
ECE440 - Introduction to Random Processes

Midterm Exam

November 6, 2017

Instructions:

• This is an open book, open notes exam.
• Calculators are not needed; laptops, tablets and cell-phones are not allowed.
• Perfect score: 100 (out of 101, extra point is a bonus point).
• Duration: 75 minutes.
• This exam has 10 numbered pages, check now that all pages are present.
• Make sure you write your name in the space provided below.
• Show all your work, and write your final answers in the boxes when provided.

Name: SOLUTIONS

Problem Max. Points Score Problem Max. Points Score
1. 28 5. 12
2. 12 6. 18
3. 8 7. 8
4. 15

Total 101

GOOD LUCK!
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1. Suppose that XN = X0, X1, . . . , Xn, . . . is a Markov chain with state space S = {1, 2, 3},
state transition diagram

1

2

31/2

1/4

1/4

2/3

1/3

1/2

1/2

and initial distribution P (X0 = 1) = 1, P (X0 = 2) = 0 and P (X0 = 3) = 0. To spare you of
pointless calculations, if needed you may use that the two-step transition probability matrix is

P2 =

 1/4 1/3 5/12
0 4/9 5/9
0 5/12 7/12

 =

 0.25 0.33 0.42
0 0.44 0.56
0 0.42 0.58

 .

(a) (2 points) P
(
X7 = 1

∣∣X6 = 3, X4 = 2
)
=?

0

From the Markov property it follows that

P
(
X7 = 1

∣∣X6 = 3, X4 = 2
)
= P

(
X7 = 1

∣∣X6 = 3
)
= P31 = 0.

(b) (3 points) P (X1 = 3, X0 = 1) =?

1

4

From the definition of conditional probability one finds

P (X1 = 3, X0 = 1) = P
(
X1 = 3

∣∣X0 = 1
)

P (X0 = 1) = P13 × 1 =
1

4
.
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(c) (3 points) P (X2 = 2) =?

1

3

From the law of total probability [conditioning on X0, noting that P (X0 = 1) = 1], one has

P (X2 = 2) =
3∑

i=1

P
(
X2 = 2

∣∣X0 = i
)

P (X0 = i) =
3∑

i=1

P 2
i2P (X0 = i) = P 2

12 × 1 =
1

3
.

(d) (4 points) E [X2] =?

13

6

The unconditional pmf of X2 is (note that P (X0 = 1) = 1)

P (X2 = j) =
3∑

i=1

P
(
X2 = j

∣∣X0 = i
)

P (X0 = i) =
3∑

i=1

P 2
ijP (X0 = i) = P 2

1j, j = 1, 2, 3.

Hence,
P (X2 = 1) =

1

4
, P (X2 = 2) =

1

3
, and P (X2 = 3) =

5

12

and so the expectation is E [X2] = 1× 1
4
+ 2× 1

3
+ 3× 5

12
= 13

6
.

(e) (4 points) E
[
X3

∣∣X1 = 2
]
=?

23

9

Using the definition of conditional expectation, one obtains

E
[
X3

∣∣X1 = 2
]
=

3∑
i=1

i× P
(
X3 = i

∣∣X1 = 2
)
=

3∑
i=1

i× P 2
2i

= 1× 0 + 2× 4

9
+ 3× 5

9
=

23

9
.

3



(f) (8 points) Compute the stationary distribution of XN. (Hint: one of the limiting probabilities
requires no calculation.)

π =

[
0,

3

7
,
4

7

]T
State 1 is transient and so π1 = 0. We can thus focus on the ergodic component E = {2, 3}
which has transition probability matrix

PE =

(
1/3 2/3
1/2 1/2

)
.

The unique stationary distribution πE = [π2, π3]
T of this reduced ergodic Markov chain satisfies(

π2

π3

)
=

(
1/3 1/2
2/3 1/2

)(
π2

π3

)
, π2 + π3 = 1.

Solving the linear system yields πE = [3/7, 4/7]T , which implies π = [0, 3/7, 4/7]T .

(g) (4 points) Consider multiple independent realizations of XN, all with the same initial distri-
bution as specified earlier in this problem. Different realizations are indexed by i, so that Xn,i

denotes the state of the ith realization at time n. Calculate

lim
m→∞

1

m

m∑
i=1

X2,i

and provide justification for the existence of the limit.

13

6

Because all realizations of the Markov chain are independent and initialized with the same
distribution, then X2,N = X2,1, X2,2, . . . , X2,i, . . . is an i.i.d. sequence. By the strong law of large
numbers the limit exists and is equal to

lim
m→∞

1

m

m∑
i=1

X2,i = E [X2] =
13

6
, w.p. 1.
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2. (12 points) Recall that if a random variable Z is Poisson distributed with parameter λ, then

P (Z = z) =
e−λλz

z!
, E [Z] = var [Z] = λ, E

[
Z2

]
= var [Z] + (E [Z])2 = λ+ λ2.

Suppose that X is a non-negative discrete random variable with

E [X] = µ and var [X] = E
[
X2

]
− µ2 = σ2.

Let Y be a random variable which, conditioned on X = x, has the Poisson distribution with
parameter βx, that is

P
(
Y = y

∣∣X = x
)
=

e−βx(βx)y

y!
.

Compute var [Y ] and write your result in terms of µ, σ2, and β.

β2σ2 + βµ

Conditioned on X , the distribution of Y is Y
∣∣X ∼ Poisson(βX). Hence, EY

[
Y
∣∣X]

= βX
and varY

[
Y
∣∣X]

= βX . Using the conditional variance formula we find

var [Y ] = EX

[
varY

[
Y
∣∣X]]

+ varX
[
EY

[
Y
∣∣X]]

= E [βX] + var [βX]

= βE [X] + β2var [X] = βµ+ β2σ2.

3. (8 points) Suppose that XN = X0, X1, . . . , Xn, . . . is a Markov chain with state space S =
{1, 2, 3} and transition probability matrix

P =

 p 1− p 0
1/2 0 1/2
0 1 0

 .

For what values of 0 ≤ p ≤ 1 is the Markov chain ergodic? Justify your answer.

0 < p < 1

The state transition diagram for the Markov chain is

21 3

1/2 1/2

p

1− p 1

For p = 1, state 1 is absorbing and XN is not ergodic because it is reducible. For p = 0, all states
have period 2 and likewise XN is not ergodic. For all other values of 0 < p < 1, the Markov
chain is ergodic because it is irreducible, aperiodic (state 1 is aperiodic since P11 = p > 0), and
positive recurrent (finite, irreducible Markov chain).
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4. Suppose you toss a penny and a nickel. For both tosses assume that a “Head” outcome is
mapped into 1 and a “Tail” into 0. Let X and Y be binary random variables recording the
outcomes of the penny and nickel tosses, respectively. The joint probability mass function (pmf)
of X and Y is given by

P (X = 0, Y = 0) = 3/8, P (X = 0, Y = 1) = 1/8

P (X = 1, Y = 0) = 1/8, P (X = 1, Y = 1) = 3/8.

(a) (5 points) Are both coins fair?

Yes

The marginal probability P (X = 0) is given by

P (X = 0) =
1∑

y=0

P (X = 0, Y = y) =
3

8
+

1

8
=

1

2
.

Clearly, P (X = 1) = 1− P (X = 0) = 1
2
. Likewise, we find that

P (Y = 0) =
1∑

x=0

P (X = x, Y = 0) =
3

8
+

1

8
=

1

2
⇒ P (Y = 1) =

1

2
.

The conclusion is that both coins are fair.

(b) (5 points) Are the coin tosses independent?

No

The coin tosses are dependent because

P (X = 0, Y = 0) =
3

8
6= P (X = 0)× P (Y = 0) =

1

2
× 1

2
=

1

4
.

(c) (5 points) P
(
Y = 1

∣∣X = 0
)
=?

1

4

From the definition of conditional probability

P
(
Y = 1

∣∣X = 0
)
=

P (Y = 1, X = 0)

P (X = 0)
=

1/8

1/2
=

1

4
.
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5. Let Y ∼ N (µ, σ2) be a Normal distributed random variable with E [Y ] = µ and var [Y ] = σ2.
Denote by Φ the complementary cumulative distribution function (ccdf) of a standard Normal
distributed random variable, that is for X ∼ N (0, 1) then

Φ(x) = P (X ≥ x) =
1√
2π

∫ ∞

x

e−x2/2dx.

(a) (4 points) Obtain an expression for P (Y ≥ y) in terms of y, µ, σ and Φ. You can use (without

proof) that Z = aY + b is Normal distributed, for arbitrary scalar constants a 6= 0 and b.

Φ

(
y − µ

σ

)

After centering and scaling the random variable Y , we obtain [note that (Y − µ)/σ ∼ N (0, 1)]

P (Y ≥ y) = P
(
Y − µ

σ
≥ y − µ

σ

)
= Φ

(
y − µ

σ

)
.

(b) (8 points) There are 1000 resistors in a box labeled 10 ohms. Due to manufacturing fluctua-
tions, however, the resistance of the resistors are somewhat different. Assume that the resistance
can be modeled as a random variable with a mean of 10 ohms and a variance of 1 ohm2. If
100 resistors are chosen from the box and they are connected in series (so the resistances add
together), what is the approximate probability that the total resistance will exceed 1030 ohms?
Express your result in terms of Φ, and justify your approximation.

Φ(3)

The resistors in the box have resistance Ri, which are modeled as i.i.d. random variables with
E [Ri] = 10 and var [Ri] = 1, for i = 1, . . . , 1000. By virtue of the Central Limit Theorem, the
total resistance R̄ of the series connection has (approximately) a Normal distribution

R̄ =
100∑
i=1

Ri ∼ N (1000, 100).

We used that E
[
R̄
]
= 100 × E [R1] = 1000 and var

[
R̄
]
= 100 × var [R1] = 100 (since the Ri

are independent). From the result in part (a), we immediately obtain

P
(
R̄ ≥ 1030

)
= Φ

(
1030− 1000√

100

)
= Φ(3).
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6. Consider a sequence of i.i.d. random variables YN = Y1, Y2, . . . , Yn, . . . such that P (Y1 = 0) =
0.2, P (Y1 = 1) = 0.4, and P (Y1 = 2) = 0.4. Let X0 = 0 and define

Xn = max{Y1, . . . , Yn}, n ≥ 1.

(a) (14 points) Show that XN = X0, X1, . . . , Xn, . . . is a Markov chain, specify its state space

and determine the transition probability matrix.

Since X0 = 0, notice we can write for all n ≥ 1

Xn = max{Y1, . . . , Yn} = max{Xn−1, Yn}.

So XN is a Markov chain because we have expressed the state as Xn = f(Xn−1, Yn), where YN
is an i.i.d. process independent of the initial condition. Moreover, since Yn ∈ {0, 1, 2} then the
state space of XN is S = {0, 1, 2}.

Regarding transition probabilities Pij = P
(
Xn = j

∣∣Xn−1 = i
)
, for i = 0 we have

P0j = P
(
max{Xn−1, Yn} = j

∣∣Xn−1 = 0
)
= P (Yn = j) , j = 0, 1, 2.

For i = 1, then

P1j = P
(
max{Xn−1, Yn} = j

∣∣Xn−1 = 0
)
=

 0, j = 0,
P (Yn = 0) + P (Yn = 1) , j = 1,

P (Yn = 2) , j = 2
.

Finally, for i = 2 the transition probabilities are

P2j = P
(
max{Xn−1, Yn} = j

∣∣Xn−1 = 2
)
= I {j = 2}, j = 0, 1, 2.

In summary, the transition probability matrix is

P =

 0.2 0.4 0.4
0 0.6 0.4
0 0 1

 .

(b) (4 points) Is the Markov chain irreducible? Explain.

XN is not irreducible.

State 2 is an absorbing state, hence it does not communicate with any other state. Accordingly,
it is the sole member of the recurrent communication class R = {2}. This implies the total
number of classes is strictly greater than 1, meaning XN is not irreducible.
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7. (8 points) Let X be a uniform random variable on {−1, 0, 1}, meaning P (X = −1) =
P (X = 0) = P (X = 1) = 1/3. Let Y = X2. Are X and Y uncorrelated?

Yes

The covariance of X and Y = X2 is given by

cov[X,Y ] = E [XY ]− E [X]E [Y ] = E
[
X3

]
− E [X]E

[
X2

]
.

Computing the first and third moments of X we obtain

E [X] = − 1× 1

3
+ 0× 1

3
+ 1× 1

3
= 0,

E
[
X3

]
= (−1)3 × 1

3
+ 0× 1

3
+ 1× 1

3
= 0,

which is enough to conclude that cov[X,Y ] = 0.
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