Midterm Exam

October 9, 2014

Instructions:

- This is an open book, open notes exam.
- Calculators are not needed; laptops, tablets and cell-phones are not allowed.
- Perfect score: 100.
- Duration: 75 minutes.
- This exam has 10 numbered pages, check now that all pages are present.
- Show all your work, and write your final answers in the boxes when provided.

Name: SOLUTIONS

Problem	Max. Points	Score	Problem	Max. Points	Score
1.	22		5.	10	
2.	10		6.	14	
3.	10		7.	18	
4.	16				
			Total	100	

GOOD LUCK!

1. Suppose that $X_{\mathbb{N}} = X_0, X_1, \ldots, X_n, \ldots$ is a Markov chain with state space $S = \{1, 2\}$, transition probability matrix

$$\mathbf{P} = \left(\begin{array}{cc} 1/3 & 2/3\\ 1/2 & 1/2 \end{array}\right)$$

and initial distribution $P[X_0 = 1] = 1$ and $P[X_0 = 2] = 0$. To spare you of pointless calculations, if needed you may use that

$$\mathbf{P}^2 = \left(\begin{array}{cc} 4/9 & 5/9\\ 5/12 & 7/12 \end{array}\right).$$

(a) (2 points) $P[X_3 = 1 | X_2 = 2, X_0 = 1] = ?$

From the Markov property it follows that

$$\mathbf{P}[X_3 = 1 \mid X_2 = 2, X_0 = 1] = \mathbf{P}[X_3 = 1 \mid X_2 = 2] = P_{21} = \frac{1}{2}.$$

(b) (6 points) $P[X_4 = 2 | X_2 = 1, X_1 = 1, X_0 = 1] =?$

5
$\overline{9}$

Likewise,

$$\mathbf{P}\left[X_4 = 2 \mid X_2 = 1, X_1 = 1, X_0 = 1\right] = \mathbf{P}\left[X_4 = 2 \mid X_2 = 1\right] = P_{12}^2 = \frac{5}{9}.$$

(c) (8 points) $\mathbb{E}[X_2] = ?$

14
9

The unconditional pmf of X_2 is (note that $P[X_0 = 1] = 1$ and $P[X_0 = 2] = 0$)

$$P[X_{2} = 1] = P[X_{2} = 1 | X_{0} = 1] P[X_{0} = 1] + P[X_{2} = 1 | X_{0} = 2] P[X_{0} = 2] = P_{11}^{2} = \frac{4}{9}$$

$$P[X_{2} = 2] = P[X_{2} = 2 | X_{0} = 1] P[X_{0} = 1] + P[X_{2} = 2 | X_{0} = 2] P[X_{0} = 2] = P_{12}^{2} = \frac{5}{9}$$
Hence, the expectation is $\mathbb{E}[X_{2}] = 1 \times \frac{4}{9} + 2 \times \frac{5}{9} = \frac{14}{9}$

1

(d) (6 points) $P[X_0 = 2, X_2 = 1] = ?$

0

Since $P[X_0 = 2] = 0$, it follows that $P[X_0 = 2, X_2 = 1] = 0$.

2. (10 points) Suppose that $X_{\mathbb{N}} = X_1, X_2, \dots, X_n, \dots$ is an i.i.d. sequence of random variables and that A and B are sets such that $P[X_1 \in A] = p$, $P[X_1 \in B] = q$, and $P[X_1 \in A \cap B] = r$. Compute

$$\mathbb{E}\left[\sum_{j=1}^{n}\sum_{i=1}^{n}\mathbb{I}\left\{X_{j}\in A\right\}\mathbb{I}\left\{X_{i}\in B\right\}\right]$$

in terms of n, p, q, and r. Show your work.

n(n-1)pq + nr

From the linearity of expectation, and pulling out the i = j terms

$$\mathbb{E}\left[\sum_{j=1}^{n}\sum_{i=1}^{n}\mathbb{I}\left\{X_{j}\in A\right\}\mathbb{I}\left\{X_{i}\in B\right\}\right] = \sum_{j=1}^{n}\sum_{i=1}^{n}\mathbb{E}\left[\mathbb{I}\left\{X_{j}\in A\right\}\mathbb{I}\left\{X_{i}\in B\right\}\right]$$
$$= \sum_{j=1}^{n}\sum_{\substack{i=1\\i\neq j}}^{n}\mathbb{E}\left[\mathbb{I}\left\{X_{i}\in A\right\}\mathbb{I}\left\{X_{i}\in B\right\}\right]$$
$$+ \sum_{i=1}^{n}\mathbb{E}\left[\mathbb{I}\left\{X_{i}\in A\right\}\mathbb{I}\left\{X_{i}\in B\right\}\right].$$

Note that for $i \neq j$ the random variables $\mathbb{I}\{X_j \in A\}$ and $\mathbb{I}\{X_i \in B\}$ are independent, so we can exchange product with the expectation operator in the first summands

$$\mathbb{E}\left[\sum_{j=1}^{n}\sum_{i=1}^{n}\mathbb{I}\left\{X_{j}\in A\right\}\mathbb{I}\left\{X_{i}\in B\right\}\right] = \sum_{j=1}^{n}\sum_{\substack{i=1\\i\neq j}}^{n}\mathbb{E}\left[\mathbb{I}\left\{X_{j}\in A\right\}\right]\mathbb{E}\left[\mathbb{I}\left\{X_{i}\in B\right\}\right] + \sum_{i=1}^{n}\mathbb{E}\left[\mathbb{I}\left\{X_{i}\in A\right\}\mathbb{I}\left\{X_{i}\in B\right\}\right].$$

Since expected values of indicator functions are the probabilities of the indicated events, then

$$\mathbb{E} \left[\mathbb{I} \left\{ X_1 \in A \right\} \right] = \mathbb{P} \left[X_1 \in A \right] = p,$$
$$\mathbb{E} \left[\mathbb{I} \left\{ X_1 \in B \right\} \right] = \mathbb{P} \left[X_1 \in B \right] = q,$$
$$\mathbb{E} \left[\mathbb{I} \left\{ X_1 \in A \right\} \mathbb{I} \left\{ X_1 \in B \right\} \right] = \mathbb{P} \left[X_1 \in A \cap B \right] = r.$$

Substituting these values, the final answer is

$$\mathbb{E}\left[\sum_{j=1}^{n}\sum_{i=1}^{n}\mathbb{I}\left\{X_{j}\in A\right\}\mathbb{I}\left\{X_{i}\in B\right\}\right] = \sum_{\substack{j=1\\i\neq j}}^{n}\sum_{\substack{i=1\\i\neq j}}^{n}pq + \sum_{i=1}^{n}r = n(n-1)pq + nr.$$

3. (10 points) Suppose that $X_{\mathbb{N}} = X_0, X_1, \ldots, X_n, \ldots$ is a Markov chain with state space S, and transition probability matrix **P** with entries $P_{ij}, i, j \in S$. For n = 0, 1, 2... define $Y_n = X_{2n}$. Is $Y_{\mathbb{N}} = Y_0, Y_1, \ldots, Y_n, \ldots$ a Markov chain? If so, provide an expression for the transition probabilities of $Y_{\mathbb{N}}$. Justify your answer.

To determine whether $Y_{\mathbb{N}}$ is a MC, introduce the state history vectors $\mathbf{Y}_{n-1} = [Y_{n-1}, \dots, Y_0]$ and $\mathbf{y} = [i_{n-1}, \dots, i_0]$ for notational compactness, and check the Markov property, i.e.,

$$\mathbf{P} \left[Y_{n+1} = j \mid Y_n = i, \mathbf{Y}_{n-1} = \mathbf{y} \right] = \mathbf{P} \left[X_{2(n+1)} = j \mid X_{2n} = i, X_{2(n-1)} = i_{n-1}, \dots, X_0 = i_0 \right]$$

= $\mathbf{P} \left[X_{2(n+1)} = j \mid X_{2n} = j \right] = P_{ij}^2.$

The second equality follows because $X_{\mathbb{N}}$ is a MC, and the third one is by definition of two-step transition probabilities. Notice $P[Y_{n+1} = j | Y_n = i, \mathbf{Y}_{n-1} = \mathbf{y}]$ only depends on i and j.

The preceding argument establishes that $Y_{\mathbb{N}}$ is a MC, with transition probabilities $\hat{P}_{ij} = P_{ij}^2$.

4. Suppose that $X_{\mathbb{N}} = X_1, X_2, \dots, X_n, \dots$ is an i.i.d. sequence of random variables, where $P[X_1 = 1] = P[X_1 = 2] = P[X_1 = 3] = 1/3$. Define

$$T = \min\{n \ge 1 : X_n \notin \{2, 3\}\}.$$

(a) (6 points) Compute $\mathbb{E}[X_i | T = t]$, for i = 1, ..., t - 1.

From the definition of T, then for i = 1, ..., t - 1 one has

$$\mathbb{E} \left[X_i \mid T = t \right] = \mathbb{E} \left[X_i \mid X_1 \in \{2, 3\}, \dots, X_i \in \{2, 3\}, \dots, X_{t-1} \in \{2, 3\}, X_t = 1 \right]$$
$$= \mathbb{E} \left[X_i \mid X_i \in \{2, 3\} \right]$$

where the last equality follows from the independence of the sequence $X_{\mathbb{N}}$. The relevant conditional pmf $\mathbb{P}[X_i = x \mid X_i \in \{2, 3\}]$ is

$$\begin{aligned} & \mathbf{P}\left[X_{i}=1 \mid X_{i} \in \{2,3\}\right] = 0\\ & \mathbf{P}\left[X_{i}=2 \mid X_{i} \in \{2,3\}\right] = \frac{\mathbf{P}\left[X_{i}=2, X_{i} \in \{2,3\}\right]}{\mathbf{P}\left[X_{i} \in \{2,3\}\right]} = \frac{\mathbf{P}\left[X_{i}=2\right]}{\mathbf{P}\left[X_{i}=2\right] + \mathbf{P}\left[X_{i}=3\right]} = \frac{1}{2}\\ & \mathbf{P}\left[X_{i}=3 \mid X_{i} \in \{2,3\}\right] = \frac{\mathbf{P}\left[X_{i}=3, X_{i} \in \{2,3\}\right]}{\mathbf{P}\left[X_{i} \in \{2,3\}\right]} = \frac{\mathbf{P}\left[X_{i}=3\right]}{\mathbf{P}\left[X_{i}=2\right] + \mathbf{P}\left[X_{i}=3\right]} = \frac{1}{2}.\end{aligned}$$

Hence, the conditional expectation is $\mathbb{E}\left[X_i \mid T=t\right] = 2 \times \frac{1}{2} + 3 \times \frac{1}{2} = \frac{5}{2}$, for $i = 1, \dots, t-1$. (b) (5 points) Compute $\mathbb{E}\left[X_t \mid T=t\right]$.

1

Reasoning as in the previous part, from the definition of T and using the independence of the sequence $X_{\mathbb{N}}$

$$\mathbb{E} \left[X_t \, \big| \, T = t \right] = \mathbb{E} \left[X_t \, \big| \, X_1 \in \{2, 3\}, \dots, X_i \in \{2, 3\}, \dots, X_{t-1} \in \{2, 3\}, X_t = 1 \right] \\ = \mathbb{E} \left[X_t \, \big| \, X_t = 1 \right] = 1.$$

(c) (5 points) Compute $\mathbb{E}[X_{t+1} | T = t]$.

Notice that T = t does not provide any information about $X_{t+1} = x$ (they are independent events), which formally follows from

$$\mathbb{E}\left[X_{t+1} \mid T=t\right] = \mathbb{E}\left[X_{t+1} \mid X_1 \in \{2,3\}, \dots, X_i \in \{2,3\}, \dots, X_{t-1} \in \{2,3\}, X_t=1\right]$$
$$= \mathbb{E}\left[X_{t+1}\right] = 1 \times \frac{1}{3} + 2 \times \frac{1}{3} + 3 \times \frac{1}{3} = 2.$$

5. (10 points) Suppose that $X_{\mathbb{N}} = X_1, X_2, \dots, X_n, \dots$ is an i.i.d. sequence of random variables, where $P[X_n = 1] = 1/3$, $P[X_n = 2] = 1/6$, $P[X_n = 3] = 1/2$. Calculate

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I} \{ X_{2i-1} = X_{2i} \}$$

and provide justification for the existence of the limit.

Because $X_{\mathbb{N}}$ is i.i.d., then $Y_{\mathbb{N}} = \mathbb{I}\{X_1 = X_2\}, \mathbb{I}\{X_3 = X_4\}, \dots, \mathbb{I}\{X_{2n-1} = X_{2n}\}, \dots$ is also i.i.d. By the strong law of large numbers the limit exists and is equal to

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I} \{ X_{2i-1} = X_{2i} \} = \mathbb{E} \left[\mathbb{I} \{ X_1 = X_2 \} \right] = \mathbb{P} \left[X_1 = X_2 \right], \quad \text{w.p. 1}.$$

Since the $X_{\mathbb{N}}$ are i.i.d., $P[X_1 = X_2]$ is given by

$$P[X_1 = X_2] = P[X_1 = 1] P[X_2 = 1] + P[X_1 = 2] P[X_2 = 2] + P[X_1 = 3] P[X_2 = 3]$$
$$= \left(\frac{1}{3}\right)^2 + \left(\frac{1}{6}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{7}{18}.$$

6. (14 points) Suppose that days are either rainy (r) or sunny (s). If on any particular day it is rainy, the next day will be rainy with probability 2/3 and sunny with probability 1/3. Similarly, if on any particular day it is sunny, then the next day will be rainy with probability 1/4 and sunny with probability 3/4. What is the long-run fraction of days that will be rainy?

3	
$\overline{7}$	

The process is a Markov chain with state space $S = \{r, s\}$ and transition probability matrix

$$\mathbf{P} = \left(\begin{array}{cc} 2/3 & 1/3\\ 1/4 & 3/4 \end{array}\right).$$

The long-run fraction of days that will be rainy is π_r , where $\boldsymbol{\pi} = [\pi_r, \pi_s]^T$ is the unique (the Markov chain is ergodic) stationary distribution which satisfies

$$\begin{pmatrix} \pi_r \\ \pi_s \end{pmatrix} = \begin{pmatrix} 2/3 & 1/4 \\ 1/3 & 3/4 \end{pmatrix} \begin{pmatrix} \pi_r \\ \pi_s \end{pmatrix}, \quad \pi_r + \pi_s = 1.$$

Solving the linear system yields $\pi_r = \frac{3}{7}$, so in the long run it will rain three days per week.

7. Consider a branching process and suppose that X_n is the number of individuals in generation n. Suppose the k-th individual in generation n creates $Q_{k,n+1}$ individuals in generation n+1, and that the $Q_{k,n}$ are i.i.d. across individuals and generations, and independent of X_0 . Under the preceding assumptions, $X_{\mathbb{N}} = X_0, X_1, \ldots, X_n, \ldots$ is a Markov chain with state space $S = \{0, 1, 2, \ldots\}$ for which

$$X_{n+1} = \sum_{k=1}^{X_n} Q_{k,n+1}$$
 if $X_n > 0$,

and $X_{n+1} = 0$ if $X_n = 0$. Let

$$p_1(x) = \mathbf{P}[Q_{1,1} = x]$$
 and
 $p_k(x) = \sum_{y=0}^x p_1(y)p_{k-1}(x-y), \ k \ge 2.$

You may want to recall that for independent, non-negative, integer-valued random variables U and V, the pmf $p_W(x)$ of W = U + V is given by the discrete convolution of the pmfs $p_U(x)$ and $p_V(x)$ of U and V, that is

$$p_W(x) = \sum_{y=0}^{x} p_U(y) p_V(x-y).$$

(a) (10 points) Determine the transition probability matrix of $X_{\mathbb{N}}$ in terms of $p_k(\cdot), k \ge 1$.

The key point to recognize here is that $p_k(x)$ is the probability that k individuals create a total of x individuals in the next generation. Specifically, $p_k(x)$, $k \ge 2$ is obtained by summing from y = 0 to x the probability that a single individual generates y individuals $(p_1(y))$ times the probability that k - 1 individuals generate x - y individuals $(p_{k-1}(x - y))$.

The transition probabilities are thus

$$P_{00} = 1$$
 and $P_{0j} = 0$, $j \neq 0$, (state 0 is an absorbing state),
 $P_{ij} = p_i(j)$, $i \neq 0$ and for all j .

More formally,

$$P_{ij} = \mathbf{P} \left[X_{n+1} = j \mid X_n = i \right] = \mathbf{P} \left[\sum_{k=1}^{X_n} Q_{k,n+1} = j \mid X_n = i \right]$$
$$\mathbf{P} \left[\sum_{k=1}^{i} Q_{k,n+1} = j \mid X_n = i \right] = \mathbf{P} \left[\sum_{k=1}^{i} Q_{k,n+1} = j \right] = p_i(j).$$

(b) (4 points) From the information given, can you determine whether any of the states is recurrent? Justify your answer.

State 0 is recurrent.

State 0 (extinction) is an absorbing state, hence a recurrent state.

(c) (4 points) From the information given, can you determine whether the Markov chain is irreducible? Justify your answer.

 $X_{\mathbb{N}}$ is not irreducible.

State 0 (extinction) is an absorbing state, hence it does not communicate with any other state. Accordingly, it is the sole member of the recurrent communication class $\mathcal{R}_1 = \{0\}$. This implies the total number of classes is strictly greater than 1, meaning $X_{\mathbb{N}}$ is not irreducible.