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Probability

I An event is something that happens

I A random event has an uncertain outcome

⇒ The probability of an event measures how likely it is to occur

Example

I I’ve written a student’s name in a piece of paper. Who is she/he?

I Event: Student x ’s name is written in the paper

I Probability: P(x) measures how likely it is that x ’s name was written

I Probability is a measurement tool

⇒ Mathematical language for quantifying uncertainty
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Sigma-algebra

I Given a sample space or universe S
I Ex: All students in the class S = {x1, x2, . . . , xN} (xn denote names)

I Def: An outcome is an element or point in S , e.g., x3

I Def: An event E is a subset of S
I Ex: {x1}, student with name x1
I Ex: Also {x1, x4}, students with names x1 and x4

⇒ Outcome x3 and event {x3} are different, the latter is a set

I Def: A sigma-algebra F is a collection of events E ⊆ S such that

(i) The empty set ∅ belongs to F : ∅ ∈ F
(ii) Closed under complement: If E ∈ F , then E c ∈ F
(iii) Closed under countable unions: If E1,E2, . . . ∈ F , then ∪∞i=1Ei ∈ F

I F is a set of sets
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Examples of sigma-algebras

Example

I No student and all students, i.e., F0 := {∅,S}

Example

I Empty set, women, men, everyone, i.e., F1 := {∅,Women,Men,S}

Example

I F2 including the empty set ∅ plus

All events (sets) with one student {x1}, . . . , {xN} plus

All events with two students {x1, x2}, {x1, x3}, . . ., {x1, xN},
{x2, x3}, . . ., {x2, xN},

. . .
{xN−1, xN} plus

All events with three, four, . . ., N students

⇒ F2 is known as the power set of S , denoted 2S
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Axioms of probability

I Define a function P(E ) from a sigma-algebra F to the real numbers

I P(E ) qualifies as a probability if

A1) Non-negativity: P(E) ≥ 0
A2) Probability of universe: P(S) = 1
A3) Additivity: Given sequence of disjoint events E1,E2, . . .

P

(
∞⋃
i=1

Ei

)
=
∞∑
i=1

P (Ei )

⇒ Disjoint (mutually exclusive) events means Ei ∩ Ej = ∅, i 6= j

⇒ Union of countably infinite many disjoint events

I Triplet (S ,F ,P(·)) is called a probability space
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Consequences of the axioms

I Implications of the axioms A1)-A3)

⇒ Impossible event: P(∅) = 0

⇒ Monotonicity: E1 ⊂ E2 ⇒ P(E1) ≤ P(E2)

⇒ Range: 0 ≤ P(E ) ≤ 1

⇒ Complement: P(E c) = 1− P(E )

⇒ Finite disjoint union: For disjoint events E1, . . . ,EN

P

(
N⋃
i=1

Ei

)
=

N∑
i=1

P (Ei )

⇒ Inclusion-exclusion: For any events E1 and E2

P(E1 ∪ E2) = P(E1) + P(E2)− P(E1 ∩ E2)
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Probability example

I Let’s construct a probability space for our running example

I Universe of all students in the class S = {x1, x2, . . . , xN}

I Sigma-algebra with all combinations of students, i.e., F = 2S

I Suppose names are equiprobable ⇒ P({xn}) = 1/N for all n

⇒ Have to specify probability for all E ∈ F ⇒ Define P(E) = |E |
|S|

I Q: Is this function a probability?

⇒ A1): P(E) = |E |
|S| ≥ 0 X ⇒ A2): P(S) = |S|

|S| = 1 X

⇒ A3): P
(⋃N

i=1 Ei

)
=
|⋃N

i=1 Ei |
|S| =

∑N
i=1 |Ei |
|S| =

∑N
i=1 P(Ei ) X

I The P(·) just defined is called uniform probability distribution
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Conditional probability

I Consider events E and F , and suppose we know F occurred

I Q: What does this information imply about the probability of E?

I Def: Conditional probability of E given F is (need P(F ) > 0)

P(E
∣∣F ) =

P(E ∩ F )

P(F )

⇒ In general P(E |F ) 6= P(F |E )

I Renormalize probabilities to the set F
I Discard a piece of S
I May discard a piece of E as well

S

F

E1

E2 ∩ F E2

I For given F with P(F ) > 0, P(·|F ) satisfies the axioms of probability
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Conditional probability example

I The name I wrote is male. What is the probability of name xn?

I Assume male names are F = {x1, . . . , xM} ⇒ P(F ) = M
N

I If name xn is male, xn ∈ F and we have for event E = {xn}

P(E ∩ F ) = P({xn}) =
1

N

⇒ Conditional probability is as you would expect

P(E
∣∣F ) =

P(E ∩ F )

P(F )
=

1/N

M/N
=

1

M

I If name is female xn /∈ F , then P(E ∩ F ) = P(∅) = 0

⇒ As you would expect, then P(E
∣∣F ) = 0
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Law of total probability

I Consider event E and events F and F c

I F and F c form a partition of the space S (F ∪ F c = S , F ∩ F c = ∅)

I Because F ∪ F c = S cover space S , can write the set E as

E = E ∩ S = E ∩ [F ∪ F c ] = [E ∩ F ] ∪ [E ∩ F c ]

I Because F ∩ F c = ∅ are disjoint, so is [E ∩ F ] ∩ [E ∩ F c ] = ∅
⇒ P(E ) = P([E ∩ F ] ∪ [E ∩ F c ]) = P(E ∩ F ) + P(E ∩ F c)

I Use definition of conditional probability

P(E ) = P(E
∣∣F )P(F ) + P(E

∣∣F c)P(F c)

I Translate conditional information P(E
∣∣F ) and P(E

∣∣F c)

⇒ Into unconditional information P(E )
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Law of total probability (continued)

I In general, consider (possibly infinite)
partition Fi , i = 1, 2, . . . of S

I Sets are disjoint ⇒ Fi ∩Fj = ∅ for i 6= j

I Sets cover the space ⇒ ∪∞i=1Fi = S

F1

F2

F3

E ∩ F1
E ∩ F2

E ∩ F3

I As before, because ∪∞i=1Fi = S cover the space, can write set E as

E = E ∩ S = E ∩

[∞⋃
i=1

Fi

]
=
∞⋃
i=1

[E ∩ Fi ]

I Because Fi ∩ Fj = ∅ are disjoint, so is [E ∩ Fi ] ∩ [E ∩ Fj ] = ∅. Thus

P(E ) = P

(∞⋃
i=1

[E ∩ Fi ]

)
=
∞∑
i=1

P(E ∩ Fi ) =
∞∑
i=1

P(E
∣∣Fi )P(Fi )
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Total probability example

I Consider a probability class in some university

⇒ Seniors get an A with probability (w.p.) 0.9, juniors w.p. 0.8

⇒ An exchange student is a senior w.p. 0.7, and a junior w.p. 0.3

I Q: What is the probability of the exchange student scoring an A?

I Let A = “exchange student gets an A,” S denote senior, and J junior

⇒ Use the law of total probability

P(A) = P(A
∣∣S)P(S) + P(A

∣∣ J)P(J)

= 0.9× 0.7 + 0.8× 0.3 = 0.87
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Bayes’ rule

I From the definition of conditional probability

P(E
∣∣F )P(F ) = P(E ∩ F )

I Likewise, for F conditioned on E we have

P(F
∣∣E )P(E ) = P(F ∩ E )

I Quantities above are equal, giving Bayes’ rule

P(E
∣∣F ) =

P(F
∣∣E )P(E )

P(F )

I Bayes’ rule allows time reversion. If F (future) comes after E (past),

⇒ P(E
∣∣F ), probability of past (E ) having seen the future (F )

⇒ P(F
∣∣E ), probability of future (F ) having seen past (E )

I Models often describe future
∣∣ past. Interest is often in past

∣∣ future
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Bayes’ rule example

I Consider the following partition of my email

⇒ E1 =“spam” w.p. P(E1) = 0.7

⇒ E2 =“low priority” w.p. P(E2) = 0.2

⇒ E3 =“high priority” w.p. P(E3) = 0.1

I Let F=“an email contains the word free”

⇒ From experience know P(F
∣∣E1) = 0.9, P(F

∣∣E2) = P(F
∣∣E3) = 0.01

I I got an email containing “free”. What is the probability that it is spam?

I Apply Bayes’ rule

P(E1

∣∣F ) =
P(F

∣∣E1)P(E1)

P(F )
=

P(F
∣∣E1)P(E1)∑3

i=1 P(F
∣∣Ei )P(Ei )

= 0.995

⇒ Law of total probability very useful when applying Bayes’ rule
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Independence

I Def: Events E and F are independent if P(E ∩ F ) = P(E )P(F )

⇒ Events that are not independent are dependent

I According to definition of conditional probability

P(E
∣∣F ) =

P(E ∩ F )

P(F )
=

P(E )P(F )

P(F )
= P(E )

⇒ Intuitive, knowing F does not alter our perception of E

⇒ F bears no information about E

⇒ The symmetric is also true P(F
∣∣E ) = P(F )

I Whether E and F are independent relies strongly on P(·)
I Avoid confusing with disjoint events, meaning E ∩ F = ∅
I Q: Can disjoint events with P(E ) > 0, P(F ) > 0 be independent? No
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Independence example

I Wrote one name, asked a friend to write another (possibly the same)

I Probability space (S ,F ,P(·)) for this experiment

⇒ S is the set of all pairs of names [xn(1), xn(2)], |S | = N2

⇒ Sigma-algebra is (cartesian product) power set F = 2S

⇒ Define P(E ) = |E |
|S| as the uniform probability distribution

I Consider the events E1 =‘I wrote x1’ and E2 =‘My friend wrote x2’
Q: Are they independent? Yes, since

P(E1 ∩ E2) = P
(
{(x1, x2)}

)
=
|{(x1, x2)}|
|S |

=
1

N2
= P(E1)P(E2)

I Dependent events: E1 =‘I wrote x1’ and E3 =‘Both names are male’
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Independence for more than two events

I Def: Events Ei , i = 1, 2, . . . are called mutually independent if

P

(⋂
i∈I

Ei

)
=
∏
i∈I

P(Ei )

for every finite subset I of at least two integers

I Ex: Events E1, E2, and E3 are mutually independent if all the following hold

P(E1 ∩ E2 ∩ E3) = P(E1)P(E2)P(E3)

P(E1 ∩ E2) = P(E1)P(E2)

P(E1 ∩ E3) = P(E1)P(E3)

P(E2 ∩ E3) = P(E2)P(E3)

I If P(Ei ∩ Ej) = P(Ei )P(Ej) for all (i , j), the Ei are pairwise independent

⇒ Mutual independence → pairwise independence. Not the other way
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Random variable (RV) definition

I Def: RV X (s) is a function that assigns a value to an outcome s ∈ S

⇒ Think of RVs as measurements associated with an experiment

Example

I Throw a ball inside a 1m × 1m square. Interested in ball position

I Uncertain outcome is the place s ∈ [0, 1]2 where the ball falls

I Random variables are X (s) and Y (s) position coordinates

I RV probabilities inferred from probabilities of underlying outcomes

P(X (s) = x) = P({s ∈ S : X (s) = x})

P(X (s) ∈ (−∞, x ]) = P({s ∈ S : X (s) ∈ (−∞, x ]})

I X (s) is the random variable and x a particular value of X (s)
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Example 1

I Throw coin for head (H) or tails (T ). Coin is fair P(H) = 1/2,
P(T ) = 1/2. Pay $1 for H, charge $1 for T . Earnings?

I Possible outcomes are H and T

I To measure earnings define RV X with values

X (H) = 1, X (T ) = −1

I Probabilities of the RV are

P(X = 1) = P(H) = 1/2,

P(X = −1) = P(T ) = 1/2

⇒ Also have P(X = x) = 0 for all other x 6= ±1
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Example 2

I Throw 2 coins. Pay $1 for each H, charge $1 for each T . Earnings?

I Now the possible outcomes are HH, HT , TH, and TT

I To measure earnings define RV Y with values

Y (HH) = 2, Y (HT ) = 0, Y (TH) = 0, Y (TT ) = −2

I Probabilities of the RV are

P(Y = 2) = P(HH) = 1/4,

P(Y = 0) = P(HT ) + P(TH) = 1/2,

P(Y = −2) = P(TT ) = 1/4
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About Examples 1 and 2

I RVs are easier to manipulate than events

I Let s1 ∈ {H,T} be outcome of coin 1 and s2 ∈ {H,T} of coin 2

⇒ Can relate Y and X s as

Y (s1, s2) = X1(s1) + X2(s2)

I Throw N coins. Earnings? Enumeration becomes cumbersome

I Alternatively, let sn ∈ {H,T} be outcome of n-th toss and define

Y (s1, s2, . . . , sN) =
N∑

n=1

Xn(sn)

⇒ Will usually abuse notation and write Y =
∑N

n=1 Xn
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Example 3

I Throw a coin until landing heads for the first time. P(H) = p

I Number of throws until the first head?

I Outcomes are H, TH, TTH, TTTH, . . . Note that |S | =∞
⇒ Stop tossing after first H (thus THT not a possible outcome)

I Let N be a RV counting the number of throws

⇒ N = n if we land T in the first n− 1 throws and H in the n-th

P(N = 1) = P(H) = p

P(N = 2) = P(TH) = (1− p)p

...

P(N = n) = P(TT . . .T︸ ︷︷ ︸
n−1 tails

H) = (1− p)n−1p
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Example 3 (continued)

I From A2) we should have P(S) =
∑∞

n=1 P(N =n) = 1

I Holds because
∑∞

n=1(1− p)n−1 is a geometric series

∞∑
n=1

(1− p)n−1 = 1 + (1− p) + (1− p)2 + . . . =
1

1− (1− p)
=

1

p

I Plug the sum of the geometric series in the expression for P(S)

∞∑
n=1

P(N = n) = p
∞∑
n=1

(1− p)n−1 = p × 1

p
= 1 X
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Indicator function

I The indicator function of an event is a random variable

I Let s ∈ S be an outcome, and E ⊂ S be an event

I {E}(s) =

{
1, if s ∈ E
0, if s /∈ E

⇒ Indicates that outcome s belongs to set E , by taking value 1

Example

I Number of throws N until first H. Interested on N exceeding N0

⇒ Event is {N : N > N0}. Possible outcomes are N = 1, 2, . . .

⇒ Denote indicator function as IN0 = I {N : N > N0}
I Probability P(IN0 = 1) = P(N > N0) = (1− p)N0

⇒ For N to exceed N0 need N0 consecutive tails

⇒ Doesn’t matter what happens afterwards
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Probability mass and cumulative distribution functions

I Discrete RV takes on, at most, a countable number of values

I Probability mass function (pmf) pX (x) = P(X = x)
I If RV is clear from context, just write pX (x) = p(x)

I If X supported in {x1, x2, . . .}, pmf satisfies

(i) p(xi ) > 0 for i = 1, 2, . . .
(ii) p(x) = 0 for all other x 6= xi
(iii)

∑∞
i=1 p(xi ) = 1

I Pmf for “throw to first heads” (p = 0.3)

I Cumulative distribution function (cdf)

FX (x) = P(X ≤ x) =
∑
i :xi≤x

p(xi )

⇒ Staircase function with jumps at xi
I Cdf for “throw to first heads” (p = 0.3)
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Bernoulli

I A trial/experiment/bet can succeed w.p. p or fail w.p. q := 1− p

⇒ Ex: coin throws, any indication of an event

I Bernoulli X can be 0 or 1. Pmf is p(x) = pxq1−x

I Cdf is

F (x) =

 0, x < 0
q, 0 ≤ x < 1
1, x ≥ 1

pmf (p = 0.4) cdf (p = 0.4)
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Geometric

I Count number of Bernoulli trials needed to register first success

⇒ Trials succeed w.p. p and are independent

I Number of trials X until success is geometric with parameter p

I Pmf is p(x) = p(1− p)x−1

I One success after x − 1 failures, trials are independent

I Cdf is F (x) = 1− (1− p)x

I Recall P (X > x) = (1− p)x ; or just sum the geometric series

pmf (p = 0.3) cdf (p = 0.3)
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Binomial

I Count number of successes X in n Bernoulli trials

⇒ Trials succeed w.p. p and are independent

I Number of successes X is binomial with parameters (n, p). Pmf is

p(x) =

(
n

x

)
px(1− p)n−x =

n!

(n − x)!x!
px(1− p)n−x

⇒ X = x for x successes (px) and n − x failures ((1− p)n−x).

⇒
(
n
x

)
ways of drawing x successes and n − x failures

pmf (n = 9, p = 0.4) cdf (n = 9, p = 0.4)
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Binomial (continued)

I Let Yi , i = 1, . . . n be Bernoulli RVs with parameter p

⇒ Yi associated with independent events

I Can write binomial X with parameters (n, p) as ⇒ X =
n∑

i=1

Yi

Example

I Consider binomials Y and Z with parameters (nY , p) and (nZ , p)

⇒ Q: Probability distribution of X = Y + Z?

I Write Y =
∑nY

i=1 Yi and Z =
∑nZ

i=1 Zi , thus

X =

nY∑
i=1

Yi +

nZ∑
i=1

Zi

⇒ X is binomial with parameter (nY + nZ , p)
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Poisson

I Counts of rare events (radioactive decay, packet arrivals, accidents)
I Usually modeled as Poisson with parameter λ and pmf

p(x) = e−λ
λx

x!
I Q: Is this a properly defined pmf? Yes
I Taylor’s expansion of ex = 1 + x + x2/2 + . . .+ x i/i ! + . . .. Then

P(S) =
∞∑
i=0

p(i) = e−λ
∞∑
i=0

λi

i !
= e−λeλ = 1 X

pmf (λ = 4) cdf (λ = 4)
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Poisson approximation of binomial

I X is binomial with parameters (n, p)
I Let n→∞ while maintaining a constant product np = λ

I If we just let n→∞ number of successes diverges. Boring

I Compare with Poisson distribution with parameter λ
I λ = 5, n = 6, 8, 10, 15, 20, 50
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Poisson and binomial (continued)

I This is, in fact, the motivation for the definition of a Poisson RV

I Substituting p = λ/n in the pmf of a binomial RV

pn(x) =
n!

(n − x)!x!

(
λ

n

)x (
1− λ

n

)n−x

=
n(n − 1) . . . (n − x + 1)

nx

λx

x!

(1− λ/n)n

(1− λ/n)x

⇒ Used factorials’ defs., (1−λ/n)n−x = (1−λ/n)n
(1−λ/n)x , and reordered terms

I In the limit, red term is limn→∞(1− λ/n)n = e−λ

I Black and blue terms converge to 1. From both observations

lim
n→∞

pn(x) = 1
λx

x!

e−λ

1
= e−λ

λx

x!

⇒ Limit is the pmf of a Poisson RV
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Closing remarks

I Binomial distribution is motivated by counting successes

I The Poisson is an approximation for large number of trials n

⇒ Poisson distribution is more tractable (compare pmfs)

I Sometimes called “law of rare events”
I Individual events (successes) happen with small probability p = λ/n
I Aggregate event (number of successes), though, need not be rare

I Notice that all four RVs seen so far are related to “coin tosses”
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Where did the probability space go?

I Random variables are mappings X (s) : S 7→ R
⇒ The underlying probability space often “disappears”

⇒ This is for notational convenience, but it’s still there

Example

I Let’s construct a probability space for a Bernoulli RV
I Let S = [0, 1], F the Borel sigma-field and P ([a, b]) = b − a, a ≤ b

I Fix a parameter p ∈ [0, 1] and define

X (s) =

{
1, s ≤ p,
0, s > p.

⇒ P (X = 1) = P (s ≤ p) = P ([0, p]) = p and P (X = 0) = 1−p

I Can do a similar construction for all distributions consider so far
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Continuous RVs, probability density function

I Possible values for continuous RV X form a dense subset X ⊆ R
⇒ Uncountably infinite number of possible values

I Probability density function (pdf) fX (x) ≥ 0
is such that for any subset X ⊆ R
(Normal pdf to the right)

P(X ∈ X ) =

∫
X
fX (x)dx

⇒ Will have P(X = x) = 0 for all x ∈ X
I Cdf defined as before and related to the pdf

(Normal cdf to the right)

FX (x) = P(X ≤ x) =

∫ x

−∞
fX (u) du

⇒ P(X ≤ ∞) = FX (∞) = lim
x→∞

FX (x) = 1

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Introduction to Random Processes Probability Review 41



More on cdfs and pdfs

I When the set X = [a, b] is an interval of R

P (X ∈ [a, b]) = P (X ≤ b)− P (X ≤ a) = FX (b)− FX (a)

I In terms of the pdf it can be written as

P (X ∈ [a, b]) =

∫ b

a

fX (x) dx

I For small interval [x0, x0 + δx ], in particular

P (X ∈ [x0, x0 + δx ]) =

∫ x0+δx

x0

fX (x) dx ≈ fX (x0)δx

⇒ Probability is the “area under the pdf” (thus “density”)

I Another relationship between pdf and cdf is ⇒ ∂FX (x)

∂x
= fX (x)

⇒ Fundamental theorem of calculus (“derivative inverse of integral”)
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Uniform

I Model problems with equal probability of landing on an interval [a, b]

I Pdf of uniform RV is f (x) = 0 outside the interval [a, b] and

f (x) =
1

b − a
, for a ≤ x ≤ b

I Cdf is F (x) = (x − a)/(b− a) in the interval [a, b] (0 before, 1 after)

I Prob. of interval [α, β] ⊆ [a, b] is
∫ β
α
f (x)dx = (β − α)/(b − a)

⇒ Depends on interval’s width β − α only, not on its position

pdf (a = −1, b = 1) cdf (a = −1, b = 1)
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Exponential

I Model duration of phone calls, lifetime of electronic components
I Pdf of exponential RV is

f (x) =

{
λe−λx , x ≥ 0

0, x < 0

⇒ As parameter λ increases, “height” increases and “width” decreases

I Cdf obtained by integrating pdf

F (x) =

∫ x

−∞
f (u) du =

∫ x

0

λe−λu du = −e−λu
∣∣∣∣x
0

= 1− e−λx

pdf (λ = 1) cdf (λ = 1)
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Normal / Gaussian

I Model randomness arising from large number of random effects

I Pdf of normal RV is

f (x) =
1√
2πσ

e−(x−µ)
2/2σ2

⇒ µ is the mean (center), σ2 is the variance (width)

⇒ 0.68 prob. between µ± σ, 0.997 prob. in µ± 3σ

⇒ Standard normal RV has µ = 0 and σ2 = 1

I Cdf F (x) cannot be expressed in terms of elementary functions

pdf (µ = 0, σ2 = 1) cdf (µ = 0, σ2 = 1)
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Expected values

I We are asked to summarize information about a RV in a single value

⇒ What should this value be?

I If we are allowed a description with a few values

⇒ What should they be?

I Expected (mean) values are convenient answers to these questions

I Beware: Expectations are condensed descriptions

⇒ They overlook some aspects of the random phenomenon

⇒ Whole story told by the probability distribution (cdf)
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Definition for discrete RVs

I Discrete RV X taking on values xi , i = 1, 2, . . . with pmf p(x)

I Def: The expected value of the discrete RV X is

E [X ] :=
∞∑
i=1

xip(xi ) =
∑

x :p(x)>0

xp(x)

I Weighted average of possible values xi . Probabilities are weights

I Common average if RV takes values xi , i = 1, . . . ,N equiprobably

E [X ] =
N∑
i=1

xip(xi ) =
N∑
i=1

xi
1

N
=

1

N

N∑
i=1

xi
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Expected value of Bernoulli and geometric RVs

Ex: For a Bernoulli RV p(x) = pxq1−x , for x ∈ {0, 1}

E [X ] = 1× p + 0× q = p

Ex: For a geometric RV p(x) = p(1− p)x−1 = pqx−1, for x ≥ 1

I Note that ∂qx/∂q = xqx−1 and that derivatives are linear operators

E [X ] =
∞∑
x=1

xpqx−1 = p
∞∑
x=1

∂qx

∂q
= p

∂

∂q

( ∞∑
x=1

qx
)

I Sum inside derivative is geometric. Sums to q/(1− q), thus

E [X ] = p
∂

∂q

(
q

1− q

)
=

p

(1− q)2
=

1

p

I Time to first success is inverse of success probability. Reasonable
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Expected value of Poisson RV

Ex: For a Poisson RV p(x) = e−λ(λx/x!), for x ≥ 0

I First summand in definition is 0, pull λ out, and use x
x! = 1

(x−1)!

E [X ] =
∞∑
x=0

xe−λ
λx

x!
= λe−λ

∞∑
x=1

λx−1

(x − 1)!

I Sum is Taylor’s expansion of eλ = 1 + λ+ λ2/2! + . . .+ λx/x!

E [X ] = λe−λeλ = λ

I Poisson is limit of binomial for large number of trials n, with λ = np

⇒ Counts number of successes in n trials that succeed w.p. p

I Expected number of successes is λ = np
⇒ Number of trials × probability of individual success. Reasonable
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Definition for continuous RVs

I Continuous RV X taking values on R with pdf f (x)

I Def: The expected value of the continuous RV X is

E [X ] :=

∫ ∞
−∞

xf (x) dx

I Compare with E [X ] :=
∑

x :p(x)>0 xp(x) in the discrete RV case

I Note that the integral or sum are assumed to be well defined

⇒ Otherwise we say the expectation does not exist
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Expected value of normal RV

Ex: For a normal RV add and subtract µ, separate integrals

E [X ] =
1√
2πσ

∫ ∞
−∞

xe−
(x−µ)2

2σ2 dx

=
1√
2πσ

∫ ∞
−∞

(x + µ− µ)e−
(x−µ)2

2σ2 dx

= µ
1√
2πσ

∫ ∞
−∞

e−
(x−µ)2

2σ2 dx +
1√
2πσ

∫ ∞
−∞

(x − µ)e−
(x−µ)2

2σ2 dx

I First integral is 1 because it integrates a pdf in all R
I Second integral is 0 by symmetry. Both observations yield

E [X ] = µ

I The mean of a RV with a symmetric pdf is the point of symmetry
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Expected value of uniform and exponential RVs

Ex: For a uniform RV f (x) = 1/(b − a), for a ≤ x ≤ b

E [X ] =

∫ ∞
−∞

xf (x) dx =

∫ b

a

x

b − a
dx =

b2 − a2

2(b − a)
=

(a + b)

2

I Makes sense, since pdf is symmetric around midpoint (a + b)/2

Ex: For an exponential RV (non symmetric) integrate by parts

E [X ] =

∫ ∞
0

xλe−λx dx

= −xe−λx
∣∣∣∞
0

+

∫ ∞
0

e−λx dx

= −xe−λx
∣∣∣∞
0
− e−λx

λ

∣∣∣∞
0

=
1

λ
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Expected value of a function of a RV

I Consider a function g(X ) of a RV X . Expected value of g(X )?

I g(X) is also a RV, then it also has a pmf pg(X )

(
g(x)

)
E [g(X )] =

∑
g(x):pg(X )(g(x))>0

g(x)pg(X )

(
g(x)

)
⇒ Requires calculating the pmf of g(X ). There is a simpler way

Theorem
Consider a function g(X ) of a discrete RV X with pmf pX (x). Then

E [g(X )] =
∞∑
i=1

g(xi )pX (xi )

I Weighted average of functional values. No need to find pmf of g(X )

I Same can be proved for a continuous RV

E [g(X )] =

∫ ∞
−∞

g(x)fX (x) dx
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Expected value of a linear transformation

I Consider a linear function (actually affine) g(X ) = aX + b

E [aX + b] =
∞∑
i=1

(axi + b)pX (xi )

=
∞∑
i=1

axipX (xi ) +
∞∑
i=1

bpX (xi )

= a
∞∑
i=1

xipX (xi ) + b
∞∑
i=1

pX (xi )

= aE [X ] + b1

I Can interchange expectation with additive/multiplicative constants

E [aX + b] = aE [X ] + b

⇒ Again, the same holds for a continuous RV
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Expected value of an indicator function

I Let X be a RV and X be a set

I {X ∈ X} =

{
1, if x ∈ X
0, if x /∈ X

I Expected value of I {X ∈ X} in the discrete case

E [I {X ∈ X}] =
∑

x :pX (x)>0

I {x ∈ X}pX (x) =
∑
x∈X

pX (x) = P (X ∈ X )

I Likewise in the continuous case

E [I {X ∈ X}] =

∫ ∞
−∞

I {x ∈ X}fX (x)dx =

∫
x∈X

fX (x)dx = P (X ∈ X )

I Expected value of indicator RV = Probability of indicated event

⇒ Recall E [X ] = p for Bernoulli RV (it “indicates success”)
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Moments, central moments and variance

I Def: The n-th moment (n ≥ 0) of a RV is

E [X n] =
∞∑
i=1

xni p(xi )

I Def: The n-th central moment corrects for the mean, that is

E
[(
X − E [X ]

)n]
=
∞∑
i=1

(
xi − E [X ]

)n
p(xi )

I 0-th order moment is E
[
X 0
]

= 1; 1-st moment is the mean E [X ]

I 2-nd central moment is the variance. Measures width of the pmf

var [X ] = E
[(
X − E [X ]

)2]
= E

[
X 2
]
− E2[X ]

Ex: For affine functions

var [aX + b] = a2var [X ]
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Variance of Bernoulli and Poisson RVs

Ex: For a Bernoulli RV X with parameter p, E [X ] = E
[
X 2
]

= p

⇒ var [X ] = E
[
X 2
]
− E2[X ] = p − p2 = p(1− p)

Ex: For Poisson RV Y with parameter λ, second moment is

E
[
Y 2
]

=
∞∑
y=0

y2e−λ
λy

y !
=
∞∑
y=1

y
e−λλy

(y − 1)!

=
∞∑
y=1

(y − 1)
e−λλy

(y − 1)!
+
∞∑
y=1

e−λλy

(y − 1)!

= e−λλ2
∞∑
y=2

λy−2

(y − 2)!
+ e−λλ

∞∑
y=1

λy−1

(y − 1)!

= e−λλ2eλ + e−λλeλ = λ2 + λ

⇒ var [Y ] = E
[
Y 2
]
− E2[Y ] = λ2 + λ− λ2 = λ
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Joint cdf

I Want to study problems with more than one RV. Say, e.g., X and Y

I Probability distributions of X and Y are not sufficient

⇒ Joint probability distribution (cdf) of (X ,Y ) defined as

FXY (x , y) = P (X ≤ x ,Y ≤ y)

I If X ,Y clear from context omit subindex to write FXY (x , y) = F (x , y)

I Can recover FX (x) by considering all possible values of Y

FX (x) = P (X ≤ x) = P (X ≤ x ,Y ≤ ∞) = FXY (x ,∞)

⇒ FX (x) and FY (y) = FXY (∞, y) are called marginal cdfs
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Joint pmf

I Consider discrete RVs X and Y
X takes values in X := {x1, x2, . . .} and Y in Y := {y1, y2, . . .}

I Joint pmf of (X ,Y ) defined as

pXY (x , y) = P (X = x ,Y = y)

I Possible values (x , y) are elements of the Cartesian product X × Y
I (x1, y1), (x1, y2), . . ., (x2, y1), (x2, y2), . . ., (x3, y1), (x3, y2), . . .

I Marginal pmf pX (x) obtained by summing over all values of Y

pX (x) = P (X = x) =
∑
y∈Y

P (X = x ,Y = y) =
∑
y∈Y

pXY (x , y)

⇒ Likewise pY (y) =
∑
x∈X

pXY (x , y). Marginalize by summing
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Joint pdf

I Consider continuous RVs X , Y . Arbitrary set A ∈ R2

I Joint pdf is a function fXY (x , y) : R2 → R+ such that

P ((X ,Y ) ∈ A) =

∫∫
A
fXY (x , y) dxdy

I Marginalization. There are two ways of writing P (X ∈ X )

P (X ∈ X ) = P (X ∈ X ,Y ∈ R) =

∫
X∈X

∫ +∞

−∞
fXY (x , y) dydx

⇒ Definition of fX (x) ⇒ P (X ∈ X ) =
∫
X∈X fX (x) dx
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Joint pdf

I Consider continuous RVs X , Y . Arbitrary set A ∈ R2

I Joint pdf is a function fXY (x , y) : R2 → R+ such that

P ((X ,Y ) ∈ A) =

∫∫
A
fXY (x , y) dxdy

I Marginalization. There are two ways of writing P (X ∈ X )

P (X ∈ X ) = P (X ∈ X ,Y ∈ R) =

∫
X∈X

∫ +∞

−∞
fXY (x , y) dydx

⇒ Definition of fX (x) ⇒ P (X ∈ X ) =
∫
X∈X fX (x) dx

I Lipstick on a pig (same thing written differently is still same thing)

⇒ fX (x) =

∫ +∞

−∞
fXY (x , y) dy , fY (y) =

∫ +∞

−∞
fXY (x , y) dx
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Example

I Consider two Bernoulli RVs B1,B2, with the same parameter p

⇒ Define X = B1 and Y = B1 + B2

I The pmf of X is

pX (0) = 1− p, pX (1) = p

I Likewise, the pmf of Y is

pY (0) = (1− p)2, pY (1) = 2p(1− p), pY (2) = p2

I The joint pmf of X and Y is

pXY (0, 0) = (1− p)2, pXY (0, 1) = p(1− p), pXY (0, 2) = 0

pXY (1, 0) = 0, pXY (1, 1) = p(1− p), pXY (1, 2) = p2
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Random vectors

I For convenience often arrange RVs in a vector

⇒ Prob. distribution of vector is joint distribution of its entries

I Consider, e.g., two RVs X and Y . Random vector is X = [X ,Y ]>

I If X and Y are discrete, vector variable X is discrete with pmf

pX(x) = pX
(
[x , y ]>

)
= pXY (x , y)

I If X , Y continuous, X continuous with pdf

fX(x) = fX
(
[x , y ]>

)
= fXY (x , y)

I Vector cdf is ⇒ FX(x) = FX

(
[x , y ]>

)
= FXY (x , y)

I In general, can define n-dimensional RVs X := [X1,X2, . . . ,Xn]>

⇒ Just notation, definitions carry over from the n = 2 case
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Joint expectations

I RVs X and Y and function g(X ,Y ). Function g(X ,Y ) also a RV

I Expected value of g(X ,Y ) when X and Y discrete can be written as

E [g(X ,Y )] =
∑

x,y :pXY (x,y)>0

g(x , y)pXY (x , y)

I When X and Y are continuous

E [g(X ,Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x , y)fXY (x , y) dxdy

⇒ Can have more than two RVs and use vector notation

Ex: Linear transformation of a vector RV X ∈ Rn: g(X) = a>X

⇒ E
[
a>X

]
=

∫
Rn

a>xfX(x) dx
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Expected value of a sum of random variables

I Expected value of the sum of two continuous RVs

E [X + Y ] =

∫ ∞
−∞

∫ ∞
−∞

(x + y)fXY (x , y) dxdy

=

∫ ∞
−∞

∫ ∞
−∞

x fXY (x , y) dxdy +

∫ ∞
−∞

∫ ∞
−∞

y fXY (x , y) dxdy

I Remove x (y) from innermost integral in first (second) summand

E [X + Y ] =

∫ ∞
−∞

x

∫ ∞
−∞

fXY (x , y) dy dx +

∫ ∞
−∞

y

∫ ∞
−∞

fXY (x , y) dx dy

=

∫ ∞
−∞

xfX (x) dx +

∫ ∞
−∞

yfY (y) dy

= E [X ] + E [Y ]

⇒ Used marginal expressions

I Expectation ↔ summation ⇒ E
[∑

i Xi

]
=
∑

i E [Xi ]
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Expected value is a linear operator

I Combining with earlier result E [aX + b] = aE [X ] + b proves that

E [axX + ayY + b] = axE [X ] + ayE [Y ] + b

I Better yet, using vector notation (with a ∈ Rn, X ∈ Rn, b a scalar)

E
[
a>X + b

]
= a>E [X] + b

I Also, if A is an m × n matrix with rows a>1 , . . . , a
>
m and b ∈ Rm a

vector with elements b1, . . . , bm, we can write

E [AX + b]=


E
[
a>1 X + b1

]
E
[
a>2 X + b2

]
...

E
[
a>mX + bm

]
=


a>1 E [X] + b1
a>2 E [X] + b2

...
a>mE [X] + bm

= AE [X] + b

I Expected value operator can be interchanged with linear operations
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Independence of RVs

I Events E and F are independent if P (E ∩ F ) = P (E ) P (F )

I Def: RVs X and Y are independent if events X ≤ x and Y ≤ y are
independent for all x and y , i.e.

P (X ≤ x ,Y ≤ y) = P (X ≤ x) P (Y ≤ y)

⇒ By definition, equivalent to FXY (x , y) = FX (x)FY (y)

I For discrete RVs equivalent to analogous relation between pmfs

pXY (x , y) = pX (x)pY (y)

I For continuous RVs the analogous is true for pdfs

fXY (x , y) = fX (x)fY (y)

I Independence ⇔ Joint distribution factorizes into product of marginals
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Sum of independent Poisson RVs

I Independent Poisson RVs X and Y with parameters λx and λy
I Q: Probability distribution of the sum RV Z := X + Y ?

I Z = n only if X = k , Y = n − k for some 0 ≤ k ≤ n
(use independence, Poisson pmf, rearrange terms, binomial theorem)

pZ (n) =
n∑

k=0

P (X = k,Y = n − k) =
n∑

k=0

P (X = k) P (Y = n − k)

=
n∑

k=0

e−λx λ
k
x

k!
e−λy

λn−k
y

(n − k)!
=

e−(λx+λy )

n!

n∑
k=0

n!

(n − k)!k!
λk
xλ

n−k
y

=
e−(λx+λy )

n!
(λx + λy )n

I Z is Poisson with parameter λz := λx + λy

⇒ Sum of independent Poissons is Poisson (parameters added)
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Expected value of a binomial RV

I Binomial RVs count number of successes in n Bernoulli trials

Ex: Let Xi , i = 1, . . . n be n independent Bernoulli RVs

I Can write binomial X =
n∑

i=1

Xi ⇒ E [X ] =
n∑

i=1

E [Xi ] = np

I Expected nr. successes = nr. trials × prob. individual success
I Same interpretation that we observed for Poisson RVs

Ex: Dependent Bernoulli trials. Y =
n∑

i=1

Xi , but Xi are not independent

I Expected nr. successes is still E [Y ] = np
I Linearity of expectation does not require independence
I Y is not binomial distributed
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Expected value of a product of independent RVs

Theorem
For independent RVs X and Y , and arbitrary functions g(X ) and h(Y ):

E [g(X )h(Y )] = E [g(X )]E [h(Y )]

The expected value of the product is the product of the expected values

I Can show that g(X ) and h(Y ) are also independent. Intuitive

Ex: Special case when g(X ) = X and h(Y ) = Y yields

E [XY ] = E [X ]E [Y ]

I Expectation and product can be interchanged if RVs are independent

I Different from interchange with linear operations (always possible)

Introduction to Random Processes Probability Review 73



Expected value of a product of independent RVs

Proof.

I Suppose X and Y continuous RVs. Use definition of independence

E [g(X )h(Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x)h(y)fXY (x , y) dxdy

=

∫ ∞
−∞

∫ ∞
−∞

g(x)h(y)fX (x)fY (y) dxdy

I Integrand is product of a function of x and a function of y

E [g(X )h(Y )] =

∫ ∞
−∞

g(x)fX (x) dx

∫ ∞
−∞

h(y)fY (y) dy

= E [g(X )]E [h(Y )]
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Variance of a sum of independent RVs

I Let Xn, n = 1, . . .N be independent with E [Xn] = µn, var [Xn] = σ2
n

I Q: Variance of sum X :=
∑N

n=1 Xn?

I Notice that mean of X is E [X ] =
∑N

n=1 µn. Then

var [X ] = E

( N∑
n=1

Xn −
N∑

n=1

µn

)2
 = E

( N∑
n=1

(Xn − µn)

)2


I Expand square and interchange summation and expectation

var [X ] =
N∑

n=1

N∑
m=1

E
[
(Xn − µn)(Xm − µm)

]
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Variance of a sum of independent RVs (continued)

I Separate terms in sum. Then use independence and E(Xn − µn) = 0

var [X ] =
N∑

n=1,n 6=m

N∑
m=1

E
[
(Xn − µn)(Xm − µm)

]
+

N∑
n=1

E
[
(Xn − µn)2

]

=
N∑

n=1,n 6=m

N∑
m=1

E(Xn − µn)E(Xm − µm) +
N∑

n=1

σ2
n =

N∑
n=1

σ2
n

I If RVs are independent ⇒ Variance of sum is sum of variances

I Slightly more general result holds for independent Xi , i = 1, . . . , n

var

[∑
i

(aiXi + bi )

]
=
∑
i

a2i var [Xi ]
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Variance of binomial RV and sample mean

Ex: Let Xi , i = 1, . . . n be independent Bernoulli RVs

⇒ Recall E [Xi ] = p and var [Xi ] = p(1− p)

I Write binomial X with parameters (n, p) as: X =
n∑

i=1

Xi

I Variance of binomial then ⇒ var [X ] =
n∑

i=1

var [Xi ] = np(1− p)

Ex: Let Yi , i = 1, . . . n be independent RVs and E [Yi ] = µ, var [Yi ] = σ2

I Sample mean is Ȳ =
1

n

n∑
i=1

Yi . What about E
[
Ȳ
]

and var
[
Ȳ
]
?

I Expected value ⇒ E
[
Ȳ
]

=
1

n

n∑
i=1

E [Yi ] = µ

I Variance ⇒ var
[
Ȳ
]

=
1

n2

n∑
i=1

var [Yi ] =
σ2

n
(used independence)
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Covariance

I Def: The covariance of X and Y is (generalizes variance to pairs of RVs)

cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])] = E [XY ]− E [X ]E [Y ]

I If cov(X ,Y ) = 0 variables X and Y are said to be uncorrelated

I If X , Y independent then E [XY ] = E [X ]E [Y ] and cov(X ,Y ) = 0

⇒ Independence implies uncorrelated RVs

I Opposite is not true, may have cov(X ,Y ) = 0 for dependent X , Y

I Ex: X uniform in [−a, a] and Y = X 2

⇒ But uncorrelatedness implies independence if X , Y are normal

I If cov(X ,Y ) > 0 then X and Y tend to move in the same direction

⇒ Positive correlation

I If cov(X ,Y ) < 0 then X and Y tend to move in opposite directions

⇒ Negative correlation
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Covariance example

I Let X be a zero-mean random signal and Z zero-mean noise

⇒ Signal X and noise Z are independent

I Consider received signals Y1 = X + Z and Y2 = −X + Z

(I) Y1 and X are positively correlated (X , Y1 move in same direction)

cov(X ,Y1) = E [XY1]− E [X ]E [Y1]

= E [X (X + Z )]− E [X ]E [X + Z ]

I Second term is 0 (E [X ] = 0). For first term independence of X , Z

E [X (X + Z )] = E
[
X 2
]

+ E [X ]E [Z ] = E
[
X 2
]

I Combining observations ⇒ cov(X ,Y1) = E
[
X 2
]
> 0
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Covariance example (continued)

(II) Y2 and X are negatively correlated (X , Y2 move opposite direction)

I Same computations ⇒ cov(X ,Y2) = −E
[
X 2
]
< 0

(III) Can also compute correlation between Y1 and Y2

cov(Y1,Y2) = E [(X + Z )(−X + Z )]− E [(X + Z )]E [(−X + Z )]

= −E
[
X 2
]

+ E
[
Z 2
]

⇒ Negative correlation if E
[
X 2
]
> E

[
Z 2
]

(small noise)

⇒ Positive correlation if E
[
X 2
]
< E

[
Z 2
]

(large noise)

I Correlation between X and Y1 or X and Y2 comes from causality

I Correlation between Y1 and Y2 does not. Latent variables X and Z

⇒ Correlation does not imply causation

Plausible, indeed commonly used, model of a communication channel
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Glossary

I Sample space

I Outcome and event

I Sigma-algebra

I Countable union

I Axioms of probability

I Probability space

I Conditional probability

I Law of total probability

I Bayes’ rule

I Independent events

I Random variable (RV)

I Discrete RV

I Bernoulli, binomial, Poisson

I Continuous RV

I Uniform, Normal, exponential

I Indicator RV

I Pmf, pdf and cdf

I Law of rare events

I Expected value

I Variance and standard deviation

I Joint probability distribution

I Marginal distribution

I Random vector

I Independent RVs

I Covariance

I Uncorrelated RVs
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