ECE440 - Introduction to Random Processes

Midterm Exam

November 1, 2021

Instructions:

« This is an open book, open notes exam.

« Calculators are not needed; laptops, tablets and cell-phones are not allowed.

« Perfect score: 100 points.

o Duration: 90 minutes.

o This exam has 13 numbered pages, check now that all pages are present.

o Make sure you write your name in the space provided below.

o Show all your work, and write your final answers in the boxes when provided.

Name: SOLUTIONS

| Problem | Max. Points | Score | Problem | Max. Points | Score |

1. 24 5. 12
2. 10 6. 10
3. 12 7. 8
4. 12 8. 12
| \ \ | Total | 100 \ |

GOOD LUCK!



1. Consider a Markov chain Xy = Xg, Xy,..., X, ... with state space S = {1,2,3,4,5,6,7},
state transition diagram

and initial distribution P(Xy=1)=1and P(Xy =4) =0for2 <i < 7.

(a) (2 points) P(X5 = 4,X4 = 3,X3 = 2,X2 = S,Xl = 2,X0 = 1) =7

2

15

Repeated application of the definition of conditional probability and the Markov property yield

P(Xs=4,X,=3,Xs=2Xo=3,X; =2,Xg = 1) = P(Xy = 1) PiyPos PssPss Py
1 2

3 2
=]l X-X1IX-X1X—-=—.
5 3 3 15

(b) (6 points) Specify the communication classes and determine whether they are transient or
recurrent.

There are three communication classes. State 1 only communicates with itself and since there
is positive probability of leaving to never come back, it comprises a transient class 7 = {1}.
The other two classes are recurrent, namely R, = {2,3,4} and R, = {5,6, 7}.

(c) (6 points) What is the period of state 67

The behavior in class R, is deterministic, with visits repeating cyclicly ---5 -6 =7 — 5 —
6---. States are revisited every 3 steps, hence the period of state 6 is 3.



(d) (4 points) lim,, o, P} =7

0

State 1 is transient so visits to this state eventually stop almost surely. Thus lim,, ., P} = 0.
(e) (6 points) Calculate

o1
lim —
n—oo N

Y I{X; =7| X, =5}
=2
and provide justification for the existence of the limit.

1

3

The event X; = 5 indicates the Markov chain is absorbed by the recurrent class R,. Even though
this class is not ergodic (recall its states have period 3), the ergodic limit

.1l 1
T}Lrgon;H{Xi:7|X1:5}:3 a.s.,

because the process spends exactly a third of the time in each state.
2. (10 points) Consider i.i.d. continuous random variables X1, ..., X;9 with probability density
function

Fr(x) = 2z, O<z <1,
XV 0, otherwise.

Find the approximate probability that Y = 22'121 X; will exceed 7. Write your result in terms of
the complementary cumulative distribution function ¢ of a standard Normal random variable,
that is for Z ~ N(0, 1) then

O(2)=P(Z>2) = \/LQ_T( /ZOO e 2y,
*(%)

We have E [Y] = 10E [X;] and var[Y] = 10var [ X;]. Some simple calculations yield

! 2 20
]E[Xﬂ:/ 20%dr == =E[Y]="=
0 3 3
and .
Var[X]—E[Xﬂ—E[X}?—/ 2%dr — = = = var[Y] = -
! ! ! . 9 18 18

By virtue of the Central Limit Theorem, we can approximate the distribution of Y with that of
a Normal, namely
20 10
Y~N{|— —]|.
< 3’ 18)
With Z ~ N(0, 1), the desired probability can thus be approximated as

_ T-E[Y]\ 1
P(Y>7)NP<Z>var[Y}) _<I><\/5>.



3. Draw a county at random from the United States. Then draw n people at random from that
county. Let 0 < X < n be the number of those people who are infected with COVID-19. If @
denotes the proportion of people in the county with the virus, then () is also a random variable
since it varies from county to county. Given () = ¢, we have that X ~ Binomial(n, q). Also,
suppose that the random variable () is uniformly distributed in the interval [0, 1]. The distribution
of X is thus constructed in two steps, leading to a so-termed hierarchical model that we write

@) ~ Uniform|0, 1]
X | @ = q ~ Binomial(n, q).

(a) (2 points) E [X | Q = ¢] =?

ngq

Because X } () = q ~ Binomial(n, ¢) it follows that E [X } Q= q] = ng.

(b) (4 points) E [X] =7

n
2

Notice that I [Q] = 3 since @ ~ Uniform[0, 1]. Using the law of iterated expectations we find

n

E[X] = Eq [Ex [X[Q]] =Eq[nQ] = nE[Q] = 5.

(c) (6 points) var [X] =7

n n?

6+12

To compute var [X] we condition on Q. Because X | @ = ¢ ~ Binomial(n, ¢) it follows that
E [X ‘ Q] = n() and var [X ‘ Q} = nQ(1 — Q). Using the conditional variance formula

var [X] = Eq [varx [X | Q]] + varg [Ex [X | Q]]
=E[nQ(1 — Q)] + var [nQ)]

1 , n n2
=n [ q(1—q)dg+nvar[Q] = -+ —.
J o
In arriving at the final result we used that var [Q] = -5 since @) ~ Uniform[0, 1.



4. Suppose that Xy = X5, Xo,..., X,,,... 1s an i.1.d. sequence of random variables, which are
uniformly distributed in the interval [0, 1].

(a) (8 points) Define the random variable
Y = min{Xl,XQ}.

Write down an expression for fy(y), the probability density function of Y. [Hint: it might be
easier to first compute P (Y > y).]

Fry) = { 0, otherwise.

We derive first the complementary cumulative distribution function P (Y > y). To start, note that
because X7, Xy ~ Uniform[0, 1] then 0 < Y < 1. Accordingly, P(Y > y) = 1 for y < 0 and
P(Y >y)=0fory > 1. For 0 <y < 1, we have
P(Y > y) =P (min{ Xy, Xo} > y)
:P(X1 >y, Xo > y)
=P(X1>y) xP(X2>y) = (1-y)”
We used that: (i) events {min{X;, X2} > y} and {X; > y, Xo > y} are equivalent; and (ii)

X; and X, are independent. Moving on, since the cumulative distribution function Fy (y) =
P(Y <y)=1-P(Y > y), we have

0, y <0,
Fr(y) =4 1—-(1-y)? 0<y<1,
L, y=> 1

Recalling that the density fy(y) = dFy(y)/dy, we arrive at the desired result

Lo 2l—y), 0<y<1,
fr(y) = { 0, otherwise.

(b) (4 points) Let Yy = Y7, Y5, ....,Y,,, ... be the sequence of random variables given by

Y, =min{Xy,..., X}, n>1

Show that Y,, converges in probability to 0 as n — oo.

To show that Y,, converges in probability to 0, notice that

P(|Y, —0| >¢€) =P (min{X;,..., X,} >¢)
=P(X;>e)xP(Xo>e)x...xP(X,>¢)=(1—¢)",

which goes to 0 as n — oc.



5. Suppose that Xy = Xo, X1,...,X,,... is a Markov chain with state space S = {1,2},
transition probability matrix
pP_ < 1—a a )
b 1-b )’

where 0 < a < 1 and 0 < b < 1. We define the recurrence time of state ¢ € S as

T; = min{n > 0: X,, =i} given that X, = 1.
Accordingly, T; is a discrete random variable taking values on the integers {1,2,3,...}.
(a) (6 points) Compute pr, (n) =P (T} = n| X, = 1), the probability mass function of T7.

1 —a, n=1,
pry(n) = { ab(l—=b)""2 n>2.
We have that
P(T1=1[Xo=1)=P(X;=1|Xy=1)=1—aq,
P(T1=2|Xg=1)=P(X;=1,X;=2|Xg=1) =axb,
P(I1=3|Xo=1)=P(X3=1,X=2X;=2[Xo=1)=axbx (1-0),

P(Ti=n|[Xo=1)=P(X,=1,X,1=2,..., X1 =2|Xo=1) =axbx (1 -b)""
All in all, the conclusion is that the probability mass function of 7} is given by
1—a, n=1,

pPr (TL) = { (lb(l _ b)n—27 n>2.

(b) (6 points) E [T1 ‘XO = 1] =7 [Reminder: for your calculations, it may be useful to recall
the sum of the geometric series Y~ o" ' =1/(1—a), for 0 < a < 1.]

a+b
b

From the definition of expectation

o0

E [Tl ‘XO = 1} = anTl(n)

n=1

=1l—a+ Znab(l —b)" 2

n=2

=1—-a+ i(k + 1)ab(1 — b))

k=1

=l-a+ab) (1-b)""+a) kb(1—b)""
k=1 k=1

ab a_a+b

—a=n 5" b
In addition to the change of variables n = k + 1 and the sum of the geometric series, we used

that Y7, kb(1 —b)*' = 1 is the expectation of a Geometric(b) random variable.

=1—a-+



6. Suppose that we want to evaluate the integral

[ /  Hayds

for some integrable function f. Unlike polynomial, rational or trigonometric functions, if f is
complicated then there may be no known closed form expression for /. In these cases, numerical
integration methods are appropriate to approximate the value of .

Here we will explore the simplest version of Monte Carlo integration. Start by writing

I= [ f@ds = [ w@glis,
where w(z) = f(z)(b—a) and g(z) = 1/(b — a).

(a) (4 points) Show that [ = E [w(X)], where X is a random variable. Specify the distribution
of X.

Recognizing g(z) = 1/(b — a) as the probability density function of a random variable that is
uniformly distributed in [a, b], then it follows that [ = E [w(X)], where X ~ Uniform|[a, b].

(b) (6 points) Suppose that you can generate NV i.i.d. samples from the distribution of X. Describe
a method to estimate the value of /, and state any result you use to justify your approximation.

Supose we generate i.i.d. samples X,..., Xy ~ Uniform[a,b]. The law of large numbers
justifies the Monte Carlo approach of estimating the integral / = E[w(X)] via the sample

mean, namely
N

I= ;{ D w(X;).

i=1

7. (8 points) Consider a random variable X with cumulative distribution function Fx(z) =
P (X < ) given in the following figure.

e

Sketch Fy(y) =P (Y < y), the cumulative distribution function of ¥ = max{0, X }.

Because Y = max{0, X} > 0, then it follows immediately that P (Y < y) = 0 for y < 0. Now,
for y > 0 then P (Y <y) =P (X <y) = Fx(y). The resulting cumulative distribution function
is depicted in the following figure.



8. (12 points) Suppose that Xy = Xg, X3,..., X, ... is a Markov chain with state space S =
{1,2,3,4,5} and transition probability matrix

g p 0 00
g 0 p 00
P=|q¢q 0 0 p O
g 00 0 p
100 00

LetO<p<landqg=1-—p.

Determine the stationary distribution of Xy. [Reminder: for your calculations, it might useful to
. . k r 1—akt1
recall the partial geometric sum > °_ o’ = , for a #£ 1.]

11—«

The Markov Chain is ergodic and has a unique stationary distribution 7 = [my, 2, 73, 74, 75 T
Writing down the balance equations for states 2,...,5 we obtain (recall p+ ¢ =1)

g = P71
9
T3 = PTo = T3 = P Ty
3
Ty = PTg = T4 = P71

4
Ty = Py = 5 = P T7.
Finally, since Z?:l m; = 1 we can readily solve for 7; to obtain

. 1
7T1(1+p+p2+1)3+p4):1:>7ﬁ: — 1

E?:opi 1—p>

Putting all the pieces together, the stationary distribution is

q pg  pq  pPq  pYq

1_p5’1_p5’1_p5’1_p5’1_p5

T =



