
ECE440 - Introduction to Random Processes

Midterm Exam

November 7, 2016

Instructions:

• This is an open book, open notes exam.
• Calculators are not needed; laptops, tablets and cell-phones are not allowed.
• Perfect score: 100 (out of 103, extra points are bonus points).
• Duration: 75 minutes.
• This exam has 12 numbered pages, check now that all pages are present.
• Make sure you write your name in the space provided below.
• Show all your work, and write your final answers in the boxes when provided.

Name: SOLUTIONS

Problem Max. Points Score Problem Max. Points Score
1. 22 4. 14
2. 14 5. 15
3. 20 6. 18

Total 103

GOOD LUCK!
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1. Suppose that XN = X0, X1, . . . , Xn, . . . is a Markov chain with state space S = {1, 2},
transition probability matrix

P =

(
1/5 4/5
2/5 3/5

)
and initial distribution P (X0 = 1) = 3/4 and P (X0 = 2) = 1/4. To spare you of pointless
calculations, if needed you may use that

P2 =

(
9/25 16/25
8/25 17/25

)
=

(
0.36 0.64
0.32 0.68

)
.

(a) (2 points) P
(
X4 = 2

∣∣X2 = 1, X1 = 2, X0 = 2
)

=?

16

25

From the Markov property it follows that

P
(
X4 = 2

∣∣X2 = 1, X1 = 2, X0 = 2
)

= P
(
X4 = 2

∣∣X2 = 1
)

= P 2
12 =

16

25
.

(b) (3 points) P (X2 = 1, X0 = 1) =?

27

100

From the definition of conditional probability one finds

P (X2 = 1, X0 = 1) = P
(
X2 = 1

∣∣X0 = 1
)

P (X0 = 1) = P 2
11 ×

3

4
=

27

100

(c) (3 points) P (X2 = 2) =?

13

20

From the law of total probability (conditioning on X0, noting that P (X0 = 3) = 1), one has

P (X2 = 2) =
2∑
i=1

P
(
X2 = 2

∣∣X0 = i
)

P (X0 = i) = P 2
12×P (X0 = 1) +P 2

22×P (X0 = 2) =
13

20
.
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(d) (10 points) Compute the stationary distribution of XN.

π =

[
1

3
,

2

3

]T
The unique stationary distribution π = [π1, π2]

T (the Markov chain is ergodic) satisfies(
π1
π2

)
=

(
1/5 2/5
4/5 3/5

)(
π1
π2

)
, π1 + π2 = 1.

Solving the linear system yields π = [1/3, 2/3]T .

(e) (4 points) Calculate

lim
n→∞

1

n

n∑
i=1

I {Xi = 2}

and provide justification for the existence of the limit.

2

3

Since the Markov chain is ergodic, the long-run fraction of time spent in state 2 is

lim
n→∞

1

n

n∑
i=1

I {Xi = 2} = π2 =
2

3
, a. s.

2. Suppose X and Y are random variables with joint probability mass function given by

P (X = 1, Y = 2) = 1/6,

P (X = 1, Y = 3) = 1/2,

P (X = 2, Y = 2) = p,

P (X = 2, Y = 3) = 1/6.

(a) (2 points) What is the value of p? Explain.

1

6

From the axioms, the probability of the universe (i.e., the sure event) is P (S) = 1. Hence

1 = P (S) =
3∑
y=2

2∑
x=1

P (X = x, Y = y) = p+
5

6
⇒ p =

1

6
.
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(b) (3 points) P (Y = 3) =?

2

3

The marginal probability P (Y = 3) is given by

P (Y = 3) =
2∑

x=1

P (X = x, Y = 3) =
1

2
+

1

6
=

2

3
.

(c) (4 points) P
(
X = 1

∣∣Y = 3
)

=?

3

4

From the definition of conditional probability

P
(
X = 1

∣∣Y = 3
)

=
P (X = 1, Y = 3)

P (Y = 3)
=

1/2

2/3
=

3

4
.

(d) (5 points) E
[
X
∣∣Y = 3

]
=?

5

4

The conditional pmf of X given Y = 3 is

P
(
X = 1

∣∣Y = 3
)

=
3

4
,

P
(
X = 2

∣∣Y = 3
)

=
1

4
.

Hence, the conditional expectation is E
[
X
∣∣Y = 3

]
= 1× 3

4
+ 2× 1

4
= 5

4
.
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3. Consider a Markov chain XN = X0, X1, . . . , Xn, . . . with state space S = {1, 2, 3, 4, 5} and
transition probability matrix

P =


0.2 0 0 0.8 0
0.3 0.5 0.2 0 0
0.6 0.3 0 0 0.1
0 0 0 0 1
0 0 0 1 0


(a) (8 points) Draw the corresponding state transition diagram.

The state transition diagram is

2

1

3

4

5

0.5 0.3

0.2

0.2

0.8

0.6

0.1

0.3

11

(b) (3 points) Is state 4 aperiodic? Explain.

No, state 4 has period 2

From the state transition diagram, it is apparent that P 2n+1
44 = 0 and P 2n

44 = 1 so gcd{2, 4, . . .} =
2. The conclusion is that state 4 has period 2.

(c) (4 points) limn→∞ P
(
Xn = 3

∣∣X0 = 1
)

=?

0

Since state 3 belongs to one of the transient classes T2 = {2, 3}, visits to this state eventually
stop (almost surely). Accordingly, the limiting probability

lim
n→∞

P
(
Xn = 3

∣∣X0 = 1
)

= lim
n→∞

P n
13 = 0.

It also suffices to see that state 3 is not accessible from 1 to argue the limit is 0.
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(d) (5 points) Explain in a few sentences why, in the long run, you would expect to find the
Markov chain in state 5 half of the time.

The Markov chain has three communication classes, one recurrent R = {4, 5} and the others
T1 = {1} and T2 = {1, 2, 3} are transient. So regardless of the initial condition, in the long run
the process will end up in R and stay there forever. Once the Markov chain hits R, the sequence
of state visits will be . . . 4, 5, 4, 5, 4, 5, . . ., which implies the process will be in state 5 half of
the time.

4. Suppose that XN = X1, X2, . . . , Xn, . . . is an i.i.d. sequence of random variables with mean
E [X1] = 5 and variance var [X1] = 1. Consider the following random variables

Sn :=
n∑
i=1

Xi,

X̄n :=
1

n

n∑
i=1

Xi =
Sn
n
,

Zn :=

∑n
i=1Xi − 5n√

n
=
Sn − 5n√

n
.

Suppose that n = 100 is large enough so that limiting behaviors become apparent.

(a) (12 points) Sketch the probability density functions (pdfs) of S100, X̄100, and Z100, superim-
posing the three plots in the set of axes provided below. Only rough, qualitative depictions are
required, focusing on the notable values where the pdfs are centered, and their relative widths
and heights. Justify your answer and label your plots.

x

f(x)

0

Z100 ∼ N (0, 1)

X̄100 ∼ N (5, 1/100)

5

S100 ∼ N (500, 100)

500

From the Central Limit Theorem it follows that (approximately)

S100 ∼ N (500, 100),

X̄100 ∼ N (5, 1/100),

Z100 ∼ N (0, 1).

The corresponding sketches of the pdfs are depicted above (not to scale).
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(b) (2 points) Will your plots fundamentally change if the common distribution of the random
variables XN = X1, X2, . . . , Xn, . . . differs from that of (a), while the mean and variance remain
the same (that is, one still has E [X1] = 5 and var [X1] = 1)? Explain.

No

The Central Limit Theorem asserts that the limiting distribution of sums of i.i.d. random variables
will be Normal, regardless of the distribution of the summands (this universality make the result
truly remarkable). So even if we consider a different distribution from the one in (a), the plots
will remain roughly the same provided the values of E [X1] and var [X1] are kept unchanged.

5. Old McDonald had a farm, but now he runs a monster-sighting business in Loch Ness,
Scotland. Every day, he is unable to run the boat tour due to bad weather with probability p,
independently of all other days. McDonald works every day except the bad-weather days, which
he takes as holiday.

Let Y be the number of consecutive days McDonald has to work between bad-weather days.
Let X be the total number of customers who go on McDondald’s boat trip in this period of Y
days. Conditioned on Y , the distribution of X is X

∣∣Y ∼ Poisson(λY ), meaning the conditional
probability mass function is given by

P
(
X = x

∣∣Y = y
)

=
(λy)xe−λy

x!
.

(a) (6 points) E [Y ] =? [Hint: Argue that the random variable Z := Y + 1 ∼ Geometric(p)]

1− p
p

Consider each potential workday as an independent trial with a binary outcome. View actual
workdays as “failures” happening with probability 1− p, while “successes” correspond to bad-
weather days that occur with probability p. If Y is the number of consecutive workdays between
bad-weather days, then Z := Y +1 ∼ Geometric(p) (counting Y consecutive trial failures before
one success). Since E [Z] = 1/p, using the linearity of expectation we find

E [Z] = E [Y ] + 1 =
1

p
⇒ E [Y ] =

1− p
p

.

(b) (4 points) E
[
X
∣∣Y = y

]
=?

λy

Conditioned on Y , the distribution of X is X
∣∣Y ∼ Poisson(λY ). Hence E

[
X
∣∣Y = y

]
= λy.
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(c) (5 points) E [X] =?

λ(1− p)
p

Applying iterated expectations after conditioning on Y = y yields

E [X] =
∞∑
y=0

E
[
X
∣∣Y = y

]
P (Y = y) =

∞∑
y=0

λyP (Y = y) = λE [Y ] .

In (a) we obtained E [Y ] = (1− p)/p so the mean of X is E [X] = λ(1− p)/p.

6. Suppose that Xn is the amount of inventory in a store at the beginning of the time period
n. At the beginning of each period, the inventory decreases by one unit provided the inventory
level is positive, and otherwise the inventory remains at 0 until the end of the period. At the
end of period n, the inventory is replenished by an amount Rn, where RN = R0, R1, . . . , Rn, . . .
is an i.i.d. sequence (independent of X0) of non-negative integer-valued random variables, each
with probability mass function q(·); i.e.,

P (R0 = i) = q(i), i = 0, 1, 2, . . .

Under the preceding assumptions, XN = X0, X1, . . . , Xn, . . . is a Markov chain with state space
S = {0, 1, 2, . . .}. For n ≥ 0, the inventory level at the beginning of period n+ 1 is given by

Xn+1 =

{
Xn − 1 +Rn, Xn > 0

Rn, Xn = 0
.

(a) (6 points) Determine the transition probabilities Pij for i = 0 and all j ≥ 0. Show that
P0j = P1j for all j ≥ 0.

P0j = P1j = q(j)

For i = 0, the transition probabilities are given by (note Xn and Rn are independent)

P
(
Xn+1 = j

∣∣Xn = 0
)

= P
(
Rn = j

∣∣Xn = 0
)

= P (Rn = j) = q(j).

Notice that if Xn = 1, one also has Xn+1 = Rn. This implies P0j = P1j for all j ≥ 0.
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(b) (6 points) Determine the transition probabilities Pij for all i ≥ 2 and j ≥ i− 1.

Pij = q(j + 1− i)

For i ≥ 2, the transition probabilities are given by

P
(
Xn+1 = j

∣∣Xn = i
)

= P
(
Xn − 1 +Rn = j

∣∣Xn = i
)

= P
(
i− 1 +Rn = j

∣∣Xn = i
)

= P (Rn = j + 1− i) = q(j + 1− i).

Notice that for j ≥ i− 1, then j + 1− i ≥ 0 and hence Pij = q(j + 1− i)

(c) (6 points) Determine the transition probabilities Pij for all i ≥ 2 and 0 ≤ j < i− 1.

Pij = 0

For 0 ≤ j < i − 1, then j + 1 − i < 0 and hence Pij = q(j + 1 − i) = 0 because the Rn are
non-negative integer-valued random variables.
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