Midterm Exam

November 5, 2014

Instructions:

- This is an open book, open notes exam.
- Calculators are not needed; laptops, tablets and cell-phones are not allowed.
- Perfect score: 100 (out of 104, extra points are bonus points).
- Duration: 75 minutes.
- This exam has 9 numbered pages, check now that all pages are present.
- Show all your work, and write your final answers in the boxes when provided.

Name:_____

Problem	Max. Points	Score	Problem	Max. Points	Score
1.	20		5.	20	
2.	8		6.	16	
3.	8		7.	18	
4.	14				
			Total	104	

GOOD LUCK!

1. Suppose that $X_{\mathbb{N}} = X_0, X_1, \ldots, X_n, \ldots$ is a Markov chain with state space $S = \{1, 2\}$ and transition probability matrix

$$\mathbf{P} = \left(\begin{array}{cc} 1/2 & 1/2\\ 3/4 & 1/4 \end{array}\right).$$

To spare you of pointless calculations, if needed you may use that

$$\mathbf{P}^{3} = \left(\begin{array}{cc} 19/32 & 13/32\\ 39/64 & 25/64 \end{array}\right) = \left(\begin{array}{cc} 0.59 & 0.41\\ 0.61 & 0.39 \end{array}\right).$$

(a) (2 points) $P[X_4 = 2 | X_3 = 1, X_2 = 2, X_1 = 1] =?$

(b) (2 points) $P[X_5 = 1 | X_2 = 1, X_0 = 1] =?$

(c) (2 points) $P[X_3 = 1 | X_3 = 2, X_2 = 1, X_1 = 1, X_0 = 2] = ?$

(d) (6 points) $\mathbb{E} [X_7 | X_4 = 2] = ?$

(e) (8 points) Let $N = \min\{n > 0 : X_n = 2\}$. $\mathbb{E}[N \mid X_0 = 1] = ?$

2. (8 points) Consider a probability space $(S, \mathcal{F}, \mathbf{P}[.])$. Suppose that D and E are events in \mathcal{F} such that $\mathbf{P}[D] = 3/5$ and $\mathbf{P}[E] = 4/5$. From this information, is it possible to tell if D and E are mutually exclusive? Explain.

3. (8 points) Suppose that a random variable X is Poisson-distributed with parameter $\lambda > 0$; i.e., $P[X = x] = e^{-\lambda} \lambda^x / x!$ for x = 0, 1, 2, ... Define the random variable Y = qX, where q is a number such that 0 < q < 1. Is Y Poisson-distributed? Justify your answer.

4. Consider a Markov chain with state space $S = \{1, 2, 3, 4, 5\}$ and transition probability matrix

$$\mathbf{P} = \begin{pmatrix} 0 & a & b & 0 & 0 \\ c & 0 & d & 0 & 0 \\ e & 0 & 0 & 0 & 0 \\ 0 & 0 & f & 0 & g \\ 0 & 0 & 0 & h & 0 \end{pmatrix}$$

where a, b, c, d, e, f, g, h > 0.

(a) (8 points) Is the Markov chain irreducible? Explain.

(b) (6 points) Is state 4 transient? Explain.

5. Suppose that $X_{\mathbb{N}} = X_1, X_2, ..., X_n, ...$ is an i.i.d. sequence of random variables, where $P[X_1 = 1] = 1/4$, $P[X_1 = 2] = 1/3$, $P[X_1 = 3] = 5/12$.

(a) (10 points) Calculate

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{X_i \ge 2\right\}$$

and provide justification for the existence of the limit.

(b) (10 points) Specify the distribution of the random variable Y, defined as

$$Y = \sum_{i=1}^{7} \mathbb{I}\left\{X_i \le 1\right\}.$$

6. Suppose that $X_{\mathbb{N}} = X_0, X_1, \dots, X_n, \dots$ is a Markov chain with state space $S = \{1, 2\}$ and transition probability matrix

$$\mathbf{P} = \left(\begin{array}{cc} 1/4 & 3/4\\ 4/5 & 1/5 \end{array}\right).$$

(a) (12 points) Compute the stationary distribution of $X_{\mathbb{N}}$.

(b) (4 points) Suppose that X_0 has the distribution obtained in part (a). $P[X_3 = 1] = ?$

7. (18 points) Suppose that X_n is the amount of inventory in a store at the end of the time period n, and that D_n is the amount of demand that arrives during period n. Suppose that $D_{\mathbb{N}} = D_1, D_2, \ldots, D_n, \ldots$ is an i.i.d. sequence (idependent of X_0) of non-negative integer-valued random variables, each with probability mass function $q(\cdot)$; i.e.,

$$\mathbf{P}[D_1 = i] = q(i), \quad i = 0, 1, 2, \dots$$

At the start of each time period, we receive a shipment of 5 units of inventory to the store. Demand that cannot be met is assumed to go away unsatisfied. Under the preceding assumptions, $X_{\mathbb{N}} = X_0, X_1, \ldots, X_n, \ldots$ is a Markov chain with state space $S = \{0, 1, 2, \ldots\}$. For $n \ge 0$, the inventory level at the end of period n + 1 is determined by

$$X_{n+1} = \max\{0, X_n + 5 - D_{n+1}\}.$$

Notice that $\max\{0, a\} = a$ if $a \ge 0$, and $\max\{0, a\} = 0$ if a < 0. Hence, the above expression enforces the physical constraint that $X_{n+1} \ge 0$ always, and $X_{n+1} = 0$ when the demand D_{n+1} exceeds the available inventory $X_n + 5$.

(a) (6 points) Determine the transition probabilities P_{ij} for all $i \ge 0$ and $j = 1, \ldots, i + 5$.

(b) (6 points) Determine the transition probabilities P_{ij} for all $i \ge 0$ and $j \ge i + 6$.

(c) (6 points) Determine the transition probabilities P_{i0} for all $i \ge 0$.