
Solutions to Homework 9 - Gaussian processes

1) Conditional Gaussian density. Consider a two-dimensional standard Gaussian random vector X = [U, V ]T ,
with mean µ and covariance matrix C given by

µ =

[
0
0

]
, C =

(
1 ρ
ρ 1

)
.

A) Notice that det(C) = 1− ρ2 and

C−1 =
1

det(C)

(
1 −ρ
−ρ 1

)
=

1

1− ρ2

(
1 −ρ
−ρ 1

)
.

Substituting these expressions in the pdf

fUV (u, v) =
1

2π
√
det(C)

exp

(
−1

2
xTC−1x

)
where x = [u, v]T , readily yields the desired result

fUV (u, v) =
1

2π
√
1− ρ2

exp

(
−u

2 − 2ρuv + v2

2(1− ρ2)

)
.

The Gaussian random variables (RVs) U and V are uncorrelated if cov(U, V ) = 0. From the structure of C,
it follows that cov(U, V ) = ρ. The conclusion is that U and V are uncorrelated if and only if ρ = 0. Since for
Gaussian RVs uncorrelatedness implies independence, U and V are independent if and only if ρ = 0.

B) The conditional pdf fU |V (u
∣∣ v) is defined as

fU |V (u
∣∣ v) = fUV (u, v)

fV (v)
.

Since we obtained fUV (u, v) in part A, what is left to determine is the marginal pdf of V , i.e.,

fV (v) =

∫ ∞
−∞

fUV (u, v)du.

Since it holds that u2 − 2ρuv + v2 = v2(1− ρ2) + (u− ρv)2, one can rewrite the joint pdf as

fUV (u, v) =
1

2π
√
1− ρ2

exp

(
−v

2(1− ρ2) + (u− ρv)2

2(1− ρ2)

)
=

1

2π
√
1− ρ2

exp

(
−v

2

2

)
exp

(
− (u− ρv)2

2(1− ρ2)

)
=

1√
2π

exp

(
−v

2

2

)
× 1√

2π(1− ρ2)
exp

(
− (u− ρv)2

2(1− ρ2)

)
where the first factor in the last line corresponds to the pdf of a one-dimensional standard Gaussian RV, and the
second factor is the pdf of a Gaussian RV with mean ρv and variance 1 − ρ2. Carrying out the integration of
fUV (u, v) to obtain the marginal pdf yields

fV (v) =

∫ ∞
−∞

fUV (u, v)du

=
1√
2π

exp

(
−v

2

2

)
×
∫ ∞
−∞

1√
2π(1− ρ2)

exp

(
− (u− ρv)2

2(1− ρ2)

)
du

=
1√
2π

exp

(
−v

2

2

)



where the last equality follows because every Gaussian pdf integrates to one over the whole real line. The
factorization of the joint pdf derived earlier becomes quite handy towards obtaining the desired conditional pdf,
since canceling out the factor fV (v) yields

fU |V (u
∣∣ v) = fUV (u, v)

fV (v)
=

1√
2π(1− ρ2)

exp

(
− (u− ρv)2

2(1− ρ2)

)
.

It is thus apparent that given V = v, the RV U is conditionally Gaussian with mean E
[
U
∣∣V = v

]
= ρv and

variance var
[
U
∣∣V = v

]
= 1− ρ2.

2) Jointly Gaussian random variables. A random vector X = [X1, . . . , Xn]
T is said to be Gaussian if every

linear combination of the entries of X, i.e.,
∑n

i=1 aiXi is a scalar Gaussian RV. Equivalent terminology is that
X1, . . . , Xn are jointly Gaussian RVs.

A) To show that every subvector of a Gaussian vector X is also Gaussian, it suffices to set ai = 0 for those entries
i we want to leave out of the original random vector X. Since by assumption all linear combinations yield a scalar
RV, so will those particular cases where some of the coefficients are equal to zero. In particular, if all but the i−th
entry of a := [a1, . . . , an]

T are equal to zero, then it follows that Xi is a Gaussian RV.

B) Next we show that an affine transformation of a Gaussian random vector X is Gaussian, i.e., for arbitrary
(deterministic) matrix A ∈ Rm×n and column vector b ∈ Rm, then Y = AX + b is a Gaussian random vector.
Notice that it suffices to show that AX is Gaussian, because the addition of b only affects the centering (mean) of
Y, but not the type of distribution. For an arbitrary vector of coefficients a := [a1, . . . , an]

T the linear combination

Y = aTAX = (aTA)X = cTX

is a Gaussian RV because c := ATa is just another vector of coefficients, and by assumption X is a Gaussian
vector completing the proof.

Suppose that X has mean vector µX and covariance matrix CX . Then the mean vector µY of Y is given by

µY = E [Y] = E [AX + b] = AµX + b

while the covariance matrix CY is

CY = E
[
(Y − µY )(Y − µY )

T
]
= E

[
A(X− µX)(X− µX)TAT

]
= ACXAT .

Given µY and CY , the joint pdf of Y is

fY(y) =
1

(2π)n/2
√
det(ACXAT )

exp

(
−1

2
(y −AµX − b)T

(
ACXAT

)−1
(y −AµX − b)

)
.

C) Finally we show that if Z1, . . . , Zn are mutually independent Gaussian RVs, then they are also jointly Gaussian.
To that end, we will argue by induction on n. Clearly, the claim is true for n = 1 since aZi is a Gaussian RV for
each a and all i = 1, . . . , n. Next we suppose the claim holds true for n − 1 (meaning that if Z1, . . . , Zn−1 are
mutually independent Gaussian RVs, then they are also jointly Gaussian), and need to show it also holds for n. To
that end, we have to show that for arbitrary a1, . . . , an then

Y (n) =

n∑
i=1

aiZi = Y (n−1) + anZn

is a Gaussian RV. But by assumption Y (n−1) is Gaussian and independent of the Gaussian RV anZn. So the pdf
of Y (n) is given by the convolution of the pdfs of each of the Gaussian summands. We will not prove it here, but
either a direct calculation of the convolution integral or a Fourier transform argument can be used to establish that
the convolution of two Gaussian pdfs is itself a Gaussian pdf. This shows that Y (n) is a Gaussian RV, completing
the proof.

3) Decorrelation of a Gaussian random vector. Suppose the random vector X = [X1, . . . , Xn]
T has zero mean

and covariance matrix CX . Notice that since covariance matrices are symmetric, by the spectral theorem they are
diagonalizable and there exists an orthonormal basis of eigenvectors. Specifically, there exists a diagonal matrix



Λ ∈ Rn×n and a unitary matrix U ∈ Rn×n (meaning UTU = UUT = I) containing the eigenvectors of CX as
its rows, such that

UCXUT = Λ = diag(λ1, . . . , λn)

where λ1, . . . , λn are the eigenvalues of CX .
Given the aforementioned matrix of eigenvectors U, define the random vector Y := UX. Clearly,

E [Y] = E [UX] = UE [X] = 0

and the covariance matrix of Y is

CY = E
[
YYT

]
= E

[
UXXTUT

]
= UE

[
XXT

]
UT = UCXUT = Λ.

The conclusion is that Y has uncorrelated entries Y1, . . . , Yn, since its covariance matrix CY = Λ is diagonal. In
this context, the linear transformation effected by U is known as decorrelating transformation.

If we also assume that X is a Gaussian random vector, then because a linear transformation of a Gaussian vector
is Gaussian it follows that Y1, . . . , Yn are jointly Gaussian. Moreover, since uncorrelatedness implies independence
for Gaussian RVs, then Y1, . . . , Yn are also mutually independent.

4) Difference of two independent Brownian motion processes. Let X1(t) and X2(t) be two Brownian motion
processes defined for t ≥ 0, with respective variance parameters σ2

1 and σ2
2 . Suppose that X1(t) and X2(t) are

independent. Let the random process D(t) be defined as D(t) = X1(t)−X2(t), t ≥ 0.

A) From the definition of autocorrelation function RD(t1, t2) = E [D(t1)D(t2)], and because X1(t) and X2(t)
are zero-mean and independent Brownian motion processes it follows that

RD(t1, t2) = E [(X1(t1)−X2(t1))(X1(t2)−X2(t2))]

= RX1
(t1, t2) +RX2

(t1, t2)− E [X1(t1)X2(t2)]− E [X2(t1)X1(t2)]

= σ2
1 min(t1, t2) + σ2

2 min(t1, t2)− E [X1(t1)]E [X2(t2)]− E [X2(t1)]E [X1(t2)]

= (σ2
1 + σ2

2)min(t1, t2).

B) Since a linear transformation of GPs is a GP, then D(t), t ≥ 0, is a Gaussian RV with mean

E [D(t)] = E [X1(t)]− E [X2(t)] = 0

and variance
var [D(t)] = E

[
D2(t)

]
− E [D(t)]

2
= RD(t, t) = (σ2

1 + σ2
2)t.

Thus the desired pdf is given by

fD(t)(x) =
1√

2π(σ2
1 + σ2

2)t
exp

(
− x2

2(σ2
1 + σ2

2)t

)
.

5) A Brownian motion processes is a Martingale. Consider a Brownian motion process X(t) defined for t ≥ 0.
Then for 0 ≤ s < t, one has

E
[
X(t)

∣∣X(u), 0 ≤ u ≤ s
]
= E

[
X(s) +X(t)−X(s)

∣∣X(u), 0 ≤ u ≤ s
]

= E
[
X(s)

∣∣X(u), 0 ≤ u ≤ s
]
+ E

[
X(t)−X(s)

∣∣X(u), 0 ≤ u ≤ s
]

= X(s) + E [X(t)−X(s)] = X(s)

which establishes that X(t) is a Martingale. Notice that the last equality follows because X(t) has zero mean,
while the third equality follows since E

[
X(t)−X(s)

∣∣X(u), 0 ≤ u ≤ s
]
= E [X(t)−X(s)] by the independent

increments property of X(t).

6) Conditional density of a Brownian motion process with drift. Let X(t) for t ≥ 0 be a Brownian motion
process with drift parameter µ and variance parameter σ2, i.e., X(t) is Gaussian distributed with mean µt and
variance σ2t. The goal is to specify the conditional distribution of X(t) given that X(s) = c, for s < t. Writing
X(t) = X(s) +X(t)−X(s) and using the independent increments property of the Brownian motion process with
drift, we obtain that given X(s) = c, X(t) has the same distribution as c+X(t)−X(s). By the stationary increments



property of the Brownian motion process with drift, X(t) given X(s) = c is thus distributed as c+X(t− s) which
is Gaussian with mean E

[
X(t)

∣∣X(s) = c
]
= c+ µ(t− s), and variance var

[
X(t)

∣∣X(s) = c
]
= σ2(t− s).

7) White Gaussian noise.

A) Independent values. The autocorrelation function of the white Gaussian noise (WGN) process is

RW (t1, t2) = σ2δ(t1 − t2)

where δ(t) is the Dirac delta (generalized) function that is infinite at t = 0, and zero everywhere else. This means that
for different times t1 and t2, RW (t1, t2) = 0. Therefore, the random variables W (t1) and W (t2) are uncorrelated.
But since W (t) is a Gaussian process (GP) then uncorrelatedness implies independence, so that W (t1) and W (t2)
are also independent.

B) Integral of WGN. The Brownian motion process

X(t) =

∫ t

0

W (u)du

is a GP, because it is a linear functional of a GP (WGN specifically). Using the linearity of the expectation operator
and that µW (t) = 0, the mean function µX(t) of X(t) is

µX(t) = E
[∫ t

0

W (u)du

]
=

∫ t

0

E [W (u)] du =

∫ t

0

µW (u)du = 0.

Likewise, since RW (t1, t2) = σ2δ(t1 − t2) the autocorrelation function RX(t1, t2) of X(t) is for t1 < t2

RX(t1, t2) = E
[(∫ t1

0

W (u)du

)(∫ t2

0

W (v)dv

)]
= E

[∫ t1

0

∫ t2

0

W (u)W (v)dvdu

]
=

∫ t1

0

∫ t2

0

E [W (u)W (v)] dvdu

=

∫ t1

0

∫ t2

0

σ2δ(u− v)dvdu

=

∫ t1

0

∫ t1

0

σ2δ(u− v)dvdu+

∫ t1

0

∫ t2

t1

σ2δ(u− v)dvdu

=

∫ t1

0

∫ t1

0

σ2δ(u− v)dvdu =

∫ t1

0

σ2du = σ2t1.

Arguing in the exactly same way for t2 < t1 yields RX(t1, t2) = σ2t2, so that all in all

RX(t1, t2) = σ2 min(t1, t2).

Since the Brownian motion process is a GP, then for each t ≥ 0, X(t) is a zero-mean Gaussian random variable
with variance

var [X(t)] = E
[
X2(t)

]
− E [X(t)]

2
= RX(t, t)− µ2

X(t) = σ2t.

So any desired probability can be obtained by suitably integrating the Gaussian pdf, for instance

P [X(t) > a] =

∫ ∞
a

1√
2πσ2t

exp

(
− x2

2σ2t

)
dx.

C) Discrete time representation of WGN. For the discrete-time process Wh(n) defined by

Wh(n) =

∫ (n+1)h

nh

W (u)du

the mean function is

µWh
(n) = E [Wh(n)] = E

[∫ (n+1)h

nh

W (u) du

]
=

∫ (n+1)h

nh

E [W (u)] du =

∫ (n+1)h

nh

µW (u)du = 0.



The autocorrelation function RWh
(n1, n2) follows from the definition, namely

RWh
(n1, n2) = E

[(∫ (n1+1)h

n1h

W (u) du

)(∫ (n2+1)h

n2h

W (v) dv

)]

= E

[∫ (n1+1)h

n1h

∫ (n2+1)h

n2h

W (u)W (v) du dv

]

=

∫ (n1+1)h

n1h

∫ (n2+1)h

n2h

E [W (u)W (v)] du dv

=

∫ (n1+1)h

n1h

∫ (n2+1)h

n2h

σ2δ(u− v) du dv =

{
σ2h, n1 = n2
0, n1 6= n2

.

So upon defining the discrete-time Dirac delta sequence δd(n) as

δd(n) =

{
1, n = 0
0, n 6= 0

the autocorrelation function can be expressed as RWh
(n1, n2) = σ2hδd(n1 − n2).

D) Simulation of Brownian motion process. The Matlab code to perform a discrete-time simulation Xh(n) =∑n
i=0Wh(i) of the Brownian motion process X(t) follows. The choice of parameters is h = 0.01, σ2 = 1, and

tmax = 10. Based on our previous calculations the mean is µXh
(n) = 0, and the variance is var [Xh(n)] =

RXh
(n, n) = σ2h .

clear all; close all; clc;
h=0.01; sigma=1; t_MAX=10;

W_vector=normrnd(0,sigma*sqrt(h),1,t_MAX/h);
X_vector=cumsum(W_vector);

plot(h:h:t_MAX,X_vector,’r’,’Linewidth’,1);
xlabel(’time’);title([’Weiner Process Simulated, h=’,num2str(h)]);
grid on; axis([0 t_MAX -5 5])
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Fig. 1. A simulated sample path of the Weiner process X(t) using its discrete approximation. (Part D.)


