
ECE440 - Introduction to Random Processes

Midterm Exam

November 2, 2022

Instructions:

• This is an open book, open notes exam.
• Calculators are not needed; laptops, tablets and cell-phones are not allowed.
• Perfect score: 100 (out of 102, extra points are bonus points).
• Duration: 90 minutes.
• This exam has 12 numbered pages, check now that all pages are present.
• Make sure you write your name in the space provided below.
• Show all your work, and write your final answers in the boxes when provided.

Name:

Problem Max. Points Score Problem Max. Points Score
1. 20 5. 14
2. 10 6. 10
3. 10 7. 22
4. 16

Total 102

GOOD LUCK!
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1. Consider a Markov chain XN = X0, X1, . . . , Xn, . . . with state space S = {1, 2}, transition
probability matrix

P =

(
1/2 1/2
2/3 1/3

)
,

and initial distribution P (X0 = 1) = 1/2 and P (X0 = 2) = 1/2. To spare you of pointless
calculations, if needed you may use that

P2 =

(
7/12 5/12
5/9 4/9

)
=

(
0.58 0.42
0.56 0.44

)
.

(a) (2 points) P
(
X3 = 2

∣∣X2 = 1, X1 = 2
)
=?

(b) (3 points) P
(
X4 = 1

∣∣X2 = 2, X1 = 1, X0 = 1
)
=?
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(c) (5 points) P (X2 = 1) =?

(d) (5 points) E
[
X2

∣∣X0 = 1
]
=?

(e) (5 points) E [X2] =?
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2. (10 points) If a sequence of random variables XN = X0, X1, . . . , Xn, . . . converges in dis-
tribution to a Normal then the delta method allows us to find the limiting distribution of
YN = g(X0), g(X1), . . . , g(Xn), . . ., where g is any differentiable function with derivative g′.

Theorem (The delta method). Suppose that XN = X0, X1, . . . , Xn, . . . is such that
√
n(Xn − µ)

σ
converges in distribution to a standard Normal as n → ∞,

and that g is a differentiable function such that g′(µ) 6= 0. Then
√
n(g(Xn)− g(µ))

|g′(µ)|σ
converges in distribution to a standard Normal as n → ∞.

In other words, for sufficiently large n

Xn ∼ N
(
µ,

σ2

n

)
implies that g(Xn) ∼ N

(
g(µ), (g′(µ))2

σ2

n

)
.

Suppose that UN = U1, U2, . . . , Un, . . . is an i.i.d. sequence of random variables, which are
uniformly distributed in the interval [0, 1]. Let

Zn =

(
1

n

n∑
i=1

Ui

)2

, n = 1, 2, . . . .

Find the distribution of Zn for sufficiently large n.
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3. Consider a probability space (S,F ,P (·)). Suppose that A and B are events in F .

(a) (5 points) Derive a simple expression for P (B ∩ Ac) in terms of P (B) and P (A ∩B). Show
your work.

(b) (5 points) Now suppose that A and B are independent. Prove that Ac and B are independent.

5



4. Consider n independent trials, each of which results in one of the outcomes 1, . . . , r, with
respective probabilities p1, . . . , pr,

∑r
i=1 pi = 1. If we let Ni denote the number of trials that

result in outcome i, then the random vector N = [N1, . . . , Nr]
> is said to have a multinomial

distribution.

(a) (2 points) E [Nj] =?

(b) (3 points) E
[
N2

j

]
=?
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(c) (5 points) Explain why the conditional distribution of Ni, given that Nj = k for j 6= i, is
Binomial(n− k, pi

1−pj
).

(d) (6 points) Let i 6= j. E [NiNj] =? (Hint: condition on Nj)

7



5. Suppose that XN = X0, X1, . . . , Xn, . . . is a Markov chain with state space S = {1, 2, 3, 4},
state transition diagram

1

2 3

4

1/2

1/4

1/4

1

1

1

and initial distribution P (X0 = 1) = 1 and P (X0 = i) = 0 for 2 ≤ i ≤ 4.

(a) (3 points) What is the period of state 2?

(b) (3 points)
∑9

i=1 I {Xi = 1} =?
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(c) (8 points) Calculate

lim
n→∞

4

n

n∑
i=1

I {Xi = 3}

and provide justification for the existence of the limit.
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6. Consider two independent random variables U and T . Suppose that U is uniformly distributed
in the interval [0, 2] and that T has the exponential distribution with mean 1/2.

(a) (6 points) E
[
UeT

]
=?

(b) (4 points) Note that var [U ] = 1/3 and var [T ] = 1/4. var [2U − 2T ] =?

10



7. Suppose that XN = X0, X1, . . . , Xn, . . . is a Markov chain with state space S = {1, 2, 3} and
transition probability matrix

P =

 2/3 1/3 0
3/4 1/4 0
0 p 2/5

 .

(a) (2 points) What is the value of p? Explain.

(b) (6 points) Draw the corresponding state transition diagram.
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(c) (4 points) Specifiy the communication classes and determine whether they are transient or
recurrent.

(d) (10 points) Determine the limit probabilities limn→∞ P n
ij for each i, j ∈ S.
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