end of the first quarter, has its peak at the state 200 since this is
the initial amount of capital. As time goes by, the initial information is lost and the pmf smooths out.

R=Kolmogrov_F(lambda,alpha,beta,c,d,X_r,X_max);
p0=zeros(X_max+1,1);
p0(X_0+1,1)=1;
T=0:0.25:5;

figure
hold on
xlabel(’X’,’Fontsize’,14)
ylabel(’pmf’,’Fontsize’,14)



title(’pmf of the states between 0 and 5 over quarterly intervals’,...
...’Fontsize’,14)
axis([0 300 0 0.016])
for t=T

pmf=expm(R.*t)*p0;
plot(0:X_max,pmf,’r’)

end

I) Probability of paying dividends. Finally, we use the solution of Kolmogorov’s equation to estimate the probability
that the insurance company pays dividends in any given quarter. As previously discussed, dividends can only be
paid when the current state x is such that Xr ≤ x ≤ Xmax, i.e. when x is in range (D) or (E). When x is in this
range, the expected number of events – either premiums, claims or dividends – is approximately λ+α+ β = 212.
Notice that this is an approximation since we ignore that when x is exactly Xmax it is impossible to receive payment
for a premium. We may divide this number by four to find the expected number of events for each quarter, which
is 53. For a given quarter spent entirely in Xr ≤ x ≤ Xmax, the probability that at least one dividend is paid can
be computed as

P [at least one dividend paid] = 1− P [no dividends paid]
= 1− P [all events are premium or claim payments]

= 1− P [single event is premium or claim payment]53

= 1−
(

λ+ α

λ+ α+ β

)53

= 1−
(
208

212

)53

≈ 0.64.

The probability that the company pays dividends at least once is approximately 0.64 for a quarter spent in the
interval Xr ≤ x ≤ Xmax. Thus, we may estimate the probability of paying dividends in a given quarter as 0.64
times the probability that X(t) ≥ Xr for that quarter, which is achieved by summing up the pmf values from Xr

to Xmax output by the Kolmogorov’s equation. For example, for the first quarter of the second year, i.e. quarter
number 5, the probability of X(t) ≥ Xr is 0.372, thus the probability of paying dividends is 0.372 times 0.64 =
0.238. We repeat this procedure for every quarter and plot the result in Fig. 5. The corresponding Matlab script
follows.

R=Kolmogrov_F(lambda,alpha,beta,c,d,X_r,X_max);
p0=zeros(X_max+1,1);
p0(X_0+1,1)=1;
T=0.25:0.25:5;
prob=zeros(20,1);

figure
hold on
xlabel(’time (years)’,’Fontsize’,18)
ylabel(’Prob. of dividend’,’Fontsize’,18)
axis([0 5 0.2 0.30])
for t=T

pmf=expm(R.*t)*p0;
prob(t/0.25) = sum(pmf(201:end))*0.64;

end
set(gca, ’fontsize’, 16)
stairs(T,prob,’Linewidth’,2,’Color’,’r’);
grid on

It is evident that the probability of paying dividends decreases with time since it is harder for the company to
maintain the cash level over Xr = 200. In the long run, the probability of paying dividends in a given quarter tends
to around 0.21.
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Fig. 5. Approximate probability of paying dividends over quarterly intervals. The probability decreases with time since it is less likely for the
company to be over the Xr cash threshold.


