

Introduction to Random Processes

Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.hajim.rochester.edu/ece/sites/gmateos/

August 25, 2024

Introductions

Class description and contents

Gambling

Gonzalo Mateos

- Associate Professor, Dept. of Electrical and Computer Engineering
- CSB 726, gmateosb@ece.rochester.edu
- http://www.hajim.rochester.edu/ece/sites/gmateos/
- ▶ Where? We meet in Gavett Hall 202
- When? Mondays and Wednesdays 4:50 pm to 6:05 pm
 - Due to travel, make-up lectures on Fridays 4:50 pm to 6:05 pm
- My office hours, Tuesdays at 10:30 am
 - Anytime, as long as you have something interesting to tell me
- Class website

http://www.hajim.rochester.edu/ece/sites/gmateos/ECE440.html

► A great TA to help you with your homework

Hamed Ajorlou

- CSB 701, hajorlou@ur.rochester.edu
- ► His office hours, Fridays at 2:30 pm

(I) Probability theory

- Random (Stochastic) processes are collections of random variables
- Basic knowledge expected. Will review in the first six lectures

(II) Calculus and linear algebra

- Integrals, limits, infinite series, differential equations
- Vector/matrix notation, systems of linear equations, eigenvalues

(III) Programming in Matlab

- Needed for homework https://tech.rochester.edu/software/matlab/
- ► If you know programming you can learn Matlab in one afternoon ⇒ But it has to be one of this week's afternoons

- (I) Homework sets (10 in 15 weeks) worth 28 points
- Important and demanding part of this class
- Collaboration accepted, welcomed, and encouraged
- (II) Midterm examination on Wednesday October 30 worth 36 points
- (III) Final take-home examination on December 15-17 worth 36 points
 - ▶ Work independently. This time no collaboration, no discussion
 - ► ECE 271 students get 10 free points
 - ► At least 60 points are required for passing (C grade)
 - ► B requires at least 75 points. A at least 92. No curve ⇒ Goal is for everyone to earn an A

Textbooks

Good general reference for the class

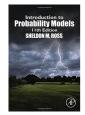
John A. Gubner, "Probability and Random Processes for Electrical and Computer Engineers," Cambridge University Press

⇒ Available online: http://www.library.rochester.edu/

Also nice for topics including Markov chains, queuing models

Sheldon M. Ross, *"Introduction to Probability Models,"* 13th ed., Academic Press (previous editions are fine)

Both on reserve for the class in Carlson Library



- I work hard for this course, expect you to do the same
- $\checkmark\,$ Please come to class, be on time, pay attention, ask
- $\checkmark~$ Do all of your homework
- × Do not hand in as yours the solution of others (or mine)
- $\times\,$ Do not collaborate in the exams
- ► A little bit of (conditional) probability ...
- Probability of getting an E in this class is 0.04
- Probability of getting an E given you skip 4 homework sets is 0.7
 ⇒ I'll give you three notices, afterwards, I'll give up on you
- ► Come and learn. Useful down the road

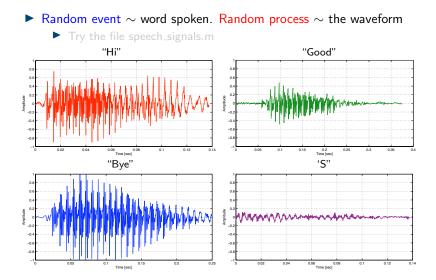
Introductions

Class description and contents

Gambling

- Stochastic system: Anything random that evolves in time
 ⇒ Time can be discrete n = 0, 1, 2..., or continuous t ∈ [0,∞)
- More formally, random processes assign a function to a random event
- Compare with "random variable assigns a value to a random event"
- Can interpret a random process as a collection of random variables
 ⇒ Generalizes concept of random vector to functions
 ⇒ Or generalizes the concept of function to random settings

A voice recognition system



Introduction to Random Processes

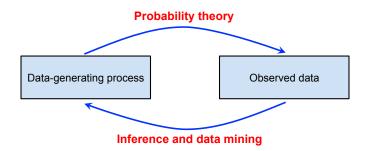
(I) Probability theory review (6 lectures)

- Probability spaces, random variables, independence, expectation
- Conditional probability: time n + 1 given time n, future given past ...
- Limits in probability, almost sure limits: behavior as $n \to \infty$...
- Common probability distributions (binomial, exponential, Poisson, Gaussian)
- Random processes are complicated entities

 \Rightarrow Restrict attention to particular classes that are somewhat tractable

- (II) Markov chains (6 lectures)
- (III) Continuous-time Markov chains (7 lectures)
- (IV) Stationary random processes (8 lectures)
 - Midterm covers up to Markov chains

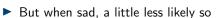
Probability and statistical inference



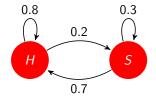
- Probability theory is a formalism to work with uncertainty
 - Given a data-generating process, what are properties of outcomes?
- Statistical inference deals with the inverse problem
 - Given outcomes, what can we say on the data-generating process?
 - ECE409 Machine Learning, ECE442 Network Science Analytics, CSC440 - Data Mining, ECE441 - Detection and Estimation Theory, ...

Markov chains

- Countable set of states $1, 2, \ldots$ At discrete time *n*, state is X_n
- Memoryless (Markov) property
 - \Rightarrow Probability of next state X_{n+1} depends on current state X_n
 - \Rightarrow But not on past states X_{n-1} , X_{n-2} , ...
- Can be happy $(X_n = 0)$ or sad $(X_n = 1)$
- Tomorrow's mood only affected by today's mood
- Whether happy or sad today, likely to be happy tomorrow



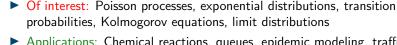
- ▶ Of interest: classification of states, ergodicity, limiting distributions
- Applications: Google's PageRank, communication networks, queues, reinforcement learning, ...



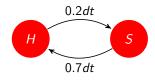
► Countable set of states 1, 2, . . . Continuous-time index t, state X(t)
⇒ Transition between states can happen at any time

 \Rightarrow Markov: Future independent of the past given the present

 Probability of changing state in an infinitesimal time dt



Applications: Chemical reactions, queues, epidemic modeling, traffic engineering, weather forecasting, ...



- Continuous time t, continuous state X(t), not necessarily Markov
- ▶ Prob. distribution of X(t) constant or becomes constant as t grows

 \Rightarrow System has a steady state in a random sense

- Of interest: Brownian motion, white noise, Gaussian processes, autocorrelation, power spectral density
- Applications: Black Scholes model for option pricing, radar, face recognition, noise in electric circuits, filtering and equalization, ...

Introductions

Class description and contents

Gambling

▶ There is a certain game in a certain casino in which ...

 \Rightarrow Your chances of winning are p > 1/2

- You place \$1 bets
 - (a) With probability p you gain \$1; and
 - (b) With probability 1 p you lose your \$1 bet
- The catch is that you either
 - (a) Play until you go broke (lose all your money)
 - (b) Keep playing forever
- You start with an initial wealth of w_0
- Q: Shall you play this game?

- Let t be a time index (number of bets placed)
- Denote as X(t) the outcome of the bet at time t $\Rightarrow X(t) = 1$ if bet is won (w.p. p) $\Rightarrow X(t) = 0$ if bet is lost (w.p. 1 - p)
- X(t) is called a Bernoulli random variable with parameter p
- Denote as W(t) the player's wealth at time t. Initialize $W(0) = w_0$
- At times t > 0 wealth W(t) depends on past wins and losses
 - \Rightarrow When bet is won W(t+1) = W(t)+1
 - \Rightarrow When bet is lost W(t+1) = W(t) 1
- More compactly can write W(t + 1) = W(t) + (2X(t) 1) \Rightarrow Only holds so long as W(t) > 0

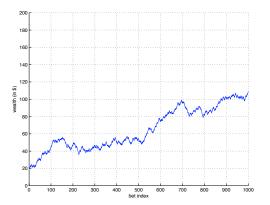
Coding

 $t = 0; w(t) = w_0; max_t = 10^3; // \text{Initialize variables}$ % repeat while not broke up to time max_t while $(w(t) > 0) \& (t < max_t) \text{ do}$ x(t) = random('bino', 1, p); % Draw Bernoulli random variable if x(t) == 1 then | w(t+1) = w(t) + b; % If x = 1 wealth increases by b else | w(t+1) = w(t) - b; % If x = 0 wealth decreases by b end t = t + 1;end

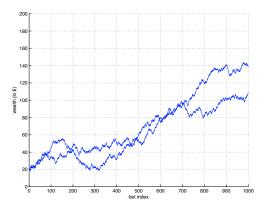
▶ Initial wealth $w_0 = 20$, bet b = 1, win probability p = 0.55

Q: Shall we play?

She didn't go broke. After t = 1000 bets, her wealth is W(t) = 109 ⇒ Less likely to go broke now because wealth increased

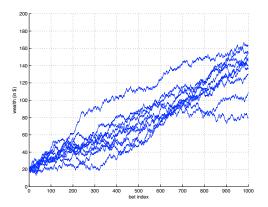


► After t = 1000 bets, wealths are $W_1(t) = 109$ and $W_2(t) = 139$ ⇒ Increasing wealth seems to be a pattern

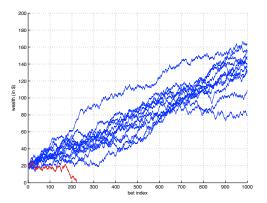


Ten lucky players

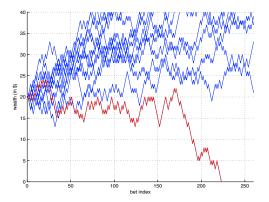
▶ Wealths W_i(t) after t = 1000 bets between 78 and 139
 ⇒ Increasing wealth is definitely a pattern



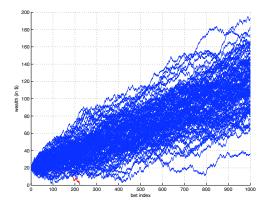
▶ But this does not mean that all players will turn out as winners ⇒ The twelfth player j = 12 goes broke



▶ But this does not mean that all players will turn out as winners ⇒ The twelfth player j = 12 goes broke

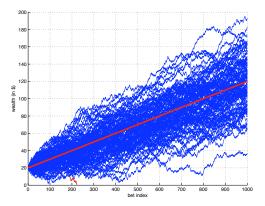


• All players (except for j = 12) end up with substantially more money



Average tendency

▶ It is not difficult to find a line estimating the average of W(t)⇒ $\bar{w}(t) \approx w_0 + (2p-1)t \approx w_0 + 0.1t$ (recall p = 0.55)



Assuming we do not go broke, we can write

$$W(t+1) = W(t) + (2X(t) - 1), \quad t = 0, 1, 2, ...$$

The assumption is incorrect as we saw, but suffices for simplicity
 Taking expectations on both sides and using linearity of expectation

$$\mathbb{E}\left[\mathcal{W}(t+1)
ight] = \mathbb{E}\left[\mathcal{W}(t)
ight] + \left(2\mathbb{E}\left[X(t)
ight] - 1
ight)$$

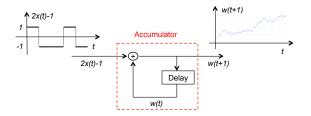
• The expected value of Bernoulli X(t) is

$$\mathbb{E}\left[X(t)\right] = 1 \times \mathsf{P}\left(X(t) = 1\right) + 0 \times \mathsf{P}\left(X(t) = 0\right) = p$$

- Which yields $\Rightarrow \mathbb{E}[W(t+1)] = \mathbb{E}[W(t)] + (2p-1)$
- Applying recursively $\Rightarrow \mathbb{E}[W(t+1)] = w_0 + (2p-1)(t+1)$

Gambling as LTI system with stochastic input

• Recall the evolution of wealth
$$W(t+1) = W(t) + (2X(t) - 1)$$



▶ View W(t+1) as output of LTI system with random input 2X(t) - 1

• Recognize accumulator $\Rightarrow W(t+1) = w_0 + \sum_{\tau=0}^{t} (2X(\tau) - 1)$

Useful, a lot we can say about sums of random variables

Filtering random processes in signal processing, communications, ...

- ► For a more accurate approximation analyze simulation outcomes
- Consider J experiments. Each yields a wealth history $W_j(t)$
- Can estimate the average outcome via the sample average $\bar{W}_J(t)$

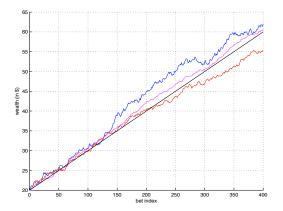
$$ar{W}_J(t) := rac{1}{J} \sum_{j=1}^J W_j(t)$$

- Do not confuse $\overline{W}_J(t)$ with $\mathbb{E}[W(t)]$
 - $\bar{W}_J(t)$ is computed from experiments, it is a random quantity in itself
 - $\mathbb{E}[W(t)]$ is a property of the random variable W(t)
 - We will see later that for large $J, \ \overline{W}_J(t) \to \mathbb{E}\left[W(t)\right]$

Analysis of simulation outcomes: mean

Expected value $\mathbb{E}[W(t)]$ in black

Sample average for J = 10 (blue), J = 20 (red), and J = 100 (magenta)



- There is more information in the simulation's output
- Estimate the distribution function of $W(t) \Rightarrow$ Histogram
- Consider a grid of points $w^{(0)}, \ldots, w^{(M)}$
- ▶ Indicator function of the event $w^{(m)} \le W_j(t) < w^{(m+1)}$

$$\mathbb{I}\left\{w^{(m)} \leq W_j(t) < w^{(m+1)}\right\} = \left\{\begin{array}{ll} 1, & \text{if } w^{(m)} \leq W_j(t) < w^{(m+1)} \\ 0, & \text{otherwise} \end{array}\right.$$

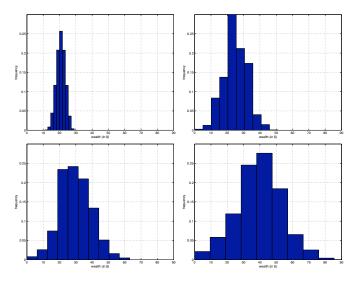
Histogram is then defined as

$$H\left[t; w^{(m)}, w^{(m+1)}
ight] = rac{1}{J} \sum_{j=1}^{J} \mathbb{I}\left\{w^{(m)} \leq W_j(t) < w^{(m+1)}
ight\}$$

Fraction of experiments with wealth $W_j(t)$ between $w^{(m)}$ and $w^{(m+1)}$

Histogram

• Distribution broadens and shifts to the right (t = 10, 50, 100, 200)



Introduction to Random Processes

Introduction

Analysis and simulation of stochastic systems

 \Rightarrow A system that evolves in time with some randomness

- They are usually quite complex \Rightarrow Simulations
- ▶ We will learn how to model stochastic systems, e.g.,
 - X(t) Bernoulli with parameter p
 - W(t+1) = W(t) + 1, when X(t) = 1
 - W(t+1) = W(t) 1, when X(t) = 0

▶ ... how to analyze their properties, e.g., $\mathbb{E}[W(t)] = w_0 + (2p-1)t$

- ... and how to interpret simulations and experiments, e.g.,
 - Average tendency through sample average
 - Estimate probability distributions via histograms