
Homework 9 - Gaussian processes

1) Conditional Gaussian density. Consider a two-dimensional standard Gaussian random vector X =
[U, V ]T , i.e., the joint pdf of X is given by
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)
where the mean vector µ and covariance matrix C are
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The off-diagonal entry of C is known as the correlation coefficient ρ, which satisfies −1 < ρ < 1.

A) Show that the joint pdf fX(x) of X = [U, V ]T can be written as
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Under what condition are U and V uncorrelated? Under what condition are U and V independent?

B) Determine the conditional pdf f
U
∣∣V (u ∣∣ v). Calculate E

[
U
∣∣V = v

]
and var

[
U
∣∣V = v

]
.

2) Jointly Gaussian random variables. A random vector X = [X1, . . . , Xn]
T is said to be Gaussian if

every linear combination of the entries of X, i.e.,
∑n

i=1 aiXi is a scalar Gaussian random variable (RV).
Equivalent terminology is that X1, . . . , Xn are jointly Gaussian RVs.

A) Show that if X is a Gaussian random vector, then every subvector of X (containing a subset of its
entries) is also a Gaussian random vector. In particular, show that each X1, . . . , Xn is a Gaussian RV.

B) Show that an affine transformation of a Gaussian random vector is Gaussian, i.e., for arbitrary
(deterministic) matrix A ∈ Rm×n and column vector b ∈ Rm, show that Y = AX + b is a Gaussian
random vector. Suppose that X has mean vector µX and covariance matrix CX . Determine the mean
vector µY and covariance matrix CY of Y, and write down the pdf fY(y).

C) Show that if Z1, . . . , Zn are mutually independent Gaussian RVs, then they are also jointly Gaussian.
[Hint: You may want to follow an inductive argument as in problem 4 of homework 7, and use (without
need of a proof) that the convolution of two Gaussian pdfs is also a Gaussian pdf.]

3) Decorrelation of a Gaussian random vector. A random vector X = [X1, . . . , Xn]
T has zero mean and

covariance matrix CX . Show that there exists a unitary matrix U ∈ Rn×n (meaning UTU = UUT = I)
such that the random vector Y := UX has uncorrelated entries Y1, . . . , Yn, i.e., the covariance matrix
CY of Y is diagonal. For the chosen U, argue that if X is a Gaussian random vector then Y1, . . . , Yn
are mutually independent and jointly Gaussian.

4) Difference of two independent Brownian motion processes. Let X1(t) and X2(t) be two Brownian
motion processes defined for t ≥ 0, with respective variance parameters σ21 and σ22 . Suppose that X1(t)
and X2(t) are independent. Let the random process D(t) be defined as D(t) = X1(t)−X2(t), t ≥ 0.

A) What is D(t)’s autocorrelation function RD(t1, t2) for t1, t2 ≥ 0?

B) What is the pdf of D(t) for t ≥ 0?



5) A Brownian motion processes is a Martingale. A random process X(t) defined for t ≥ 0 is said
to be a Martingale process if

E
[
X(t)

∣∣X(u), 0 ≤ u ≤ s
]
= X(s), s < t.

Show that a Brownian motion process X(t) is a Martingale. (Hint: For s < t write X(t) = X(s) +
[X(t)−X(s)], use linearity of expectation and the independent increments property of X(t).)

6) Conditional density of a Brownian motion process with drift. Let X(t) for t ≥ 0 be a Brownian
motion process with drift parameter µ and variance parameter σ2, i.e., X(t) is Gaussian distributed with
mean µt and variance σ2t. Specify the conditional distribution of X(t) given that X(s) = c, for s < t.

7) White Gaussian noise. White Gaussian noise (WGN) is probably the most common stochastic model
used in engineering applications. The idea is to model a random process X(t) for which individual values
are normally distributed and values X(t1) and X(t2) for different times t1, t2 are independent. It is not
difficult to believe that this is a very simple model. It simply represents the drawing of independent
normal RVs at different times. In the first part of this problem you will develop a model of WGN. In
the second part you will use WGN to model somewhat more complex systems. The goal is to observe
that while WGN is very simple, it can be used to model complex stochastic systems.

For this problem we need a few preliminary definitions. Start by defining a Gaussian process as one for
which the probability distribution of the linear combination of values a1X(t1)+a2X(t2)+ . . . , anX(tn)
is normally distributed for arbitrary times ti, coefficients ai and number of terms n. Further define the
mean value function as

µ(t) = E [X(t)]

the power of the process as
P (t) = E

[
X2(t)

]
and the autocorrelation function as

RX(t1, t2) = E [X(t1)X(t2)] .

Gaussian processes have the appealing property that they are completely determined by specifying their
mean value and autocorrelation functions. All definitions here apply to continuous-time and discrete-time
processes.

For this problem we also need to define the delta function δ(t). Intuitively, δ(t) represents a “function”
that is 0 everywhere but infinite at 0, i.e., δ(0) = ∞ and δ(t) = 0 for t 6= 0. Of course, this is not a
valid definition of a function, but a formalization of the idea can be considered as the definition of the
generalized function δ(t). The definition that we adopt for the δ(t) is through the integral of the product
f(t)δ(t). Such integral satisfies∫ b

a
f(t)δ(t)dt =

{
f(0) if a < 0 < b,
0 otherwise

.

With this preliminary definitions we can define WGN as a Gaussian process W (t) with zero mean and
delta autocorrelation, i.e.,

µW (t) = 0, RW (t1, t2) = σ2δ(t1 − t2).

Notice that since the autocorrelation function of W (t) is not really a function, WGN cannot model any
real physical phenomena. Nonetheless it is a convenient abstraction to generate processes that can model
real physical phenomena.

A) Independent values. Show that values W (t1) and W (t2) at different times t1 6= t2 are independent.



B) Integral of WGN. Define the process X(t) as the integral of W (t) between 0 and t, i.e.,

X(t) =

∫ t

0
W (u) du.

For historical reasons the random process X(t) is known as Brownian motion or Wiener process. Show
that the process X(t) is Gaussian and compute the mean and autocorrelation functions of X(t). What is
the probability of X(t) > a for arbitrary a and t > 0?

C) Discrete-time representation of WGN. Define the discrete-time process Wh(n) as the integral of W (t)
between times nh and (n+ 1)h, i.e.,

Wh(n) =

∫ (n+1)h

nh
W (u) du

Compute the mean value function µWh
(n) and the autocorrelation function RWh

(n1, n2) for the discrete-
time process Wh(n).

D) Simulation of a Brownian motion process. Use the result of part C to perform a discrete-time simulation
Xh(n) =

∑n
i=0Wh(i) of the Brownian motion process X(t) of part B. In this simulation you must have

the probability distribution of the discrete-time process Xh(n) to be the same as the probability distribution
of the continuous-time process X(t). Run your simulation for h = 0.01, σ2 = 1, and maximum amount
of time tmax = 10. Plot the resulting sample path of X(t) for 0 ≤ t ≤ tmax.


