
ECE440 - Introduction to Random Processes

Midterm Exam

October 29, 2018

Instructions:

• This is an open book, open notes exam.
• Calculators are not needed; laptops, tablets and cell-phones are not allowed.
• Perfect score: 100 points.
• Duration: 90 minutes.
• This exam has 12 numbered pages, check now that all pages are present.
• Make sure you write your name in the space provided below.
• Show all your work, and write your final answers in the boxes when provided.

Name: SOLUTIONS

Problem Max. Points Score Problem Max. Points Score
1. 28 5. 16
2. 14 6. 10
3. 8 7. 16
4. 8

Total 100

GOOD LUCK!
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1. Suppose that XN = X0, X1, . . . , Xn, . . . is a Markov chain with state space S = {1, 2},
transition probability matrix

P =

(
1/4 3/4
2/3 1/3

)
and initial distribution P (X0 = 1) = 1/3 and P (X0 = 2) = 2/3. To spare you of pointless
calculations, if needed you may use that

P2 =

(
9/16 7/16
7/18 11/18

)
=

(
0.56 0.44
0.39 0.61

)
.

(a) (2 points) P
(
X4 = 2

∣∣X2 = 2, X0 = 1
)

=?

11

18

From the Markov property it follows that

P
(
X4 = 2

∣∣X2 = 2, X0 = 1
)

= P
(
X4 = 2

∣∣X2 = 2
)

= P 2
22 =

11

18
.

(b) (3 points) P (X1 = 1, X0 = 1) =?

1

12

From the definition of conditional probability one finds

P (X1 = 1, X0 = 1) = P
(
X1 = 1

∣∣X0 = 1
)

P (X0 = 1) = P11 ×
1

3
=

1

12

(c) (4 points) P
(
X0 = 1

∣∣X1 = 1
)

=?

3

19

Once more, the definition of conditional probability yields

P
(
X0 = 1

∣∣X1 = 1
)

=
P (X0 = 1, X1 = 1)

P (X1 = 1)
.

We already computed P (X0 = 1, X1 = 1) = 1
12

, and using the law of total probability one has

P (X1 = 1) =
2∑

i=1

P
(
X1 = 1

∣∣X0 = i
)

P (X0 = i) =
1∑

i=1

Pi1P (X0 = i) =
1

4
× 1

3
+

2

3
× 2

3
=

19

36
.

So the conditional probability is P
(
X0 = 1

∣∣X1 = 1
)

= 3
19
.
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(d) (4 points) E [X1] =?

53

36

The unconditional pmf of X1 is P (X1 = 1) = 19
36

and P (X1 = 2) = 17
36

. So it follows the
expectation is E [X1] = 1× 19

36
+ 2× 17

36
= 53

36
.

(e) (3 points) E
[
X2

∣∣X1 = 2
]

=?

4

3

Using the definition of conditional expectation, one obtains

E
[
X2

∣∣X1 = 2
]

=
2∑

i=1

i× P
(
X2 = i

∣∣X1 = 2
)

=
2∑

i=1

i× P2i = 1× 2

3
+ 2× 1

3
=

4

3
.

(f) (8 points) Compute the stationary distribution of XN.

π =

[
8

17
,

9

17

]T
The unique stationary distribution π = [π1, π2]

T (the Markov chain is ergodic) satisfies(
π1
π2

)
=

(
1/4 2/3
3/4 1/3

)(
π1
π2

)
, π1 + π2 = 1.

Solving the linear system yields π = [8/17, 9/17]T .

(g) (4 points) Calculate

lim
m→∞

1

m

m∑
n=1

(Xn)2

and provide justification for the existence of the limit.

44

17

Since the Markov chain is ergodic, the ergodic limit is

lim
m→∞

1

m

m∑
n=1

(Xn)2 =
2∑

i=1

i2 × πi = 1× 8

17
+ 4× 9

17
=

44

17
, a. s.
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2. Consider a random variable X that is uniformly distributed in the interval [0, 1], something
we denote as X ∼ Uniform[0, 1]. Let Y be a random variable which, conditioned on X = x, is
uniformly distributed over the interval [x, 1], that is Y

∣∣X = x ∼ Uniform[x, 1].

(a) (4 points) What is fY |X(y|x), the conditional probability density function of Y given X = x?

fY |X(y|x) =
1

1− x
, x < y < 1

Because Y
∣∣X = x ∼ Uniform[x, 1], then it follows that

fY |X(y|x) =
1

1− x
, x < y < 1.

Of course, one also has fY |X(y|x) = 0 outside of the interval [x, 1].

(b) (5 points) E
[
Y
∣∣X = x

]
=?

1 + x

2

From the definition of conditional mean for continuous random variables, we obtain

E
[
Y
∣∣X = x

]
=

∫ ∞
−∞

yfY |X(y|x)dy =
1

1− x

∫ 1

x

ydy =
1 + x

2
.

(c) (5 points) E [Y ] =?

3

4

Using the law of iterated expectations along with EY

[
Y
∣∣X] = 1+X

2
, we find

E [Y ] = EX

[
EY

[
Y
∣∣X]] = EX

[
1 +X

2

]
=

1 + E [X]

2
.

Because X ∼ Uniform[0, 1], then E [X] = 1
2
. Putting the pieces together, we obtain E [Y ] = 3

4
.

3. (8 points) Consider a computer program having n = 100 pages of code. Let Xi be the number
of bugs on the ith page of code. Suppose that the Xi, i = 1, . . . , n, are i.i.d. random variables
having Poisson distribution with mean 1. Let Y =

∑n
i=1Xi be the total number of bugs.

Use the Central Limit Theorem to approximate P (Y < 90). Write your result in terms of the
complementary cumulative distribution function Φ of a standard Normal random variable, that
is for Z ∼ N (0, 1) then

Φ(z) = P (Z ≥ z) =
1√
2π

∫ ∞
z

e−u
2/2du.
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Φ(1)

Because Xi ∼ Poisson(1), then E [Xi] = 1 and var [Xi] = 1, for i = 1, . . . , 100. Moreover,
it follows that E [Y ] = 100 and var [Y ] = 100 (to compute the variance we relied on the
independence of the Xi). By virtue of the Central Limit Theorem, we can approximate the
distribution of Y−E[Y ]√

var[Y ]
with that of a standard Normal, namely

Y − 100

10
∼ N (0, 1).

The desired probability can thus be approximated as

P (Y < 90) = P
(
Y − 100

10
<

90− 100

10

)
≈ 1√

2π

∫ −1
−∞

e−u
2/2du

=
1√
2π

∫ ∞
1

e−u
2/2du

= Φ(1).

4. (8 points) The Erdős-Rényi model specifies the simplest mechanism to generate a random
graph on N vertices. It yields undirected graphs (edges do not have directionality) without
self loops (an edge connecting a vertex to itself is not allowed). For fixed parameters N and
0 ≤ p ≤ 1, the Erdős-Rényi model specifies that each of the possible

(
N
2

)
edges is included in

the graph with probability p, independently from every other edge. For p = 0, the graph has no
edges. For p = 1, one obtains a complete graph where every pair of vertices is connected by an
edge. A sample realization of an Erdős-Rényi graph with N = 20 and p = 0.15 is shown below.

1

2

3

4
567

8

9

10

11

12

13

14
15 16 17

18

19

20

In graph theory, the degree of a vertex is the number of incident edges to that vertex. In the
sample graph above, the degree of vertex 13 is 3 while the degree of vertex 4 is 2. For the
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Erdős-Rényi model, the degrees Dv of vertices v = 1, . . . , N are identically distributed random
variables. Name the distribution of the random variable Dv and specify its parameters.

Dv ∼ Binomial(N − 1, p)

For a given vertex v, consider the edge indicator random variables

Bu = I {edge (v, u) is included in the graph}

for all other N − 1 vertices u 6= v. The Erdős-Rényi model specifies that the Bu are i.i.d., with
distribution Bu ∼ Bernoulli(p). Now, notice that the degree of vertex v can be expressed as

Dv =
∑
u6=v

Bu,

namely a sum of N − 1 i.i.d. Bernoulli random variables with parameter p. The conclusion is
that Dv ∼ Binomial(N − 1, p)

5. As part of her thesis work, a graduate student from the Warner School is interested in modeling
the employment dynamics of young people using a Markov chain. After carrying out a field
survey and processing the data, she was able to estimate the following transition probabilities.

Student Intern Employed Unemployed
Student 0.8 0.1 0.1 0
Intern 0.5 0.5 0 0

Employed 0 0 0.9 0.1
Unemployed 0 0 0.4 0.6

(a) (6 points) Draw the corresponding state transition diagram.

I

S

U

E

0.5

0.5

0.1

0.8

0.1

0.4

0.6

0.1

0.9
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(b) (3 points) Is the Markov chain ergodic? Explain.

No

The Markov chain has a recurrent communication class R = {Employed,Unemployed} and a
transient class T = {Student,Intern}. This implies XN is neither irreducible, nor ergordic.

(c) (7 points) In the long run, what fraction of time will an individual be unemployed?

1

5

In the long run, visits to the transient states T = {Student,Intern} stop almost surely. Hence XN
behaves as an ergodic Markov chain X̄N on the reduced state spaceR = {Employed,Unemployed},
with transition probabilities

P̄ =

(
0.9 0.1
0.4 0.6

)
.

The unique stationary distribution π = [πE, πU]T of this ergodic Markov chain satisfies(
πE

πU

)
=

(
0.9 0.4
0.1 0.6

)(
πE

πU

)
, πE + πU = 1.

Solving the linear system yields π = [4/5, 1/5]T , which implies and individual will be unem-
ployed 1

5
of the time.

6. Consider two random variables X and Y . Let c be a deterministic constant.

(a) (3 points) Derive a simple expression for cov[X, cY ] in terms of c and cov[X, Y ].

c× cov[X, Y ]

Recall the identity cov[X, Y ] = E [XY ] − E [X]E [Y ]. Then it follows from linearity of the
expectation operator that

cov[X, cY ] = E [cXY ]− E [X]E [cY ] = cE [XY ]− cE [X]E [Y ] = c× cov[X, Y ].

(b) (3 points) Derive a simple expression for cov[X,X + Y ] in terms of var [X] and cov[X, Y ].

var [X] + cov[X, Y ]

Similarly,

cov[X,X + Y ] = E [X(X + Y )]− E [X]E [X + Y ]

= E
[
X2
]

+ E [XY ]− (E [X])2 − E [X]E [Y ]

= var [X] + cov[X, Y ].
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(c) (4 points) If X and Y have a covariance of cov[X, Y ], we can transform them to a new pair
of random variables whose covariance is zero. To do so, we consider the linear transformation

W = X

Z = X + aY,

where a is a deterministic constant. Find the value of a so that W and Z are uncorrelated.

a = − var [X]

cov[X, Y ]

Leveraging the identities just derived, we find

cov[W,Z] = cov[X,X + aY ]

= var [X] + cov[X, aY ]

= var [X] + a× cov[X, Y ].

By definition, W and Z are uncorrelated if cov[W,Z] = 0. This requires choosing a = − var[X]
cov[X,Y ]

.

7. During each day, a non-negative integer number of customers arrives to a store to purchase a
particular product. Each customer purchases a unit of the product when the product is in stock.
Customers who do not find the product in stock depart without making a purchase. The store may
order new units of the product at the end of the day (after that day’s demand has materialized),
and any such orders arrive to the store before the beginning of the next day.

Each day orders are made as follows. If, at the end of the day, there are 5 or fewer units of
the product in stock, then an order is placed so that there will be exactly 10 units of inventory
present at the start of the next day. If there are more than 5 units of inventory present, no order
is placed. Suppose that the daily demand DN = D1, D2, . . . , Dn, . . . is an i.i.d. sequence of
non-negative integer-valued random variables, each with probability mass function p(·); i.e.,

P [D1 = i] = p(i), i = 0, 1, 2, . . .

Suppose that at the beginning of the first day of operation (n = 0), the stock level is an arbitrary
fixed non-negative integer z.

Let XN = X0, X1, . . . , Xn, . . . be the Markov chain that represents the amount of the product in
stock at the beginning of each day.

(a) (4 points) Determine the transition probabilities Pij for all i ≤ 5 and j ≥ 0.

Pij = I {j = 10}

In the current state Xn = i ≤ 5, the stock is already below the replenishment level. During day
n, the inventory can only decrease (if Dn > 0) or stay the same (if Dn = 0). Hence, the next
transition is surely going to be to state Xn+1 = 10. In summary, for all i ≤ 5 then Pi10 = 1 while
Pij = 0 for all j 6= 10. These probabilities can be compactly expressed as Pij = I {j = 10}.
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(b) (4 points) Determine the transition probabilities Pij for all i ≥ j > 5 and j 6= 10.

Pij = p(i− j)

In the current state Xn = i > 5, the stock is above the replenishment level. A transition to state
Xn+1 = j > 5 with j 6= 10, can only occur if there is no enough day n demand to trigger a
product order. That is, when Xn −Dn = j > 5. So in this setting,

P
(
Xn+1 = j

∣∣Xn = i
)

= P
(
Xn −Dn = j

∣∣Xn = i
)

= P
(
i−Dn = j

∣∣Xn = i
)

= P (i−Dn = j) = P (Dn = i− j) = p(i− j).

(c) (4 points) Determine the transition probabilities Pi10 for all 5 < i < 9.

Pi10 =
∞∑

k=i−5

p(k)

In the current state Xn = i > 5, the stock is above the replenishment level. But because i < 9,
the only possibly way to transition to Xn+1 = 10 is when the day n demand is so large that a
product order has to be placed. That is, when Xn −Dn ≤ 5. Accordingly,

P
(
Xn+1 = 10

∣∣Xn = i
)

= P
(
Xn −Dn ≤ 5

∣∣Xn = i
)

= P
(
i−Dn ≤ 5

∣∣Xn = i
)

= P (i−Dn ≤ 5) = P (Dn ≥ i− 5) =
∞∑

k=i−5

p(k).

(d) (4 points) Determine the transition probabilities Pi10 for all i ≥ 10.

Pi10 = p(i− 10) +
∞∑

k=i−5

p(k)

In the current state Xn = i ≥ 10, the stock is above the replenishment level. But because i ≥ 10,
there are two potential ways to transition to Xn+1 = 10: i) if there is no enough day n demand
to trigger a product order (when Xn −Dn = 10); or ii) if the day n demand is so large that a
product order has to be placed (when Xn −Dn ≤ 5). Putting the pieces together, we obtain

P
(
Xn+1 = 10

∣∣Xn = i
)

= p(i− 10) +
∞∑

k=i−5

p(k).

9


