
ECE440 - Introduction to Random Processes

Midterm Exam

October 28, 2019

Instructions:

• This is an open book, open notes exam.
• Calculators are not needed; laptops, tablets and cell-phones are not allowed.
• Perfect score: 100 points (out of 102, extra points are bonus points).
• Duration: 90 minutes.
• This exam has 11 numbered pages, check now that all pages are present.
• Make sure you write your name in the space provided below.
• Show all your work, and write your final answers in the boxes when provided.

Name: SOLUTIONS

Problem Max. Points Score Problem Max. Points Score
1. 22 5. 12
2. 18 6. 14
3. 8 7. 20
4. 8

Total 102

GOOD LUCK!
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1. Suppose that XN = X0, X1, . . . , Xn, . . . is a Markov chain with state space S = {1, 2},
transition probability matrix

P =

(
4/5 1/5
1/2 1/2

)
and initial distribution P (X0 = 1) = 1/2 and P (X0 = 2) = 1/2. To spare you of pointless
calculations, if needed you may use that

P2 =

(
11/25 14/25
7/20 13/20

)
=

(
0.44 0.56
0.35 0.65

)
.

(a) (2 points) P
(
X3 = 1

∣∣X2 = 2, X1 = 1
)
=?

1

2

From the Markov property it follows that

P
(
X3 = 1

∣∣X2 = 2, X1 = 1
)
= P

(
X3 = 1

∣∣X2 = 2
)
= P21 =

1

2
.

(b) (2 points) P
(
X5 = 2

∣∣X3 = 2, X2 = 1, X1 = 1, X0 = 1
)
=?

13

20

Likewise,

P
(
X5 = 2

∣∣X3 = 2, X2 = 1, X1 = 1, X0 = 1
)
= P

(
X5 = 2

∣∣X3 = 2
)
= P 2

22 =
13

20
.

(c) (3 points) P (X2 = 2, X1 = 1, X0 = 1) =?

2

25

Using the definition of conditionaly probability (twice) and the Markov property one finds

P (X2 = 2, X1 = 1, X0 = 1) = P
(
X2 = 2

∣∣X1 = 1, X0 = 1
)

P (X1 = 1, X0 = 1)

= P
(
X2 = 2

∣∣X1 = 1
)

P
(
X1 = 1

∣∣X0 = 1
)

P (X0 = 1)

= P12 × P11 ×
1

2
=

2

25

2



(d) (4 points) E
[
X2

∣∣X0 = 2
]
=?

33

20

Using the definition of conditional expectation, one obtains

E
[
X2

∣∣X0 = 2
]
=

2∑
i=1

i× P
(
X2 = i

∣∣X0 = 2
)
=

2∑
i=1

i× P 2
2i = 1× 7

20
+ 2× 13

20
=

33

20
.

(e) (8 points) Compute the stationary distribution of XN.

π =

[
5

7
,
2

7

]T
The unique stationary distribution π = [π1, π2]

T (the Markov chain is ergodic) satisfies(
π1
π2

)
=

(
4/5 1/2
1/5 1/2

)(
π1
π2

)
, π1 + π2 = 1.

Solving the linear system yields π = [5/7, 2/7]T .

(f) (3 points) In the long run, what fraction of time will you find XN in state 1?

5

7

By the ergodic theorem, the long-run fraction of time spent in state 1 is π1 = 5/7

2. Suppose that XN = X1, X2, . . . , Xn, . . . is an i.i.d. sequence of random variables, where
P (X1 = 1) = 1/4, P (X1 = 2) = 1/4, P (X1 = 3) = 1/3, and P (X1 = 4) = 1/6. Define

T = min{n ≥ 1 : Xn /∈ {1, 2}} and Y =
T∑
i=1

Xi

(a) (6 points) Compute E
[
Xi

∣∣T = t
]
, for i = 1, . . . , t− 1.

3

2

From the definition of T , then for i = 1, . . . , t− 1 one has

E
[
Xi

∣∣T = t
]
= E

[
Xi

∣∣X1 ∈ {1, 2}, . . . , Xi ∈ {1, 2}, . . . , Xt−1 ∈ {1, 2}, Xt ∈ {3, 4}
]

= E
[
Xi

∣∣Xi ∈ {1, 2}
]
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where the last equality follows from the independence of the sequence XN. The relevant condi-
tional pmf P

[
Xi = x

∣∣Xi ∈ {1, 2}
]

is

P
[
Xi = 1

∣∣Xi ∈ {1, 2}
]
=

P [Xi = 1, Xi ∈ {1, 2}]
P [Xi ∈ {1, 2}]

=
P [Xi = 1]

P [Xi = 1] + P [Xi = 2]
=

1

2

P
[
Xi = 2

∣∣Xi ∈ {1, 2}
]
=

P [Xi = 2, Xi ∈ {1, 2}]
P [Xi ∈ {1, 2}]

=
P [Xi = 2]

P [Xi = 1] + P [Xi = 2]
=

1

2

P
[
Xi = 3

∣∣Xi ∈ {1, 2}
]
= 0

P
[
Xi = 4

∣∣Xi ∈ {1, 2}
]
= 0.

Hence, the conditional expectation is E
[
Xi

∣∣T = t
]
= 1× 1

2
+ 2× 1

2
= 3

2
, for i = 1, . . . , t− 1.

(b) (6 points) Compute E
[
Xt

∣∣T = t
]
.

10

3

Reasoning as in the previous part, from the definition of T and using the independence of the
sequence XN

E
[
Xt

∣∣T = t
]
= E

[
Xt

∣∣X1 ∈ {1, 2}, . . . , Xi ∈ {1, 2}, . . . , Xt−1 ∈ {1, 2}, Xt ∈ {3, 4}
]

= E
[
Xt

∣∣Xt = Xt ∈ {3, 4}
]
.

The relevant conditional pmf P
[
Xt = x

∣∣Xt ∈ {3, 4}
]

is

P
[
Xt = 1

∣∣Xt ∈ {3, 4}
]
= 0

P
[
Xt = 2

∣∣Xt ∈ {3, 4}
]
= 0

P
[
Xt = 3

∣∣Xt ∈ {3, 4}
]
=

P [Xt = 3, Xt ∈ {3, 4}]
P [Xt ∈ {3, 4}]

=
P [Xt = 3]

P [Xt = 3] + P [Xt = 4]
=

2

3

P
[
Xt = 4

∣∣Xt ∈ {3, 4}
]
=

P [Xt = 4, Xt ∈ {3, 4}]
P [Xt ∈ {3, 4}]

=
P [Xt = 4]

P [Xt = 3] + P [Xt = 4]
=

1

3
.

Hence, the conditional expectation is E
[
Xi

∣∣T = t
]
= 3× 2

3
+ 4× 1

3
= 10

3
.

(c) (6 points) Compute E
[
Y
∣∣T = t

]
.

(t− 1)
3

2
+

10

3

From the definition of Y and noting that T is not independent of the X1, X2, . . . , XT , one finds

E

[
T∑
i=1

Xi

∣∣T = t

]
= E

[
t∑

i=1

Xi

∣∣T = t

]

=
t−1∑
i=1

E
[
Xi

∣∣T = t
]
++E

[
Xt

∣∣T = t
]

= (t− 1)E
[
Xi

∣∣T = t
]
+ E

[
Xt

∣∣T = t
]
= (t− 1)

3

2
+

10

3
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3. (8 points) Consider a continuous random variable X with probability density function fX(x).
Let A ⊂ R be a subset of the real line and define the indicator random variable Y = I {X ∈ A}.
Find an expression for FY (y) = P (Y ≤ y), the cumulative distribution function of Y . (Hint:
first find the probability mass function of Y )

FY (y) =

 0, y < 0
1−

∫
A
fX(x)dx, 0 ≤ y < 1
1, otherwise

Being an indicator random variable, then Y has Bernoulli distribution with parameter p =
P (X ∈ A) =

∫
A
fX(x)dx. Hence, the cumulative distribution function of Y is given by

FY (y) =

 0, y < 0
1−

∫
A
fX(x)dx, 0 ≤ y < 1
1, otherwise

.

4. (8 points) Consider a continuous random variable X that is uniformly distributed in the interval
[0, 1]. Suppose that YN = Y1, Y2, . . . , Yn, . . . is an i.i.d. sequence of random variables and let A
be a set such that P

(
Y1 ∈ A

∣∣X = x
)
= x2. Calculate

lim
n→∞

1

n

n∑
i=1

I {Yi /∈ A}

and provide justification for the existence of the limit.

2

3

Because YN is i.i.d., then ZN = I {Y1 /∈ A}, I {Y2 /∈ A}, . . . , I {Yn /∈ A}, . . . is also i.i.d. By the
strong law of large numbers the limit exists and is equal to

lim
n→∞

1

n

n∑
i=1

I {Yi /∈ A} = E [I {Y1 /∈ A}] = P (Y1 /∈ A) , w.p. 1.

To compute the probability, notice first that P (Y1 /∈ A) = 1 − P (Y1 ∈ A). Moreover, upon
conditioning on X = x

P (Y1 ∈ A) =
∫ ∞
−∞

P
(
Y1 ∈ A

∣∣X = x
)
fX(x)dx =

∫ 1

0

x2dx =
1

3
,

where the second equality follows because P
(
Y1 ∈ A

∣∣X = x
)
= x2 and X has density fX(x) =

1 in [0, 1], and fX(x) = 0 elsewhere. Putting all the pieces together, the limit is 2/3 almost surely.
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5. Consider a Markov chain with state space S = {1, 2, 3, 4, 5} and transition probability matrix

P =


∗ 0 0 0 0
∗ ∗ ∗ ∗ 0
∗ ∗ 0 0 ∗
0 0 0 0 ∗
0 0 0 ∗ 0


where the ∗ denote possibly different, but strictly positive numbers.

(a) (6 points) Draw the corresponding state transition diagram. If you can infer some of the ∗
values, indicate them in your diagram.

The state transition diagram is

1

2

3

4

5

1

∗

∗

∗

∗

∗

∗
∗

11

(b) (3 points) Is the Markov chain ergodic? Explain.

No

The Markov chain is not ergodic because it is not irreducible. It has three communication classes,
namely R1 = {1}, R2 = {4, 5} and T = {2, 3}.

(c) (3 points) Is the period of state 2 equal to the period of state 5? Explain.

No, state 5 has period 2 and state 2 is aperiodic

From the state transition diagram, it is apparent that P 2n+1
55 = 0 and P 2n

55 = 1 so gcd{2, 4, . . .} =
2. This implies state 5 has period 2. On the other hand P22 = ∗ > 0, so state 2 is aperiodic and
thus states 2 and 5 have different periods.
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6. Consider a continuous random variable X that is uniformly distributed in the interval [0, 1].
Let a and b be deterministic constants such that 0 < a < b < 1. Define the random variables

Y =

{
1, 0 < X < b,
0, otherwise and Z =

{
1, a < X < 1,
0, otherwise .

(a) (6 points) Compute pY,Z(y, z) = P (Y = y, Z = z), the joint probability mass function of Y
and Z.

pY,Z(0, 0) = 0, pY,Z(0, 1) = 1−b, pY,Z(1, 0) = a and pY,Z(1, 1) = b−a

Since X is uniformly distributed in [0, 1] and 0 < a < b < 1, the joint probability mass function
values are

P (Y = 0, Z = 0) = P (b < X < 1, 0 < X < a) = P (∅) = 0,

P (Y = 0, Z = 1) = P (b < X < 1, a < X < 1) = P (b < X < 1) = 1− b,
P (Y = 1, Z = 0) = P (0 < X < b, 0 < X < a) = P (0 < X < a) = a,

P (Y = 1, Z = 1) = P (0 < X < b, a < X < 1) = P (a < X < b) = b− a.

(b) (4 points) Are Y and Z independent? Justify your answer.

No

The random variables Y and Z are dependent because

0 = P (Y = 0, Z = 0) 6= P (Y = 0)P (Z = 0) = (1− b)a > 0.

(c) (4 points) E
[
Y
∣∣Z = 0

]
=?

1

The conditional pmf of Y given Z = 0 is

P
(
Y = 0

∣∣Z = 0
)
=

P (Y = 0, Z = 0)

P (Z = 0)
= 0,

P
(
Y = 1

∣∣Z = 0
)
=

P (Y = 1, Z = 0)

P (Z = 0)
= 1.

Hence, the conditional expectation is E
[
Y
∣∣Z = 0

]
= 0× 0 + 1× 1 = 1.
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7. Suppose customers can arrive to a service system at times n = 0, 1, 2, . . . In any given period,
independent of everything else, there is one arrival with probability p, and there is no arrival
with probability 1−p. If, upon arrival, a customer finds k other customers present in the system
(k = 0, 1, 2, . . .), then that arriving customer will enter the system with probability α(k) and
will depart without entering the system with probability 1− α(k).
Customers that enter the system are served one-at-a-time on a first-come-first-served basis. If
at the time of entrance there are no customers present, then the entering customer immediately
begins service. Otherwise, the entering customer joins the back of the queue.

Assume that service times are i.i.d. geometric random variables (each with parameter q) that
are independent of the arrival/entrance process. So, P (Service time = `) = (1 − q)`−1q, for
` = 1, 2, . . . Note that a customer who enters service in time n can complete service, at the
earliest, in time n + 1 (in which case her service time is 1). Upon a service completion, the
just-served customer departs the system.

In a time period n, events happen in the following order: (i) arrivals, if any, occur; (ii) any arrival
decides whether or not to enter the system; (iii) service completions, if any, occur; (iv) service
begins on a new customer if there are customers present in the system.

Let Xn denote the number of customers in the system at the end of time period n, i.e., after
the time-n arrivals and services. Note that Xn includes both customers waiting as well as any
customer being served, and that the random process XN = X0, X1, . . . , Xn, . . . is a Markov
chain with state space S = {0, 1, 2, . . .}.

(a) (5 points) Determine the transition probabilities P0j for all j ≥ 0.

P00 = 1− pα(0), P01 = pα(0), P0j = 0, j > 1

If the present state is Xn = 0 (empty system), then there are only two possible transitions:

1) If an arrival does not occur at time instant n + 1 or if there is an arrival that decides
to depart without entering the system then Xn+1 = 0. Then we conclude that P00 =
1− p+ p(1− α(0)) = 1− pα(0).

2) If an arrival occurs at time instant n+1 and decides to enter they system then Xn+1 = 1.
Then we conclude that P01 = pα(0).

All other transition probabilities from state 0 are null, namely P0j = 0, j > 1.

(b) (5 points) Determine the transition probabilities Pij for all i > 0 and j = i.

Pii = [1− pα(i)](1− q) + pqα(i), i > 0

Suppose the present state is Xn = i, i > 0. If an arrival does not occur at time instant n+1 and the
user being served does not complete service, then Xn+1 = i. This will happen with probability
(1 − p)(1 − q). Furthermore, if an arrival occurs at time instant n + 1 that departs without
entering the system and the user being served does not complete service, then also Xn+1 = i.
This will happen with probability p[1− α(i)](1− q). Finally, if an arrival occurs at time instant
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n + 1 and decides to enter they system while the user currently being served exits the system
after completing service, then Xn+1 = i as well. This will happen with probability pα(i)q. The
conclusion is that Pii = (1−p)(1−q)+p[1−α(i)](1−q)+pα(i)q = [1−pα(i)](1−q)+pqα(i).

(c) (5 points) Determine the transition probabilities Pij for all i > 0 and j > i.

Pi,i+1 = pα(i)(1− q), Pij = 0, i > 0 and j > i+ 1

Suppose the present state is Xn = i, i > 0. If an arrival occurs at time instant n+1 that decides
to enter the system and the user being served does not complete service, then Xn+1 = i + 1.
The conclusion is that Pi,i+1 = pα(i)(1− q).
All other transition probabilities from state i > 0 to j > i+ 1 are null.

(d) (5 points) Determine the transition probabilities Pij for all i > 0 and 0 ≤ j < i.

Pi,i−1 = [1−pα(i)]q, Pij = 0, i > 0 and 0 ≤ j < i−1

Suppose the present state is Xn = i, i > 0. If an arrival does not occur at time instant n+1 and
the user being served completes service, then Xn+1 = i− 1. This will happen with probability
(1 − p)q. Furthermore, if an arrival occurs at time instant n + 1 but does not enter the system
and the user being served completes service, then also Xn+1 = i + 1. This will happen with
probability p[1− α(i)]q. The conclusion is that Pi,i−1 = [1− pα(i)]q.
All other transition probabilities from state i > 0 to 0 ≤ j < i− 1 are null.
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