ECE440 - Introduction to Random Processes

Midterm Exam

November 1, 2023

Instructions:

- This is an open book, open notes exam.
- Calculators are not needed; laptops, tablets and cell-phones are not allowed.
- Perfect score: 100 (out of 101, extra point is a bonus point).
- Duration: 90 minutes.
- This exam has 11 numbered pages, check now that all pages are present.
- Make sure you write your name in the space provided below.
- Show all your work, and write your final answers in the boxes when provided.

Name: \qquad

Problem	Max. Points	Score	Problem	Max. Points	Score
1.	24		5.	10	
2.	8		6.	22	
3.	13		7.	12	
4.	12				
			Total	101	

GOOD LUCK!

1. Consider three Markov chains with respective state transition diagrams given by

Answer the following questions for each of the Markov chains. Enter your Yes/No responses in the boxes provided. Also provide a brief one-line justification of your answers.
(a) (6 points) Is the Markov chain irreducible?

Markov chain 1	Markov chain 2	Markov chain 3

(b) (6 points) Are all states in the Markov chain aperiodic?

Markov chain 1	Markov chain 2	Markov chain 3

(c) (6 points) Let X_{n} be the state of the Markov chain at time n, and let S denote the state space. Does

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left(X_{n}=j \mid X_{0}=i\right)
$$

exist for all $i, j \in S$?

Markov chain 1	Markov chain 2	Markov chain 3

(d) (6 points) Does

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=1}^{n} \mathbb{I}\left\{X_{m}=i\right\}
$$

exist for all $i \in S$, independently of how the Markov chain is initialized?

Markov chain 1	Markov chain 2	Markov chain 3

2. (8 points) Let X and Y be independent random variables with $Y \neq 0$ and $\mathbb{E}[Y] \neq 0$. Prove or disprove the following identity:

$$
\mathbb{E}\left[\frac{X}{Y}\right]=\frac{\mathbb{E}[X]}{\mathbb{E}[Y]}
$$

3. Consider the continuous random variables X and Y with joint probability density function

$$
f_{X Y}(x, y)=\left\{\begin{array}{cc}
c(x+y), & 0<x<1 \text { and } 0<y<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

(a) (2 points) What is the value of c ? Explain.
\square
(b) (4 points) Find the conditional probability density function $f_{Y \mid X}(y \mid x)$.
\square
(c) (3 points) $\mathrm{P}(Y>1 / 2 \mid X=1 / 2)=$?
\square
(d) (4 points) $\mathrm{P}(Y>1 / 2 \mid X<1 / 2)=$?
\square
4. (a) (4 points) Let $X_{\mathbb{N}}=X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be an i.i.d. sequence of Bernoulli(1/4) random variables. Calculate

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}^{5}
$$

and provide justification for the existence of the limit.
\square
(b) (8 points) Suppose that $Y_{\mathbb{N}}=Y_{0}, Y_{1}, \ldots, Y_{n}, \ldots$ is a Markov chain with state space $S=\{1,2\}$ and transition probability matrix

$$
\mathbf{P}=\left(\begin{array}{cc}
p & 1-p \\
1 / 2 & 1 / 2
\end{array}\right), \quad 0 \leq p<1
$$

Determine p so that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=1}^{n} \mathbb{I}\left\{Y_{m}=2\right\}
$$

is equal to the answer you obtained in part (a).
\square
5. Suppose X and Y are random variables with joint probability mass function given by

$$
\begin{array}{c|ccc}
& Y=1 & Y=2 & Y=3 \\
\hline X=0 & 1 / 4 & 3 / 16 & 1 / 16 \\
X=1 & 1 / 8 & 0 & 3 / 8
\end{array}
$$

(10 points) $\mathbb{E}\left[\left.\frac{X}{Y} \right\rvert\, X^{2}+Y^{2} \leq 4\right]=$?
\square
6. Here we study a symmetric random walk on the complete graph with N_{v} vertices. Specifically, we consider undirected graphs without self-loops, where each vertex is connected to all other vertices via edges. For instance, the complete graph on $N_{v}=5$ vertices is depicted below.

For given positive integer N_{v}, suppose that X_{n} is the vertex visited by the random walker at time n. Every time period $n \geq 0$, the random walker chooses a vertex uniformly at random from the set of all vertices other than X_{n}, and transitions to the chosen vertex at time $n+1$. Accordingly, the process $X_{\mathbb{N}}=X_{0}, X_{1}, \ldots, X_{n}, \ldots$ is a Markov chain with state space $S=\left\{1, \ldots, N_{v}\right\}$.
(a) (5 points) Determine the transition probabilities $P_{i j}$ for all $i, j \in S$.
\square
(b) (7 points) Compute the stationary distribution of $X_{\mathbb{N}}$.
\square
(c) (10 points) Suppose that the random walker starts at vertex $i \in S$. Let T_{i} denote the time until it first returns to i. $\mathbb{E}\left[T_{i}\right]=$?
\square
7. (12 points) Suppose that $X_{\mathbb{N}}=X_{1}, X_{2}, \ldots, X_{n}, \ldots$ is an i.i.d. sequence of random variables with $\mathbb{E}\left[X_{1}\right]=\mu$ and $\operatorname{var}\left[X_{1}\right]=\sigma^{2}$. Let N be a positive integer-valued random variable independent of $X_{\mathbb{N}}$. Define

$$
Y=\frac{1}{N} \sum_{i=1}^{N} X_{i}
$$

Compute var $[Y]$.
\square

