
ECE440 - Introduction to Random Processes

Midterm Exam

October 9, 2014

Instructions:
• This is an open book, open notes exam.
• Calculators are not needed; laptops, tablets and cell-phones are not allowed.
• Perfect score: 100.
• Duration: 75 minutes.
• This exam has 10 numbered pages, check now that all pages are present.
• Show all your work, and write your final answers in the boxes when provided.

Name: SOLUTIONS

Problem Max. Points Score Problem Max. Points Score
1. 22 5. 10
2. 10 6. 14
3. 10 7. 18
4. 16

Total 100

GOOD LUCK!
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1. Suppose that XN = X0, X1, . . . , Xn, . . . is a Markov chain with state space S = {1, 2},
transition probability matrix

P =

(
1/3 2/3
1/2 1/2

)
and initial distribution P [X0 = 1] = 1 and P [X0 = 2] = 0. To spare you of pointless calculations,
if needed you may use that

P2 =

(
4/9 5/9
5/12 7/12

)
.

(a) (2 points) P
[
X3 = 1

∣∣X2 = 2, X0 = 1
]
=?

1

2

From the Markov property it follows that

P
[
X3 = 1

∣∣X2 = 2, X0 = 1
]
= P

[
X3 = 1

∣∣X2 = 2
]
= P21 =

1

2
.

(b) (6 points) P
[
X4 = 2

∣∣X2 = 1, X1 = 1, X0 = 1
]
=?

5

9

Likewise,

P
[
X4 = 2

∣∣X2 = 1, X1 = 1, X0 = 1
]
= P

[
X4 = 2

∣∣X2 = 1
]
= P 2

12 =
5

9
.

(c) (8 points) E [X2] =?

14

9

The unconditional pmf of X2 is (note that P [X0 = 1] = 1 and P [X0 = 2] = 0)

P [X2 = 1] = P
[
X2 = 1

∣∣X0 = 1
]

P [X0 = 1] + P
[
X2 = 1

∣∣X0 = 2
]

P [X0 = 2] = P 2
11 =

4

9

P [X2 = 2] = P
[
X2 = 2

∣∣X0 = 1
]

P [X0 = 1] + P
[
X2 = 2

∣∣X0 = 2
]

P [X0 = 2] = P 2
12 =

5

9
.

Hence, the expectation is E [X2] = 1× 4
9
+ 2× 5

9
= 14

9

(d) (6 points) P [X0 = 2, X2 = 1] =?

0

Since P [X0 = 2] = 0, it follows that P [X0 = 2, X2 = 1] = 0.
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2. (10 points) Suppose that XN = X1, X2, . . . , Xn, . . . is an i.i.d. sequence of random variables
and that A and B are sets such that P [X1 ∈ A] = p, P [X1 ∈ B] = q, and P [X1 ∈ A ∩B] = r.
Compute

E

[
n∑

j=1

n∑
i=1

I {Xj ∈ A}I {Xi ∈ B}

]
in terms of n, p, q, and r. Show your work.

n(n− 1)pq + nr

From the linearity of expectation, and pulling out the i = j terms

E

[
n∑

j=1

n∑
i=1

I {Xj ∈ A}I {Xi ∈ B}

]
=

n∑
j=1

n∑
i=1

E [I {Xj ∈ A}I {Xi ∈ B}]

=
n∑

j=1

n∑
i=1
i 6=j

E [I {Xj ∈ A}I {Xi ∈ B}]

+
n∑

i=1

E [I {Xi ∈ A}I {Xi ∈ B}] .

Note that for i 6= j the random variables I {Xj ∈ A} and I {Xi ∈ B} are independent, so we
can exchange product with the expectation operator in the first summands

E

[
n∑

j=1

n∑
i=1

I {Xj ∈ A}I {Xi ∈ B}

]
=

n∑
j=1

n∑
i=1
i 6=j

E [I {Xj ∈ A}]E [I {Xi ∈ B}]

+
n∑

i=1

E [I {Xi ∈ A}I {Xi ∈ B}] .

Since expected values of indicator functions are the probabilities of the indicated events, then

E [I {X1 ∈ A}] = P [X1 ∈ A] = p,

E [I {X1 ∈ B}] = P [X1 ∈ B] = q,

E [I {X1 ∈ A}I {X1 ∈ B}] = P [X1 ∈ A ∩B] = r.

Substituting these values, the final answer is

E

[
n∑

j=1

n∑
i=1

I {Xj ∈ A}I {Xi ∈ B}

]
=

n∑
j=1

n∑
i=1
i 6=j

pq +
n∑

i=1

r = n(n− 1)pq + nr.
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3. (10 points) Suppose that XN = X0, X1, . . . , Xn, . . . is a Markov chain with state space S, and
transition probability matrix P with entries Pij , i, j ∈ S. For n = 0, 1, 2 . . . define Yn = X2n.
Is YN = Y0, Y1, . . . , Yn, . . . a Markov chain? If so, provide an expression for the transition
probabilities of YN. Justify your answer.

To determine whether YN is a MC, introduce the state history vectors Yn−1 = [Yn−1, . . . , Y0]
and y = [in−1, . . . , i0] for notational compactness, and check the Markov property, i.e.,

P
[
Yn+1 = j

∣∣Yn = i,Yn−1 = y
]
= P

[
X2(n+1) = j

∣∣X2n = i,X2(n−1) = in−1, . . . , X0 = i0
]

= P
[
X2(n+1) = j

∣∣X2n = j
]
= P 2

ij.

The second equality follows because XN is a MC, and the third one is by definition of two-step
transition probabilities. Notice P

[
Yn+1 = j

∣∣Yn = i,Yn−1 = y
]

only depends on i and j.

The preceding argument establishes that YN is a MC, with transition probabilities P̂ij = P 2
ij.

4. Suppose that XN = X1, X2, . . . , Xn, . . . is an i.i.d. sequence of random variables, where
P [X1 = 1] = P [X1 = 2] = P [X1 = 3] = 1/3. Define

T = min{n ≥ 1 : Xn /∈ {2, 3}}.

(a) (6 points) Compute E
[
Xi

∣∣T = t
]
, for i = 1, . . . , t− 1.

5

2

From the definition of T , then for i = 1, . . . , t− 1 one has

E
[
Xi

∣∣T = t
]
= E

[
Xi

∣∣X1 ∈ {2, 3}, . . . , Xi ∈ {2, 3}, . . . , Xt−1 ∈ {2, 3}, Xt = 1
]

= E
[
Xi

∣∣Xi ∈ {2, 3}
]

where the last equality follows from the independence of the sequence XN. The relevant condi-
tional pmf P

[
Xi = x

∣∣Xi ∈ {2, 3}
]

is

P
[
Xi = 1

∣∣Xi ∈ {2, 3}
]
= 0

P
[
Xi = 2

∣∣Xi ∈ {2, 3}
]
=

P [Xi = 2, Xi ∈ {2, 3}]
P [Xi ∈ {2, 3}]

=
P [Xi = 2]

P [Xi = 2] + P [Xi = 3]
=

1

2

P
[
Xi = 3

∣∣Xi ∈ {2, 3}
]
=

P [Xi = 3, Xi ∈ {2, 3}]
P [Xi ∈ {2, 3}]

=
P [Xi = 3]

P [Xi = 2] + P [Xi = 3]
=

1

2
.

Hence, the conditional expectation is E
[
Xi

∣∣T = t
]
= 2× 1

2
+ 3× 1

2
= 5

2
, for i = 1, . . . , t− 1.

(b) (5 points) Compute E
[
Xt

∣∣T = t
]
.

1

Reasoning as in the previous part, from the definition of T and using the independence of the
sequence XN

E
[
Xt

∣∣T = t
]
= E

[
Xt

∣∣X1 ∈ {2, 3}, . . . , Xi ∈ {2, 3}, . . . , Xt−1 ∈ {2, 3}, Xt = 1
]

= E
[
Xt

∣∣Xt = 1
]
= 1.
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(c) (5 points) Compute E
[
Xt+1

∣∣T = t
]
.

2

Notice that T = t does not provide any information about Xt+1 = x (they are independent
events), which formally follows from

E
[
Xt+1

∣∣T = t
]
= E

[
Xt+1

∣∣X1 ∈ {2, 3}, . . . , Xi ∈ {2, 3}, . . . , Xt−1 ∈ {2, 3}, Xt = 1
]

= E [Xt+1] = 1× 1

3
+ 2× 1

3
+ 3× 1

3
= 2.

5. (10 points) Suppose that XN = X1, X2, . . . , Xn, . . . is an i.i.d. sequence of random variables,
where P [Xn = 1] = 1/3, P [Xn = 2] = 1/6, P [Xn = 3] = 1/2. Calculate

lim
n→∞

1

n

n∑
i=1

I {X2i−1 = X2i}

and provide justification for the existence of the limit.

7

18

Because XN is i.i.d., then YN = I {X1 = X2}, I {X3 = X4}, . . . , I {X2n−1 = X2n}, . . . is also
i.i.d. By the strong law of large numbers the limit exists and is equal to

lim
n→∞

1

n

n∑
i=1

I {X2i−1 = X2i} = E [I {X1 = X2}] = P [X1 = X2] , w.p. 1.

Since the XN are i.i.d., P [X1 = X2] is given by

P [X1 = X2] = P [X1 = 1] P [X2 = 1] + P [X1 = 2] P [X2 = 2] + P [X1 = 3] P [X2 = 3]

=

(
1

3

)2

+

(
1

6

)2

+

(
1

2

)2

=
7

18
.

6. (14 points) Suppose that days are either rainy (r) or sunny (s). If on any particular day it
is rainy, the the next day will be rainy with probability 2/3 and sunny with probability 1/3.
Similarly, if on any particular day it is sunny, then the next day will be rainy with probability
1/4 and sunny with probability 3/4. What is the long-run fraction of days that will be rainy?

3

7

The process is a Markov chain with state space S = {r, s} and transition probability matrix

P =

(
2/3 1/3
1/4 3/4

)
.
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The long-run fraction of days that will be rainy is πr, where π = [πr, πs]
T is the unique (the

Markov chain is ergodic) stationary distribution which satisfies(
πr

πs

)
=

(
2/3 1/4
1/3 3/4

)(
πr

πs

)
, πr + πs = 1.

Solving the linear system yields πr =
3
7
, so in the long run it will rain three days per week.

7. Consider a branching process and suppose that Xn is the number of individuals in generation n.
Suppose the k-th individual in generation n creates Qk,n+1 individuals in generation n+1, and that
the Qk,n are i.i.d. across individuals and generations, and independent of X0. Under the preceding
assumptions, XN = X0, X1, . . . , Xn, . . . is a Markov chain with state space S = {0, 1, 2, . . .} for
which

Xn+1 =
Xn∑
k=1

Qk,n+1 if Xn > 0,

and Xn+1 = 0 if Xn = 0. Let

p1(x) = P [Q1,1 = x] and

pk(x) =
x∑

y=0

p1(y)pk−1(x− y), k ≥ 2.

You may want to recall that for independent, non-negative, integer-valued random variables U
and V , the pmf pW (x) of W = U + V is given by the discrete convolution of the pmfs pU(x)
and pV (x) of U and V , that is

pW (x) =
x∑

y=0

pU(y)pV (x− y).

(a) (10 points) Determine the transition probability matrix of XN in terms of pk(·), k ≥ 1.

The key point to recognize here is that pk(x) is the probability that k individuals create a total
of x individuals in the next generation. Specifically, pk(x), k ≥ 2 is obtained by summing from
y = 0 to x the probability that a single individual generates y individuals (p1(y)) times the
probability that k − 1 individuals generate x− y individuals (pk−1(x− y)).

The transition probabilities are thus

P00 = 1 and P0j = 0, j 6= 0, (state 0 is an absorbing state),
Pij = pi(j), i 6= 0 and for all j.

More formally,

Pij = P
[
Xn+1 = j

∣∣Xn = i
]
= P

[
Xn∑
k=1

Qk,n+1 = j
∣∣Xn = i

]

P

[
i∑

k=1

Qk,n+1 = j
∣∣Xn = i

]
= P

[
i∑

k=1

Qk,n+1 = j

]
= pi(j).
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(b) (4 points) From the information given, can you determine whether any of the states is
recurrent? Justify your answer.

State 0 is recurrent.

State 0 (extinction) is an absorbing state, hence a recurrent state.

(c) (4 points) From the information given, can you determine whether the Markov chain is
irreducible? Justify your answer.

XN is not irreducible.

State 0 (extinction) is an absorbing state, hence it does not communicate with any other state.
Accordingly, it is the sole member of the recurrent communication class R1 = {0}. This implies
the total number of classes is strictly greater than 1, meaning XN is not irreducible.
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