
ECE440 - Introduction to Random Processes

Midterm Exam

November 1, 2023

Instructions:

• This is an open book, open notes exam.
• Calculators are not needed; laptops, tablets and cell-phones are not allowed.
• Perfect score: 100 (out of 101, extra point is a bonus point).
• Duration: 90 minutes.
• This exam has 11 numbered pages, check now that all pages are present.
• Make sure you write your name in the space provided below.
• Show all your work, and write your final answers in the boxes when provided.

Name: SOLUTIONS

Problem Max. Points Score Problem Max. Points Score
1. 24 5. 10
2. 8 6. 22
3. 13 7. 12
4. 12

Total 101

GOOD LUCK!
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1. Consider three Markov chains with respective state transition diagrams given by
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Markov chain 3

Answer the following questions for each of the Markov chains. Enter your Yes/No responses in
the boxes provided. Also provide a brief one-line justification of your answers.

(a) (6 points) Is the Markov chain irreducible?

Markov chain 1 Markov chain 2 Markov chain 3
No Yes Yes

Markov chain 1: State 4 is absorbing, hence there are two communication classes R = {4} and
T = {1, 2, 3}.

Markov chain 2: All states communicate, so there is a single class R = {1, 2, 3}.

Markov chain 3: All states communicate, so there is a single class R = {1, 2, 3, 4}.

(b) (6 points) Are all states in the Markov chain aperiodic?

Markov chain 1 Markov chain 2 Markov chain 3
No Yes No

Markov chain 1: State 4 is aperiodic because P44 = 1, but all other states have period d = 3.
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Markov chain 2: Suffices to find the period of state 1, and since P11 = 0, P 2
11 = 1/2, P 3

11 = 1/2,
we have d = gcd{2, 3, . . .} = 1.
Markov chain 3: Suffices to find the period of state 1, and since P 2n

11 > 0, P 2n+1
11 = 0, we have

d = gcd{2, 4, . . .} = 2.

(c) (6 points) Let Xn be the state of the Markov chain at time n, and let S denote the state
space. Does

lim
n→∞

P
(
Xn = j

∣∣X0 = i
)

exist for all i, j ∈ S?

Markov chain 1 Markov chain 2 Markov chain 3
Yes Yes No

Markov chain 1: For all i ∈ S we have limn→∞ P n
i4 = 1 and limn→∞ P n

ij = 0, j ̸= 4.
Markov chain 2: The Markov chain is ergodic, so limn→∞ P n

ij exist for all i, j ∈ S.
Markov chain 3: All states have period d = 2, hence limn→∞ P n

ij does not exist for any i, j ∈ S
(the P n

ij oscillate).

(d) (6 points) Does

lim
n→∞

1

n

n∑
m=1

I {Xm = i}

exist for all i ∈ S, independently of how the Markov chain is initialized?

Markov chain 1 Markov chain 2 Markov chain 3
Yes Yes Yes

Markov chain 1: The ergodic limits converge to π4 = 1 and πi = 0 for i ∈ {1, 2, 3}.
Markov chain 2: The Markov chain is ergodic, so the limits exist by the Ergodic Theorem.
Markov chain 3: Even though the single recurrent class has periodic states, the ergodic limits
exist.

2. (8 points) Let X and Y be independent random variables with Y ̸= 0 and E [Y ] ̸= 0. Prove
or disprove the following identity:

E
[
X

Y

]
=

E [X]

E [Y ]
.

Because X and Y are independent then we have

E
[
X

Y

]
= E [X]× E

[
1

Y

]
.

But in general E
[
1
Y

]
̸= 1

E[Y ]
and hence the identity is not true. As a counter-example, consider

Y with pmf P (Y = 2) = 1/2 and P (Y = 4) = 1/2. Hence,

E [Y ] = 2× 1

2
+ 4× 1

2
= 3 ⇒ 1

E [Y ]
=

1

3

E
[
1

Y

]
=

1

2
× 1

2
+

1

4
× 1

2
=

3

8
̸= 1

E [Y ]
.

Together with an X for which E [X] ̸= 0, the above Y offers a counter-example for the identity
in question.
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3. Consider the continuous random variables X and Y with joint probability density function

fXY (x, y) =

{
c(x+ y), 0 < x < 1 and 0 < y < 1,

0, otherwise.

(a) (2 points) What is the value of c? Explain.

1

A valid joint pdf satisfies

1 =

∫ ∞

−∞

∫ ∞

−∞
fXY (x, y)dxdy =

∫ 1

0

∫ 1

0

c(x+ y)dxdy = c

∫ 1

0

∫ 1

0

xdxdy + c

∫ 1

0

∫ 1

0

ydxdy = c.

(b) (4 points) Find the conditional probability density function fY |X(y
∣∣x).

fY |X(y
∣∣x) = {

x+y

x+ 1
2

, 0 < y < 1,

0, otherwise.

From the definition of conditional pdf

fY |X(y
∣∣x) = fXY (x, y)

fX(x)
,

so we compute the marginal pdf of X . To this end, we marginalize over Y and find

fX(x) =

∫ ∞

−∞
fXY (x, y)dy =

∫ 1

0

(x+ y)dy = xy +
y2

2

∣∣∣∣1
0

= x+
1

2
, 0 < x < 1.

All in all, the desired conditional pdf is given by

fY |X(y
∣∣x) = {

x+y

x+ 1
2

, 0 < y < 1,

0, otherwise.

(c) (3 points) P
(
Y > 1/2

∣∣X = 1/2
)
=?

5

8

Using the expression for the conditional pdf we derived in (b), for X = 1/2 we obtain

P
(
Y > 1/2

∣∣X = 1/2
)
=

∫ 1

1/2

fY |X(y
∣∣ 1/2)dy =

∫ 1

1/2

(
1

2
+ y

)
dy =

y

2
+

y2

2

∣∣∣∣1
1/2

=
5

8
.
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(d) (4 points) P
(
Y > 1/2

∣∣X < 1/2
)
=?

2

3

From the definition of conditional probability, we have

P
(
Y > 1/2

∣∣X < 1/2
)
=

P (Y > 1/2, X < 1/2)

P (X < 1/2)
.

We compute each of the probabilities by integrating the appropriate pdfs, namely

P (Y > 1/2, X < 1/2) =

∫ 1

1/2

∫ 1/2

0

fXY (x, y)dxdy =

∫ 1

1/2

∫ 1/2

0

(x+ y)dxdy =
1

4
,

P (X < 1/2) =

∫ 1/2

0

fX(x)dx =

∫ 1/2

0

(
x+

1

2

)
dx =

3

8
.

Putting the pieces together, we arrive at the result P
(
Y > 1/2

∣∣X < 1/2
)
= 2

3
.

4. (a) (4 points) Let XN = X1, X2, . . . , Xn, . . . be an i.i.d. sequence of Bernoulli(1/4) random
variables. Calculate

lim
n→∞

1

n

n∑
i=1

X5
i

and provide justification for the existence of the limit.

1

4

Because XN is i.i.d., then ZN = X5
1 , X

5
2 , . . . , X

5
n, . . . is also i.i.d. By the strong law of large

numbers the limit exists and is equal to

lim
n→∞

1

n

n∑
i=1

X5
i = E

[
X5

1

]
, w.p. 1.

But notice that since Xi ∼ Bernoulli(1/4) , then X5
i ∼ Bernoulli(1/4) as well. Thus, E [X5

i ] =
1
4
.

(b) (8 points) Suppose that YN = Y0, Y1, . . . , Yn, . . . is a Markov chain with state space S = {1, 2}
and transition probability matrix

P =

(
p 1− p
1/2 1/2

)
, 0 ≤ p < 1.

Determine p so that

lim
n→∞

1

n

n∑
m=1

I {Ym = 2}

is equal to the answer you obtained in part (a).
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5

6

The long-run fraction of time spent in state 2 is π2 almost surely, where π = [π1, π2]
⊤ is the

unique (the Markov chain is ergodic for 0 ≤ p < 1) stationary distribution which satisfies(
π1

π2

)
=

(
p 1/2

1− p 1/2

)(
π1

π2

)
, π1 + π2 = 1.

Solving the linear system yields π2 =
2(1−p)
3−2p

. Imposing π2 = 1/4, we find p = 5/6.

5. Suppose X and Y are random variables with joint probability mass function given by

Y = 1 Y = 2 Y = 3
X = 0 1/4 3/16 1/16
X = 1 1/8 0 3/8

(10 points) E
[
X
Y

∣∣X2 + Y 2 ≤ 4
]
=?

2

9

To evaluate E
[
X
Y

∣∣X2 + Y 2 ≤ 4
]

the relevant joint conditional pmf P
(
X = 1, Y = y

∣∣X2 + Y 2 ≤ 4
)

is

P
(
X = 1, Y = 1

∣∣X2 + Y 2 ≤ 4
)
=

P ({X = 1, Y = 1}, {X2 + Y 2 ≤ 4})
P (X2 + Y 2 ≤ 4)

=
P (X = 1, Y = 1)

P (X = 0, Y = 1) + P (X = 0, Y = 2) + P (X = 1, Y = 1)
=

2

9
,

P
(
X = 1, Y = 2

∣∣X2 + Y 2 ≤ 4
)
= 0,

P
(
X = 1, Y = 3

∣∣X2 + Y 2 ≤ 4
)
= 0.

We do not need to compute the values of P
(
X = 0, Y = y

∣∣X2 + Y 2 ≤ 4
)

because if X = 0,
then X

Y
= 0 and those terms will not contribute to the expectation. Hence,

E
[
X

Y

∣∣X2 + Y 2 ≤ 4

]
=

1∑
x=0

3∑
y=1

(
x

y

)
× P

(
X = x, Y = y

∣∣X2 + Y 2 ≤ 4
)
= 1× 2

9
=

2

9
.

6. Here we study a symmetric random walk on the complete graph with Nv vertices. Specifically,
we consider undirected graphs without self-loops, where each vertex is connected to all other
vertices via edges. For instance, the complete graph on Nv = 5 vertices is depicted below.
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1

2 3

4 5

For given positive integer Nv, suppose that Xn is the vertex visited by the random walker at time
n. Every time period n ≥ 0, the random walker chooses a vertex uniformly at random from the
set of all vertices other than Xn, and transitions to the chosen vertex at time n+1. Accordingly,
the process XN = X0, X1, . . . , Xn, . . . is a Markov chain with state space S = {1, . . . , Nv}.

(a) (5 points) Determine the transition probabilities Pij for all i, j ∈ S.

Pij =

{
1

Nv−1
, i ̸= j,

0, i = j.

Suppose that Xn = i, i ∈ S. Since the random walker chooses the vertex j its going to visit at
time n+ 1 uniformly at random from S \ {i}, then it immediately follows that

Pij = P
(
Xn+1 = j

∣∣Xn = i
)
=

1

Nv − 1

for all i ∈ S all j ∈ S \ {i}. Moreover, we have Pii = 0 for all i ∈ S.

(b) (7 points) Compute the stationary distribution of XN.

πi =
1

Nv

, i ∈ S

There is no need for any calculations here. Since at each time step n ≥ 0, all vertices other than
Xn are equally likely to be visited at time n + 1, then the long-run fraction of time spent in
every vertex will be the same. In other words, the stationary distribution will be uniform over
S = {1, . . . , Nv}.

(c) (10 points) Suppose that the random walker starts at vertex i ∈ S. Let Ti denote the time
until it first returns to i. E [Ti] =?

Nv

Notice first that Ti > 1, because if we are initially at i then necessarily we are going to be
at j ̸= i in the next time step. In each of the subsequent steps, there is a probability Pji =

1
Nv−1

of returning to i. Given these considerations, we can write Ti = 1 + N , where N ∼
Geometric( 1

Nv−1
). Recalling that E [N ] = Nv − 1, then we find E [Ti] = 1 + E [N ] = Nv.
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7. (12 points) Suppose that XN = X1, X2, . . . , Xn, . . . is an i.i.d. sequence of random variables
with E [X1] = µ and var [X1] = σ2. Let N be a positive integer-valued random variable
independent of XN. Define

Y =
1

N

N∑
i=1

Xi.

Compute var [Y ].

σ2 × E
[
1

N

]

To compute var [Y ], we condition on N . Because the Xn are i.i.d. and independent of N , we
find that E

[
Y
∣∣N]

= µ and var
[
Y
∣∣N]

= σ2

N
. Using the conditional variance formula

var [Y ] = E
[
var

[
Y
∣∣N]]

+ var
[
E
[
Y
∣∣N]]

= E
[
σ2

N

]
+ var [µ]

= σ2 × E
[
1

N

]
.

To arrive at the last equality we used that the variance of a point mass random variable is zero.
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