ECE440 - Introduction to Random Processes

Midterm Exam

November 1, 2023

Instructions:

- This is an open book, open notes exam.
- Calculators are not needed; laptops, tablets and cell-phones are not allowed.
- Perfect score: 100 (out of 101, extra point is a bonus point).
- Duration: 90 minutes.
- This exam has 11 numbered pages, check now that all pages are present.
- Make sure you write your name in the space provided below.
- Show all your work, and write your final answers in the boxes when provided.

Name: \qquad

Problem	Max. Points	Score	Problem	Max. Points	Score
1.	24		5.	10	
2.	8		6.	22	
3.	13		7.	12	
4.	12				
			Total	101	

GOOD LUCK!

1. Consider three Markov chains with respective state transition diagrams given by

Markov chain 1

Answer the following questions for each of the Markov chains. Enter your Yes/No responses in the boxes provided. Also provide a brief one-line justification of your answers.
(a) (6 points) Is the Markov chain irreducible?

Markov chain 1	Markov chain 2	Markov chain 3
No	Yes	Yes

Markov chain 1: State 4 is absorbing, hence there are two communication classes $\mathcal{R}=\{4\}$ and $\mathcal{T}=\{1,2,3\}$.
Markov chain 2: All states communicate, so there is a single class $\mathcal{R}=\{1,2,3\}$.
Markov chain 3: All states communicate, so there is a single class $\mathcal{R}=\{1,2,3,4\}$.
(b) (6 points) Are all states in the Markov chain aperiodic?

Markov chain 1	Markov chain 2	Markov chain 3
No	Yes	No

Markov chain 1: State 4 is aperiodic because $P_{44}=1$, but all other states have period $d=3$.

Markov chain 2: Suffices to find the period of state 1, and since $P_{11}=0, P_{11}^{2}=1 / 2, P_{11}^{3}=1 / 2$, we have $d=\operatorname{gcd}\{2,3, \ldots\}=1$.
Markov chain 3: Suffices to find the period of state 1, and since $P_{11}^{2 n}>0, P_{11}^{2 n+1}=0$, we have $d=\operatorname{gcd}\{2,4, \ldots\}=2$.
(c) (6 points) Let X_{n} be the state of the Markov chain at time n, and let S denote the state space. Does

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left(X_{n}=j \mid X_{0}=i\right)
$$

exist for all $i, j \in S$?

Markov chain 1	Markov chain 2	Markov chain 3
Yes	Yes	No

Markov chain 1: For all $i \in S$ we have $\lim _{n \rightarrow \infty} P_{i 4}^{n}=1$ and $\lim _{n \rightarrow \infty} P_{i j}^{n}=0, j \neq 4$. Markov chain 2: The Markov chain is ergodic, so $\lim _{n \rightarrow \infty} P_{i j}^{n}$ exist for all $i, j \in S$.
Markov chain 3: All states have period $d=2$, hence $\lim _{n \rightarrow \infty} P_{i j}^{n}$ does not exist for any $i, j \in S$ (the $P_{i j}^{n}$ oscillate).
(d) (6 points) Does

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=1}^{n} \mathbb{I}\left\{X_{m}=i\right\}
$$

exist for all $i \in S$, independently of how the Markov chain is initialized?

Markov chain 1	Markov chain 2	Markov chain 3
Yes	Yes	Yes

Markov chain 1: The ergodic limits converge to $\pi_{4}=1$ and $\pi_{i}=0$ for $i \in\{1,2,3\}$.
Markov chain 2: The Markov chain is ergodic, so the limits exist by the Ergodic Theorem.
Markov chain 3: Even though the single recurrent class has periodic states, the ergodic limits exist.
2. (8 points) Let X and Y be independent random variables with $Y \neq 0$ and $\mathbb{E}[Y] \neq 0$. Prove or disprove the following identity:

$$
\mathbb{E}\left[\frac{X}{Y}\right]=\frac{\mathbb{E}[X]}{\mathbb{E}[Y]}
$$

Because X and Y are independent then we have

$$
\mathbb{E}\left[\frac{X}{Y}\right]=\mathbb{E}[X] \times \mathbb{E}\left[\frac{1}{Y}\right]
$$

But in general $\mathbb{E}\left[\frac{1}{Y}\right] \neq \frac{1}{\mathbb{E}[Y]}$ and hence the identity is not true. As a counter-example, consider Y with pmf $\mathrm{P}(Y=2)=1 / 2$ and $\mathrm{P}(Y=4)=1 / 2$. Hence,

$$
\begin{aligned}
\mathbb{E}[Y] & =2 \times \frac{1}{2}+4 \times \frac{1}{2}=3 \Rightarrow \frac{1}{\mathbb{E}[Y]}=\frac{1}{3} \\
\mathbb{E}\left[\frac{1}{Y}\right] & =\frac{1}{2} \times \frac{1}{2}+\frac{1}{4} \times \frac{1}{2}=\frac{3}{8} \neq \frac{1}{\mathbb{E}[Y]} .
\end{aligned}
$$

Together with an X for which $\mathbb{E}[X] \neq 0$, the above Y offers a counter-example for the identity in question.
3. Consider the continuous random variables X and Y with joint probability density function

$$
f_{X Y}(x, y)=\left\{\begin{array}{cc}
c(x+y), & 0<x<1 \text { and } 0<y<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

(a) (2 points) What is the value of c ? Explain.
\square
A valid joint pdf satisfies
$1=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X Y}(x, y) d x d y=\int_{0}^{1} \int_{0}^{1} c(x+y) d x d y=c \int_{0}^{1} \int_{0}^{1} x d x d y+c \int_{0}^{1} \int_{0}^{1} y d x d y=c$.
(b) (4 points) Find the conditional probability density function $f_{Y \mid X}(y \mid x)$.

$$
f_{Y \mid X}(y \mid x)=\left\{\begin{array}{cc}
\frac{x+y}{x+\frac{1}{2}}, & 0<y<1 \\
0, & \text { otherwise } .
\end{array}\right.
$$

From the definition of conditional pdf

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X Y}(x, y)}{f_{X}(x)}
$$

so we compute the marginal pdf of X. To this end, we marginalize over Y and find

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X Y}(x, y) d y=\int_{0}^{1}(x+y) d y=x y+\left.\frac{y^{2}}{2}\right|_{0} ^{1}=x+\frac{1}{2}, 0<x<1
$$

All in all, the desired conditional pdf is given by

$$
f_{Y \mid X}(y \mid x)=\left\{\begin{array}{cc}
\frac{x+y}{x+\frac{1}{2}}, & 0<y<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

(c) (3 points) $\mathrm{P}(Y>1 / 2 \mid X=1 / 2)=$?
\square

Using the expression for the conditional pdf we derived in (b), for $X=1 / 2$ we obtain

$$
\mathrm{P}(Y>1 / 2 \mid X=1 / 2)=\int_{1 / 2}^{1} f_{Y \mid X}(y \mid 1 / 2) d y=\int_{1 / 2}^{1}\left(\frac{1}{2}+y\right) d y=\frac{y}{2}+\left.\frac{y^{2}}{2}\right|_{1 / 2} ^{1}=\frac{5}{8} .
$$

(d) (4 points) $\mathrm{P}(Y>1 / 2 \mid X<1 / 2)=$?

$\frac{2}{3}$

From the definition of conditional probability, we have

$$
\mathrm{P}(Y>1 / 2 \mid X<1 / 2)=\frac{\mathrm{P}(Y>1 / 2, X<1 / 2)}{\mathrm{P}(X<1 / 2)}
$$

We compute each of the probabilities by integrating the appropriate pdfs, namely

$$
\begin{gathered}
\mathrm{P}(Y>1 / 2, X<1 / 2)=\int_{1 / 2}^{1} \int_{0}^{1 / 2} f_{X Y}(x, y) d x d y=\int_{1 / 2}^{1} \int_{0}^{1 / 2}(x+y) d x d y=\frac{1}{4}, \\
\mathrm{P}(X<1 / 2)=\int_{0}^{1 / 2} f_{X}(x) d x=\int_{0}^{1 / 2}\left(x+\frac{1}{2}\right) d x=\frac{3}{8}
\end{gathered}
$$

Putting the pieces together, we arrive at the result $\mathrm{P}(Y>1 / 2 \mid X<1 / 2)=\frac{2}{3}$.
4. (a) (4 points) Let $X_{\mathbb{N}}=X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be an i.i.d. sequence of $\operatorname{Bernoulli}(1 / 4)$ random variables. Calculate

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}^{5}
$$

and provide justification for the existence of the limit.

Because $X_{\mathbb{N}}$ is i.i.d., then $Z_{\mathbb{N}}=X_{1}^{5}, X_{2}^{5}, \ldots, X_{n}^{5}, \ldots$ is also i.i.d. By the strong law of large numbers the limit exists and is equal to

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}^{5}=\mathbb{E}\left[X_{1}^{5}\right], \quad \text { w.p. } 1 .
$$

But notice that since $X_{i} \sim \operatorname{Bernoulli}(1 / 4)$, then $X_{i}^{5} \sim \operatorname{Bernoulli}(1 / 4)$ as well. Thus, $\mathbb{E}\left[X_{i}^{5}\right]=\frac{1}{4}$.
(b) (8 points) Suppose that $Y_{\mathbb{N}}=Y_{0}, Y_{1}, \ldots, Y_{n}, \ldots$ is a Markov chain with state space $S=\{1,2\}$ and transition probability matrix

$$
\mathbf{P}=\left(\begin{array}{cc}
p & 1-p \\
1 / 2 & 1 / 2
\end{array}\right), \quad 0 \leq p<1
$$

Determine p so that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=1}^{n} \mathbb{I}\left\{Y_{m}=2\right\}
$$

is equal to the answer you obtained in part (a).

$\frac{5}{6}$

The long-run fraction of time spent in state 2 is π_{2} almost surely, where $\pi=\left[\pi_{1}, \pi_{2}\right]^{\top}$ is the unique (the Markov chain is ergodic for $0 \leq p<1$) stationary distribution which satisfies

$$
\binom{\pi_{1}}{\pi_{2}}=\left(\begin{array}{cc}
p & 1 / 2 \\
1-p & 1 / 2
\end{array}\right)\binom{\pi_{1}}{\pi_{2}}, \quad \pi_{1}+\pi_{2}=1
$$

Solving the linear system yields $\pi_{2}=\frac{2(1-p)}{3-2 p}$. Imposing $\pi_{2}=1 / 4$, we find $p=5 / 6$.
5. Suppose X and Y are random variables with joint probability mass function given by

	$Y=1$	$Y=2$	$Y=3$
$X=0$	$1 / 4$	$3 / 16$	$1 / 16$
$X=1$	$1 / 8$	0	$3 / 8$

(10 points) $\mathbb{E}\left[\left.\frac{X}{Y} \right\rvert\, X^{2}+Y^{2} \leq 4\right]=$?

$\frac{2}{9}$

To evaluate $\mathbb{E}\left[\left.\frac{X}{Y} \right\rvert\, X^{2}+Y^{2} \leq 4\right]$ the relevant joint conditional pmf $\mathrm{P}\left(X=1, Y=y \mid X^{2}+Y^{2} \leq 4\right)$ is

$$
\begin{aligned}
\mathrm{P}\left(X=1, Y=1 \mid X^{2}+Y^{2} \leq 4\right) & =\frac{\mathrm{P}\left(\{X=1, Y=1\},\left\{X^{2}+Y^{2} \leq 4\right\}\right)}{\mathrm{P}\left(X^{2}+Y^{2} \leq 4\right)} \\
& =\frac{\mathrm{P}(X=1, Y=1)}{\mathrm{P}(X=0, Y=1)+\mathrm{P}(X=0, Y=2)+\mathrm{P}(X=1, Y=1)}=\frac{2}{9}, \\
\mathrm{P}\left(X=1, Y=2 \mid X^{2}+Y^{2} \leq 4\right) & =0, \\
\mathrm{P}\left(X=1, Y=3 \mid X^{2}+Y^{2} \leq 4\right) & =0 .
\end{aligned}
$$

We do not need to compute the values of $\mathrm{P}\left(X=0, Y=y \mid X^{2}+Y^{2} \leq 4\right)$ because if $X=0$, then $\frac{X}{Y}=0$ and those terms will not contribute to the expectation. Hence,

$$
\mathbb{E}\left[\left.\frac{X}{Y} \right\rvert\, X^{2}+Y^{2} \leq 4\right]=\sum_{x=0}^{1} \sum_{y=1}^{3}\left(\frac{x}{y}\right) \times \mathrm{P}\left(X=x, Y=y \mid X^{2}+Y^{2} \leq 4\right)=1 \times \frac{2}{9}=\frac{2}{9}
$$

6. Here we study a symmetric random walk on the complete graph with N_{v} vertices. Specifically, we consider undirected graphs without self-loops, where each vertex is connected to all other vertices via edges. For instance, the complete graph on $N_{v}=5$ vertices is depicted below.

For given positive integer N_{v}, suppose that X_{n} is the vertex visited by the random walker at time n. Every time period $n \geq 0$, the random walker chooses a vertex uniformly at random from the set of all vertices other than X_{n}, and transitions to the chosen vertex at time $n+1$. Accordingly, the process $X_{\mathbb{N}}=X_{0}, X_{1}, \ldots, X_{n}, \ldots$ is a Markov chain with state space $S=\left\{1, \ldots, N_{v}\right\}$.
(a) (5 points) Determine the transition probabilities $P_{i j}$ for all $i, j \in S$.

$$
P_{i j}=\left\{\begin{array}{cl}
\frac{1}{N_{v}-1}, & i \neq j, \\
0, & i=j
\end{array}\right.
$$

Suppose that $X_{n}=i, i \in S$. Since the random walker chooses the vertex j its going to visit at time $n+1$ uniformly at random from $S \backslash\{i\}$, then it immediately follows that

$$
P_{i j}=\mathrm{P}\left(X_{n+1}=j \mid X_{n}=i\right)=\frac{1}{N_{v}-1}
$$

for all $i \in S$ all $j \in S \backslash\{i\}$. Moreover, we have $P_{i i}=0$ for all $i \in S$.
(b) (7 points) Compute the stationary distribution of $X_{\mathbb{N}}$.

$$
\pi_{i}=\frac{1}{N_{v}}, i \in S
$$

There is no need for any calculations here. Since at each time step $n \geq 0$, all vertices other than X_{n} are equally likely to be visited at time $n+1$, then the long-run fraction of time spent in every vertex will be the same. In other words, the stationary distribution will be uniform over $S=\left\{1, \ldots, N_{v}\right\}$.
(c) (10 points) Suppose that the random walker starts at vertex $i \in S$. Let T_{i} denote the time until it first returns to i. $\mathbb{E}\left[T_{i}\right]=$?

Notice first that $T_{i}>1$, because if we are initially at i then necessarily we are going to be at $j \neq i$ in the next time step. In each of the subsequent steps, there is a probability $P_{j i}=$ $\frac{1}{N_{v}-1}$ of returning to i. Given these considerations, we can write $T_{i}=1+N$, where $N \sim$ Geometric $\left(\frac{1}{N_{v}-1}\right)$. Recalling that $\mathbb{E}[N]=N_{v}-1$, then we find $\mathbb{E}\left[T_{i}\right]=1+\mathbb{E}[N]=N_{v}$.
7. (12 points) Suppose that $X_{\mathbb{N}}=X_{1}, X_{2}, \ldots, X_{n}, \ldots$ is an i.i.d. sequence of random variables with $\mathbb{E}\left[X_{1}\right]=\mu$ and $\operatorname{var}\left[X_{1}\right]=\sigma^{2}$. Let N be a positive integer-valued random variable independent of $X_{\mathbb{N}}$. Define

$$
Y=\frac{1}{N} \sum_{i=1}^{N} X_{i}
$$

Compute var $[Y]$.

$$
\sigma^{2} \times \mathbb{E}\left[\frac{1}{N}\right]
$$

To compute var $[Y]$, we condition on N. Because the X_{n} are i.i.d. and independent of N, we find that $\mathbb{E}[Y \mid N]=\mu$ and $\operatorname{var}[Y \mid N]=\frac{\sigma^{2}}{N}$. Using the conditional variance formula

$$
\begin{aligned}
\operatorname{var}[Y] & =\mathbb{E}[\operatorname{var}[Y \mid N]]+\operatorname{var}[\mathbb{E}[Y \mid N]] \\
& =\mathbb{E}\left[\frac{\sigma^{2}}{N}\right]+\operatorname{var}[\mu] \\
& =\sigma^{2} \times \mathbb{E}\left[\frac{1}{N}\right]
\end{aligned}
$$

To arrive at the last equality we used that the variance of a point mass random variable is zero.

