
ECE440 - Introduction to Random Processes

Midterm Exam

October 23, 2020

Instructions:

• This is an individual take-home exam, collaborations are not allowed.
• Write clearly and show all your work.
• Your solutions should be submitted via Gradescope as a single pdf file.
• The estimated amount of time required to complete this exam is 2.5 hours.
• The submission deadline is 10 pm ET, Friday October 23, 2020.
• Late submissions will not be accepted.
• Perfect score: 100 points.
• This exam has 12 numbered pages.

Name: SOLUTIONS

Problem Max. Points Score Problem Max. Points Score
1. 18 6. 10
2. 10 7. 10
3. 10 8. 8
4. 8 9. 16
5. 10

Total 100

GOOD LUCK!
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1. Suppose that XN = X0, X1, . . . , Xn, . . . is a Markov chain with state space S = {1, 2},
transition probability matrix

P =

(
1− a a
b 1− b

)
and initial distribution P (X0 = 1) = 1 and P (X0 = 2) = 0. Unless otherwise stated, suppose
that 0 < a < 1 and 0 < b < 1.

(a) (1 points) P
(
X5 = 2

∣∣X4 = 1, X3 = 2, X1 = 1
)

=?

a

From the Markov property it follows that

P
(
X5 = 2

∣∣X4 = 1, X3 = 2, X1 = 1
)

= P
(
X5 = 2

∣∣X4 = 1
)

= P12 = a.

(b) (2 points) P
(
X3 = 2, X2 = 2

∣∣X1 = 1
)

=?

a(1− b)

Using the definition of conditionaly probability and the Markov property one finds

P
(
X3 = 2, X2 = 2

∣∣X1 = 1
)

= P
(
X3 = 2

∣∣X2 = 2, X1 = 1
)

P
(
X2 = 2

∣∣X1 = 1
)

= P
(
X3 = 2

∣∣X2 = 2
)

P
(
X2 = 2

∣∣X1 = 1
)

= P22 × P12 = a(1− b).

(c) (3 points) E [X1] =?

1 + a

To obtain the unconditional pmf of X1, we use the law of total probability and find

P (X1 = 1) =
2∑

i=1

P
(
X1 = 1

∣∣X0 = i
)

P (X0 = i) = P11P (X0 = 1)+P21P (X0 = 2) = P11×1 = 1−a.

Hence, P (X1 = 2) = a. So it follows the expectation is E [X1] = 1× (1− a) + 2× a = 1 + a.
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(d) (8 points) Prove that

lim
n→∞

Pn =

(
b

a+b
a

a+b
b

a+b
a

a+b

)
and provide justification for the existence of the limit.

The Markov chain is ergodic for 0 < a < 1 and 0 < b < 1. Indeed, both states communicate so
it is irreducible. Because the state space S is finite, the single class has to be positive recurrent.
State 1 (hence state 2) is aperiodic because P11 = 1− a > 0.

For ergodic Markov chains the limiting probabilities P n
ij (i.e., the entries of matrix Pn) converge

as n → ∞. Both rows of the limiting matrix should be identical because limn→∞ P
n
ij = πj ,

regardless of the initial condition i. The unique stationary distribution π = [π1, π2]
T satisfies(

π1
π2

)
=

(
1− a b
a 1− b

)(
π1
π2

)
, π1 + π2 = 1.

Solving the linear system yields π =
[

b
a+b

, a
a+b

]T .

(e) (2 points) From now on, suppose that a = b = 1. P
(
X26 = 1

∣∣X1 = 2
)

=?

1

For a = b = 1, the Markov chain deterministically cycles around states 1 and 2. Both states have
period 2. Given X1 = 2, then P 2n

21 = 0 and P 2n−1
21 = 1 for all n ≥ 1. Hence P

(
X26 = 1

∣∣X1 = 2
)

=
P 25
21 = 1.

(f) (2 points) Still with a = b = 1, calculate

lim
n→∞

1

n

n∑
i=0

I {Xi = 2}

and provide justification for the existence of the limit.

1

2

Even if the Markov chain is not ergodic (recall the states have period 2), the ergodic limit

lim
n→∞

1

n

n∑
i=0

I {Xi = 2} = π2 =
1

2
a. s.,

because the process spends exactly half of the time in each state.
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2. Consider a probability space (S,F ,P (·)).

(a) (4 points) Let E ∈ F be an event. Show that if E is independent of itself the P (E) is either
0 or 1.

If E is independent of itself, then P (E ∩ E) = P (E)× P (E). Morever, E ∩E = E so one has

P (E) = P (E)2 .

The solutions to this quadratic equation are P (E) = 0 and P (E) = 1.

(b) (6 points) Suppose that A,B ∈ F are independent events. Show that Ac and Bc are
independent events.

If A and B are independent events, then P (A ∩B) = P (A)× P (B). It thus follows that

P (Ac ∩Bc) = 1− P (A ∪B)

= 1− P (A)− P (B) + P (A ∩B)

= 1− P (A)− P (B) + P (A)× P (B)

= (1− P (A))(1− P (B)) = P (Ac)× P (Bc) ,

which implies Ac and Bc are independent events as desired. In deriving the first equality we
used that Ac ∩Bc = (A∪B)c, for the second that P (A ∪B) = P (A) + P (B)− P (A ∩B), and
finally the third equality follows from the assumed independece of A and B.

3. (a) (5 points) Let X and Y be random variables. Show that if E
[
X
∣∣Y = y

]
= c for some

deterministic constant c, then X and Y are uncorrelated.

The covariance between X and Y is given by cov[X, Y ] = E [XY ] − E [X]E [Y ]. Evaluating
the first expectation by conditioning on Y yields

E [XY ] = EY

[
EX

[
XY

∣∣Y ]]
=
∑
y

EX

[
XY

∣∣Y = y
]

P (Y = y)

=
∑
y

yEX

[
X
∣∣Y = y

]
P (Y = y)

=
∑
y

cyP (Y = y) = cE [Y ] .

The fourth equality follows from the assumption E
[
X
∣∣Y = y

]
= c. A similar argument yields

E [X] = EY

[
EX

[
X
∣∣Y ]] =

∑
y

EX

[
X
∣∣Y = y

]
P (Y = y) =

∑
y

cP (Y = y) = c.

Putting all the pieces together, we arrive at

cov[X, Y ] = E [XY ]− E [X]E [Y ] = cE [Y ]− cE [Y ] = 0.

The conclusion is that X and Y are uncorrelated. Naturally, the same result holds for continuous
X and Y – they choice to argue in the discrete case was arbitrary.
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(b) (5 points) Let U and V be random variables. Suppose that E
[
V
∣∣U] = U . Show that

cov[U, V ] = var[U ].

We argue as in (a), starting with

E [UV ] = EU

[
EV

[
UV

∣∣U]] = EU

[
UEV

[
V
∣∣U]] = E

[
U2
]
.

In deriving the last equality we used the assumed identitity E
[
V
∣∣U] = U . The mean of V is

E [V ] = EU

[
EV

[
V
∣∣U]] = E [U ] .

All in all, the covariance simplifies to

cov[U, V ] = E [UV ]− E [U ]E [V ] = E
[
U2
]
− E [U ]2 = var[U ]

as we wanted to show.

4. Suppose that XN = X1, X2, . . . , Xn, . . . is an i.i.d. sequence of random variables, which are
uniformly distributed in the interval [0, 1].

(a) (4 points) For fixed n > 1, consider the random variable

Yn =
n∑

i=1

I {Xi > 0.3}.

Write down an expression for P (Yn = y), the probability mass function of Yn. Make sure you
also specify the range of values of y for which P (Yn = y) = 0.

P (Yn = y) =

{ (n
y

)
0.7y0.3n−y, 0 ≤ y ≤ n,

0, otherwise.

For 1 ≤ i ≤ n, the summands I {Xi > 0.3} are i.i.d. Bernoulli-distributed random variables
with parameter p = P (X1 > 0.3) = P (X1 ∈ [0.3, 1]) = 0.7 (recall that the Xi are uniformly
distributed in [0, 1]). Because the sum of n i.i.d. Bernoulli random variables with parameter p is
Binomial distributed with parameters (n, p), then it follows that Yn is Binomial with parameters
(n, 0.7). The pmf is

P (Yn = y) =

{ (n
y

)
0.7y0.3n−y, 0 ≤ y ≤ n,

0, otherwise.

(b) (4 points) Suppose that a, b are deterministic constants such that a < b. Using the Central
Limit Theorem, write down an approximate expression for P (a ≤ Y1000 ≤ b).

P (a < Y1000 < b) ≈ 1√
π × 420

∫ b

a

e−
(y−700)2

420 dy
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We have E [Y1000] = 1000 × 0.7 = 700 and var[Y1000] = 1000 × 0.7 × 0.3 = 210. By virtue of
the Central Limit Theorem, we can approximate the distribution of Y1000 with that of a Normal,
namely

Y1000 ∼ N (700, 210).

The desired probability can thus be approximated as

P (a < Y1000 < b) ≈ 1√
π × 420

∫ b

a

e−
(y−700)2

420 dy.

5. (10 points) Consider a model for the evolution of a population and suppose that Xn is the
number of individuals in generation n. Suppose the k-th individual in generation n creates Qk,n+1

individuals in generation n + 1, and that the Qk,n are i.i.d. across individuals and generations,
and independent of X0. Let µ = E [Qk,n] and σ2 = var[Qk,n]. Under the preceding assumptions,
XN = X0, X1, . . . , Xn, . . . is a Markov chain with state space S = {0, 1, 2, . . .} for which

Xn+1 = Q1,n+1 + . . .+QXn,n+1 if Xn > 0,

and Xn+1 = 0 if Xn = 0. Let Mn = E [Xn] and Vn = var[Xn].

Derive an expression for Vn+1 in terms of Vn, Mn, µ and σ2.

Vn+1 = σ2Mn + µ2Vn

The number of individuals in generation n+ 1 is given by the compound random variable

Xn+1 =
Xn∑
k=1

Qk,n+1.

To compute Vn+1 = var[Xn+1] we condition on Xn. Because the Qk,n+1 are i.i.d. we find that
E
[
Xn+1

∣∣Xn

]
= µXn and var

[
Xn+1

∣∣Xn

]
= σ2Xn. Using the conditional variance formula

var [Xn+1] = E
[
var
[
Xn+1

∣∣Xn

]]
+ var

[
E
[
Xn+1

∣∣Xn

]]
= E

[
σ2Xn

]
+ var [µXn]

= σ2E [Xn] + µ2var [Xn] = σ2Mn + µ2Vn.

6. (10 points) Consider a continuous random variable X with probability density function

fX(x) =

{
2x, 0 < x < 1,
0, otherwise.

Let Y = 0 if X < 1/2 and Y = 2X otherwise. Compute FY (y) = P (Y ≤ y), the cumulative
distribution function of Y .
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FY (y) =


0, y < 0,
1
4
, 0 ≤ y < 1,

y2

4
, 1 ≤ y < 2,

1, y ≥ 2.

For y < 0, then FY (y) = P (Y ≤ y) = P (2X ≤ y) = 0 because fX(x) = 0 for x ≤ 0.

For 0 ≤ y < 1, then

FY (y) = P (Y ≤ y) = P (Y = 0) = P (X < 1/2) =

∫ 1/2

0

2xdx =
1

4
.

For 1 ≤ y < 2 we find

FY (y) = P (Y ≤ y) = P (Y = 0) + P (1 ≤ Y ≤ y)

=
1

4
+ P (1 ≤ 2X ≤ y)

=
1

4
+ P (1/2 ≤ X ≤ y/2)

=
1

4
+

∫ y/2

1/2

2xdx =
y2

4
.

Finally, FY (y) = 1 for y ≥ 2.

All in all, putting these pieces together yields the desired cdf

FY (y) =


0, y < 0,
1
4
, 0 ≤ y < 1,

y2

4
, 1 ≤ y < 2,

1, y ≥ 2.

7. (10 points) Suppose that XN = X1, X2, . . . , Xn, . . . is an i.i.d. sequence of random variables
such that

P (X1 = 1) = 4/10, P (X1 = 2) = 1/10,

P (X1 = 3) = 3/10, P (X1 = 4) = 2/10.

Define
T = min {n ≥ 1 : Xn ∈ {1, 2}} .

E
[
X2

1 +X2
2 +X2

5

∣∣T = 5
]

=?

126

5

From the definition of T and the linearity of the expectation operator, then

E
[
X2

1 +X2
2 +X2

5

∣∣T = 5
]

= 2× E
[
X2

i

∣∣Xi ∈ {3, 4}
]

+ E
[
X2

i

∣∣Xi ∈ {1, 2}
]
.
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To compute E
[
X2

i

∣∣Xi ∈ {3, 4}
]

the relevant conditional pmf P
(
Xi = x

∣∣Xi ∈ {3, 4}
)

is

P
(
Xi = 1

∣∣Xi ∈ {3, 4}
)

= 0,

P
(
Xi = 2

∣∣Xi ∈ {3, 4}
)

= 0,

P
(
Xi = 3

∣∣Xi ∈ {3, 4}
)

=
P (Xi = 3, Xi ∈ {3, 4})

P (Xi ∈ {3, 4})
=

P (Xi = 3)

P (Xi = 3) + P (Xi = 4)
=

3

5
,

P
(
Xi = 4

∣∣Xi ∈ {3, 4}
)

=
P (Xi = 4, Xi ∈ {3, 4})

P (Xi ∈ {3, 4})
=

P (Xi = 4)

P (Xi = 3) + P (Xi = 4)
=

2

5
.

Hence, E
[
X2

i

∣∣Xi ∈ {3, 4}
]

= 9× 3
5

+ 16× 2
5

= 59
5

.
Similarly, to find E

[
X2

i

∣∣Xi ∈ {1, 2}
]

the relevant conditional pmf P
(
Xi = x

∣∣Xi ∈ {1, 2}
)

is

P
(
Xi = 1

∣∣Xi ∈ {1, 2}
)

=
P (Xi = 1, Xi ∈ {1, 2})

P (Xi ∈ {1, 2})
=

P (Xi = 1)

P (Xi = 1) + P (Xi = 2)
=

4

5
,

P
(
Xi = 2

∣∣Xi ∈ {1, 2}
)

=
P (Xi = 2, Xi ∈ {1, 2})

P (Xi ∈ {1, 2})
=

P (Xi = 2)

P (Xi = 1) + P (Xi = 2)
=

1

5
,

P
(
Xi = 3

∣∣Xi ∈ {1, 2}
)

= 0,

P
(
Xi = 4

∣∣Xi ∈ {1, 2}
)

= 0.

Hence, E
[
X2

i

∣∣Xi ∈ {1, 2}
]

= 1× 4
5

+ 4× 1
5

= 8
5
. The final result is

E
[
X2

1 +X2
2 +X2

5

∣∣T = 5
]

= 2× 59

5
+

8

5
=

126

5
.

8. (8 points) Consider flipping a coin for which the probability of heads is p = 1/2. Let
Xi ∈ {0, 1} denote the outcome of a single toss, and let Xi = 1 if said outcome is heads. The
fraction of heads after n independent tosses is

X̄n =
1

n

n∑
i=1

Xi.

According to the Weak Law of Large Numbers X̄n converges to p in probability as n→∞.

How large should n be so that P
(
0.4 ≤ X̄n ≤ 0.6

)
≥ 0.7? [Hint: Use Chebyshev’s inequality]

84

The Xi are i.i.d. Bernoulli random variables with parameter p = 1/2. Hence, E [Xi] = p = 1/2
and var [Xi] = p × (1 − p) = 1/4. For the sample mean X̄n, E

[
X̄n

]
= E [Xi] = 1/2 and

var
[
X̄n

]
= var [Xi] /n = 1/(4n).

From Chebyshev’s inequality,

P
(
0.4 ≤ X̄n ≤ 0.6

)
= P

(
|X̄n − E

[
X̄n

]
| ≤ 0.1

)
= 1− P

(
|X̄n − E

[
X̄n

]
| > 0.1

)
≥ 1− 1

4n(0.1)2
= 1− 25

n
.
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The derived lower bound on the probability of interest will exceed 0.7 if n = 84.

9. A fair die is tossed many times in succession. The tosses are independent of each other.
Initialize X0 = 6 and for each n ≥ 1, let Xn denote the minimum among the first n tosses.

(a) (12 points) Show that XN = X0, X1, . . . , Xn, . . . is a Markov chain, specify its state space
and determine the transition probability matrix.

Let YN = Y1, . . . , Yn, . . . denote the i.i.d. outcomes of the die tosses. The distribution of Yn is
uniform over the set {1, 2, 3, 4, 5, 6}. Since X0 = 6, notice we can write for all n ≥ 1

Xn = min{Y1, . . . , Yn} = min{Xn−1, Yn}.

So XN is a Markov chain because we have expressed the state as Xn = f(Xn−1, Yn), where
YN is an i.i.d. process independent of the initial condition. Moreover, since Yn ∈ {1, 2, 3, 4, 5, 6}
then the state space of XN is S = {1, 2, 3, 4, 5, 6}.
The transition probability matrix is

P =


1 0 0 0 0 0

1/6 5/6 0 0 0 0
1/6 1/6 2/3 0 0 0
1/6 1/6 1/6 1/2 0 0
1/6 1/6 1/6 1/6 1/3 0
1/6 1/6 1/6 1/6 1/6 1/6

 .

(b) (4 points) Specifiy the communication classes and determine whether they are transient or
recurrent.

Interestingly, in this Markov chain none of the states communicates with each other. So each
state belongs to its own communicating class. There is one recurrent class R = {1} with the
absorbing state 1. All other states are transient, yielding five classes Ti = {i+ 1}, i = 1, . . . , 5.
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