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Who we are, where to find me, lecture times

I Gonzalo Mateos

I Associate Professor, Dept. of Electrical and Computer Engineering

I CSB 726, gmateosb@ece.rochester.edu

I http://www.hajim.rochester.edu/ece/sites/gmateos/

I Where? We meet in Gavett Hall 202

I When? Mondays and Wednesdays 4:50 pm to 6:05 pm
I Due to travel, make-up lectures on Fridays 4:50 pm to 6:05 pm

I My office hours, Tuesdays at 10:30 am
I Anytime, as long as you have something interesting to tell me

I Class website

http://www.hajim.rochester.edu/ece/sites/gmateos/ECE440.html
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Teaching assistant

I A great TA to help you with your homework

I Hamed Ajorlou

I CSB 701, hajorlou@ur.rochester.edu

I His office hours, Fridays at 2:30 pm
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Prerequisites

(I) Probability theory

I Random (Stochastic) processes are collections of random variables

I Basic knowledge expected. Will review in the first six lectures

(II) Calculus and linear algebra

I Integrals, limits, infinite series, differential equations

I Vector/matrix notation, systems of linear equations, eigenvalues

(III) Programming in Matlab

I Needed for homework
https://tech.rochester.edu/software/matlab/

I If you know programming you can learn Matlab in one afternoon

⇒ But it has to be one of this week’s afternoons
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Homework, exams and grading

(I) Homework sets (10 in 15 weeks) worth 28 points

I Important and demanding part of this class

I Collaboration accepted, welcomed, and encouraged

(II) Midterm examination on Wednesday October 30 worth 36 points

(III) Final take-home examination on December 15-17 worth 36 points

I Work independently. This time no collaboration, no discussion

I ECE 271 students get 10 free points

I At least 60 points are required for passing (C grade)

I B requires at least 75 points. A at least 92. No curve

⇒ Goal is for everyone to earn an A
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Textbooks

I Good general reference for the class

John A. Gubner, “Probability and Random Processes for Electrical
and Computer Engineers,” Cambridge University Press

⇒ Available online: http://www.library.rochester.edu/

I Also nice for topics including Markov chains, queuing models

Sheldon M. Ross, “Introduction to Probability Models,” 13th ed.,
Academic Press (previous editions are fine)

I Both on reserve for the class in Carlson Library
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Be nice

I I work hard for this course, expect you to do the same

X Please come to class, be on time, pay attention, ask

X Do all of your homework

× Do not hand in as yours the solution of others (or mine)

× Do not collaborate in the exams

I A little bit of (conditional) probability ...

I Probability of getting an E in this class is 0.04

I Probability of getting an E given you skip 4 homework sets is 0.7

⇒ I’ll give you three notices, afterwards, I’ll give up on you

I Come and learn. Useful down the road
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Stochastic systems

I Stochastic system: Anything random that evolves in time

⇒ Time can be discrete n = 0, 1, 2 . . ., or continuous t ∈ [0,∞)

I More formally, random processes assign a function to a random event

I Compare with “random variable assigns a value to a random event”

I Can interpret a random process as a collection of random variables

⇒ Generalizes concept of random vector to functions

⇒ Or generalizes the concept of function to random settings
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A voice recognition system

I Random event ∼ word spoken. Random process ∼ the waveform
I Try the file speech signals.m
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Four thematic blocks

(I) Probability theory review (6 lectures)
I Probability spaces, random variables, independence, expectation
I Conditional probability: time n + 1 given time n, future given past ...
I Limits in probability, almost sure limits: behavior as n→∞ ...
I Common probability distributions (binomial, exponential, Poisson, Gaussian)

I Random processes are complicated entities

⇒ Restrict attention to particular classes that are somewhat tractable

(II) Markov chains (6 lectures)

(III) Continuous-time Markov chains (7 lectures)

(IV) Stationary random processes (8 lectures)

I Midterm covers up to Markov chains
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Probability and statistical inference

 
Data-generating process 

 

 
Observed data 

 

Probability theory 

Inference and data mining 

I Probability theory is a formalism to work with uncertainty
I Given a data-generating process, what are properties of outcomes?

I Statistical inference deals with the inverse problem
I Given outcomes, what can we say on the data-generating process?
I ECE409 - Machine Learning, ECE442 - Network Science Analytics,

CSC440 - Data Mining, ECE441 - Detection and Estimation Theory, . . .
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Markov chains

I Countable set of states 1, 2, . . .. At discrete time n, state is Xn

I Memoryless (Markov) property

⇒ Probability of next state Xn+1 depends on current state Xn

⇒ But not on past states Xn−1, Xn−2, . . .

I Can be happy (Xn = 0) or sad (Xn = 1)

I Tomorrow’s mood only affected by
today’s mood

I Whether happy or sad today, likely to
be happy tomorrow

I But when sad, a little less likely so

H S

0.8

0.2

0.3

0.7

I Of interest: classification of states, ergodicity, limiting distributions

I Applications: Google’s PageRank, communication networks, queues,
reinforcement learning, ...
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Continuous-time Markov chains

I Countable set of states 1, 2, . . .. Continuous-time index t, state X (t)

⇒ Transition between states can happen at any time

⇒ Markov: Future independent of the past given the present

I Probability of changing state in
an infinitesimal time dt

H S

0.2dt

0.7dt

I Of interest: Poisson processes, exponential distributions, transition
probabilities, Kolmogorov equations, limit distributions

I Applications: Chemical reactions, queues, epidemic modeling, traffic
engineering, weather forecasting, ...
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Stationary random processes

I Continuous time t, continuous state X (t), not necessarily Markov

I Prob. distribution of X (t) constant or becomes constant as t grows

⇒ System has a steady state in a random sense

I Of interest: Brownian motion, white noise, Gaussian processes,
autocorrelation, power spectral density

I Applications: Black Scholes model for option pricing, radar, face
recognition, noise in electric circuits, filtering and equalization, ...
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Gambling
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An interesting betting game

I There is a certain game in a certain casino in which ...

⇒ Your chances of winning are p > 1/2

I You place $1 bets

(a) With probability p you gain $1; and
(b) With probability 1− p you lose your $1 bet

I The catch is that you either

(a) Play until you go broke (lose all your money)
(b) Keep playing forever

I You start with an initial wealth of $w0

I Q: Shall you play this game?
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Modeling

I Let t be a time index (number of bets placed)

I Denote as X (t) the outcome of the bet at time t

⇒ X (t) = 1 if bet is won (w.p. p)

⇒ X (t) = 0 if bet is lost (w.p. 1− p)

I X (t) is called a Bernoulli random variable with parameter p

I Denote as W (t) the player’s wealth at time t. Initialize W (0) = w0

I At times t > 0 wealth W (t) depends on past wins and losses

⇒ When bet is won W (t + 1) = W (t)+1

⇒ When bet is lost W (t + 1) = W (t)−1

I More compactly can write W (t + 1) = W (t) + (2X (t)− 1)

⇒ Only holds so long as W (t) > 0
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Coding

t = 0; w(t) = w0; maxt = 103; // Initialize variables

% repeat while not broke up to time maxt
while (w(t) > 0) & (t < maxt) do

x(t) = random(‘bino’,1,p); % Draw Bernoulli random variable
if x(t) == 1 then

w(t + 1) = w(t) + b; % If x = 1 wealth increases by b
else

w(t + 1) = w(t)− b; % If x = 0 wealth decreases by b
end
t = t + 1;

end

I Initial wealth w0 = 20, bet b = 1, win probability p = 0.55

I Q: Shall we play?
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One lucky player

I She didn’t go broke. After t = 1000 bets, her wealth is W (t) = 109

⇒ Less likely to go broke now because wealth increased
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Two lucky players

I After t = 1000 bets, wealths are W1(t) = 109 and W2(t) = 139

⇒ Increasing wealth seems to be a pattern
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Ten lucky players

I Wealths Wj(t) after t = 1000 bets between 78 and 139

⇒ Increasing wealth is definitely a pattern
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One unlucky player

I But this does not mean that all players will turn out as winners

⇒ The twelfth player j = 12 goes broke
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One unlucky player

I But this does not mean that all players will turn out as winners

⇒ The twelfth player j = 12 goes broke
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One hundred players

I All players (except for j = 12) end up with substantially more money
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Average tendency

I It is not difficult to find a line estimating the average of W (t)

⇒ w̄(t) ≈ w0 + (2p − 1)t ≈ w0 + 0.1t (recall p = 0.55)
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Where does the average tendency come from?

I Assuming we do not go broke, we can write

W (t + 1) = W (t) +
(

2X (t)− 1
)
, t = 0, 1, 2, . . .

I The assumption is incorrect as we saw, but suffices for simplicity

I Taking expectations on both sides and using linearity of expectation

E [W (t + 1)] = E [W (t)] +
(

2E [X (t)]− 1
)

I The expected value of Bernoulli X (t) is

E [X (t)] = 1× P (X (t) = 1) + 0× P (X (t) = 0) = p

I Which yields ⇒ E [W (t + 1)] = E [W (t)] + (2p − 1)

I Applying recursively ⇒ E [W (t + 1)] = w0 + (2p − 1)(t + 1)
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Gambling as LTI system with stochastic input

I Recall the evolution of wealth W (t + 1) = W (t) +
(

2X (t)− 1
)

1 

t -1 

2x(t)-1 

+ 

Delay 

w(t+1) 2x(t)-1 

w(t) 

Accumulator 

t 

w(t+1) 

I View W (t + 1) as output of LTI system with random input 2X (t)−1

I Recognize accumulator ⇒ W (t + 1) = w0 +
t∑

τ=0

(
2X (τ)− 1

)
I Useful, a lot we can say about sums of random variables

I Filtering random processes in signal processing, communications, . . .
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Numerical analysis of simulation outcomes

I For a more accurate approximation analyze simulation outcomes

I Consider J experiments. Each yields a wealth history Wj(t)

I Can estimate the average outcome via the sample average W̄J(t)

W̄J(t) :=
1

J

J∑
j=1

Wj(t)

I Do not confuse W̄J(t) with E [W (t)]
I W̄J(t) is computed from experiments, it is a random quantity in itself
I E [W (t)] is a property of the random variable W (t)
I We will see later that for large J, W̄J(t)→ E [W (t)]
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Analysis of simulation outcomes: mean

I Expected value E [W (t)] in black

I Sample average for J = 10 (blue), J = 20 (red), and J = 100 (magenta)
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Analysis of simulation outcomes: distribution

I There is more information in the simulation’s output

I Estimate the distribution function of W (t) ⇒ Histogram

I Consider a grid of points w (0), . . . ,w (M)

I Indicator function of the event w (m) ≤Wj(t) < w (m+1)

I
{
w (m) ≤Wj(t) < w (m+1)

}
=

{
1, if w (m) ≤Wj(t) < w (m+1)

0, otherwise

I Histogram is then defined as

H
[
t;w (m),w (m+1)

]
=

1

J

J∑
j=1

I
{
w (m) ≤Wj(t) < w (m+1)

}
I Fraction of experiments with wealth Wj(t) between w (m) and w (m+1)
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Histogram

I Distribution broadens and shifts to the right (t = 10, 50, 100, 200)
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What is this class about?

I Analysis and simulation of stochastic systems

⇒ A system that evolves in time with some randomness

I They are usually quite complex ⇒ Simulations

I We will learn how to model stochastic systems, e.g.,
I X (t) Bernoulli with parameter p
I W (t + 1) = W (t) + 1, when X (t) = 1
I W (t + 1) = W (t)− 1, when X (t) = 0

I ... how to analyze their properties, e.g., E [W (t)] = w0 + (2p − 1)t

I ... and how to interpret simulations and experiments, e.g.,
I Average tendency through sample average
I Estimate probability distributions via histograms
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