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Markov’s inequality

I RV X with E [|X |] <∞, constant a > 0

I Markov’s inequality states ⇒ P (|X | ≥ a) ≤ E(|X |)
a

Proof.

I I {|X | ≥ a} = 1 when |X | ≥ a and
0 else. Then (figure to the right)

aI {|X | ≥ a} ≤ |X |

I Use linearity of expected value

aE(I {|X | ≥ a}) ≤ E(|X |) X

|X |

a−a

a

I Indicator function’s expectation = Probability of indicated event

aP (|X | ≥ a) ≤ E(|X |)
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Chebyshev’s inequality

I RV X with E(X ) = µ and E
[
(X − µ)2

]
= σ2, constant k > 0

I Chebyshev’s inequality states ⇒ P (|X − µ| ≥ k) ≤ σ2

k2

Proof.

I Markov’s inequality for the RV Z = (X − µ)2 and constant a = k2

P
(
(X − µ)2 ≥ k2

)
= P

(
|Z | ≥ k2

)
≤ E [|Z |]

k2
=

E
[
(X − µ)2

]
k2

I Notice that (X − µ)2 ≥ k2 if and only if |X − µ| ≥ k thus

P (|X − µ| ≥ k) ≤
E
[
(X − µ)2

]
k2

I Chebyshev’s inequality follows from definition of variance
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Comments and observations

I If absolute expected value is finite, i.e., E [|X |] <∞
⇒ Complementary (c)cdf decreases at least like x−1 (Markov’s)

I If mean E(X ) and variance E
[
(X − µ)2

]
are finite

⇒ Ccdf decreases at least like x−2 (Chebyshev’s)

I Most cdfs decrease exponentially (e.g. e−x2

for normal)

⇒ Power law bounds ∝ x−α are loose but still useful

I Markov’s inequality often derived for nonnegative RV X ≥ 0

⇒ Can drop the absolute value to obtain P (X ≥ a) ≤ E(X )
a

⇒ General bound P (X ≥ a) ≤ E(X r )
ar holds for r > 0
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Limits

I Sequence of RVs XN = X1,X2, . . . ,Xn, . . .

⇒ Distinguish between random process XN and realizations xN

Q1) Say something about Xn for n large? ⇒ Not clear, Xn is a RV

Q2) Say something about xn for n large? ⇒ Certainly, look at lim
n→∞

xn

Q3) Say something about P (Xn ∈ X ) for n large? ⇒ Yes, lim
n→∞

P (Xn ∈ X )

I Translate what we now about regular limits to definitions for RVs

I Can start from convergence of sequences: lim
n→∞

xn

⇒ Sure and almost sure convergence

I Or from convergence of probabilities: lim
n→∞

P (Xn)

⇒ Convergence in probability, in mean square and distribution
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Convergence of sequences and sure convergence

I Denote sequence of numbers xN = x1, x2, . . . , xn, . . .

I Def: Sequence xN converges to the value x if given any ε > 0

⇒ There exists n0 such that for all n > n0, |xn − x | < ε

I Sequence xn comes arbitrarily close to its limit ⇒ |xn − x | < ε

⇒ And stays close to its limit for all n > n0

I Random process (sequence of RVs) XN = X1,X2, . . . ,Xn, . . .

⇒ Realizations of XN are sequences xN

I Def: We say XN converges surely to RV X if

⇒ lim
n→∞

xn = x for all realizations xN of XN

I Said differently, lim
n→∞

Xn(s) = X (s) for all s ∈ S

I Not really adequate. Even a (practically unimportant) outcome that
happens with vanishingly small probability prevents sure convergence
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Almost sure convergence

I RV X and random process XN = X1,X2, . . . ,Xn, . . .

I Def: We say XN converges almost surely to RV X if

P
(
lim

n→∞
Xn = X

)
= 1

⇒ Almost all sequences converge, except for a set of measure 0

I Almost sure convergence denoted as ⇒ lim
n→∞

Xn = X a.s.

⇒ Limit X is a random variable

Example

I X0 ∼ N (0, 1) (normal, mean 0, variance 1)

I Zn sequence of Bernoulli RVs, parameter p

I Define ⇒ Xn = X0 −
Zn

n

I
Zn

n
→ 0 so lim

n→∞
Xn = X0 a.s. (also surely) 10 20 30 40 50 60 70 80 90 100
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Almost sure convergence example

I Consider S = [0, 1] and let P (·) be the uniform probability distribution

⇒ P ([a, b]) = b − a for 0 ≤ a ≤ b ≤ 1

I Define the RVs Xn(s) = s + sn and X (s) = s

I For all s ∈ [0, 1) ⇒ sn → 0 as n→∞, hence Xn(s)→ s = X (s)

I For s = 1 ⇒ Xn(1) = 2 for all n, while X (1) = 1

I Convergence only occurs on the set [0, 1), and P ([0, 1)) = 1

⇒ We say lim
n→∞

Xn = X a.s.

⇒ Once more, note the limit X is a random variable
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Convergence in probability

I Def: We say XN converges in probability to RV X if for any ε > 0

lim
n→∞

P (|Xn − X | < ε) = 1

⇒ Prob. of distance |Xn −X | becoming smaller than ε tends to 1

I Statement is about probabilities, not about realizations (sequences)
⇒ Probability converges, realizations xN may or may not converge
⇒ Limit and prob. interchanged with respect to a.s. convergence

Theorem
Almost sure (a.s.) convergence implies convergence in probability

Proof.

I If lim
n→∞

Xn = X then for any ε > 0 there is n0 such that

|Xn − X | < ε for all n ≥ n0

I True for all almost all sequences so P (|Xn − X | < ε)→ 1
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Convergence in probability example

I X0 ∼ N (0, 1) (normal, mean 0, variance 1)

I Zn sequence of Bernoulli RVs, parameter 1/n

I Define ⇒ Xn = X0 − Zn

I Xn converges in probability to X0 because

P (|Xn − X0| < ε) = P (|Zn| < ε)

= 1− P (Zn = 1)

= 1− 1

n
→ 1

I Plot of path xn up to n = 102, n = 103, n = 104

⇒ Zn = 1 becomes ever rarer but still happens
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Difference between a.s. and in probability

I Almost sure convergence implies that almost all sequences converge

I Convergence in probability does not imply convergence of sequences

I Latter example: Xn = X0 − Zn, Zn is Bernoulli with parameter 1/n

⇒ Showed it converges in probability

P (|Xn − X0| < ε) = 1− 1

n
→ 1

⇒ But for almost all sequences, lim
n→∞

xn does not exist

I Almost sure convergence ⇒ disturbances stop happening

I Convergence in prob. ⇒ disturbances happen with vanishing freq.

I Difference not irrelevant
I Interpret Zn as rate of change in savings
I With a.s. convergence risk is eliminated
I With convergence in prob. risk decreases but does not disappear
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Mean-square convergence

I Def: We say XN converges in mean square to RV X if

lim
n→∞

E
[
|Xn − X |2

]
= 0

⇒ Sometimes (very) easy to check

Theorem
Convergence in mean square implies convergence in probability

Proof.

I From Markov’s inequality

P (|Xn − X | ≥ ε) = P
(
|Xn − X |2 ≥ ε2

)
≤

E
[
|Xn − X |2

]
ε2

I If Xn → X in mean-square sense, E
[
|Xn − X |2

]
/ε2 → 0 for all ε

I Almost sure and mean square ⇒ neither one implies the other
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Convergence in distribution

I Consider a random process XN. Cdf of Xn is Fn(x)

I Def: We say XN converges in distribution to RV X with cdf FX (x) if

⇒ lim
n→∞

Fn(x) = FX (x) for all x at which FX (x) is continuous

I No claim about individual sequences, just the cdf of Xn

⇒ Weakest form of convergence covered

I Implied by almost sure, in probability, and mean square convergence

Example

I Yn ∼ N (0, 1)

I Zn Bernoulli with parameter p

I Define ⇒ Xn = Yn − 10Zn/n

I
Zn

n
→ 0 so lim

n→∞
Fn(x) “=” N (0, 1) 10 20 30 40 50 60 70 80 90 100
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Convergence in distribution (continued)

I Individual sequences xn do not converge in any sense

⇒ It is the distribution that converges

n = 1 n = 10 n = 100
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I As the effect of Zn/n vanishes pdf of Xn converges to pdf of Yn

⇒ Standard normal N (0, 1)
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Implications

I Sure ⇒ almost sure ⇒ in probability ⇒ in distribution

I Mean square ⇒ in probability ⇒ in distribution

I In probability ⇒ in distribution

In distribution

In probability

Mean square

Almost sure

Sure
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Sum of independent identically distributed RVs

I Independent identically distributed (i.i.d.) RVs X1,X2, . . . ,Xn, . . .

I Mean E [Xn] = µ and variance E
[
(Xn − µ)2

]
= σ2 for all n

I Q: What happens with sum SN :=
∑N

n=1 Xn as N grows?

I Expected value of sum is E [SN ] = Nµ ⇒ Diverges if µ 6= 0

I Variance is E
[
(SN − Nµ)2

]
= Nσ2

⇒ Diverges if σ 6= 0 (always true unless Xn is a constant, boring)

I One interesting normalization ⇒ X̄N := (1/N)
∑N

n=1 Xn

I Now E
[
X̄N

]
= µ and var

[
X̄N

]
= σ2/N

⇒ Law of large numbers (weak and strong)

I Another interesting normalization ⇒ ZN :=

∑N
n=1 Xn − Nµ

σ
√
N

I Now E [ZN ] = 0 and var [ZN ] = 1 for all values of N

⇒ Central limit theorem
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Law of large numbers

I Sequence of i.i.d. RVs X1,X2, . . . ,Xn, . . . with mean µ

I Define sample average X̄N := (1/N)
∑N

n=1 Xn

Theorem (Weak law of large numbers)

Sample average X̄N of i.i.d. sequence converges in prob. to µ = E [Xn]

lim
N→∞

P
(
|X̄N − µ| < ε

)
= 1, for all ε > 0

Theorem (Strong law of large numbers)

Sample average X̄N of i.i.d. sequence converges a.s. to µ = E [Xn]

P

(
lim

N→∞
X̄N = µ

)
= 1

I Strong law implies weak law. Can forget weak law if so wished
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Proof of weak law of large numbers

I Weak law of large numbers is very simple to prove

Proof.

I Variance of X̄N vanishes for N large

var
[
X̄N

]
=

1

N2

N∑
n=1

var [Xn] =
σ2

N
→ 0

I But, what is the variance of X̄N?

0← σ2

N
= var

[
X̄N

]
= E

[
(X̄N − µ)2

]
I Then, X̄N converges to µ in mean-square sense

⇒ Which implies convergence in probability

I Strong law is a little more challenging. Will not prove it here
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Coming full circle

I Repeated experiment ⇒ Sequence of i.i.d. RVs X1,X2, . . . ,Xn, . . .

⇒ Consider an event of interest X ∈ E . Ex: coin comes up ‘H’

I Fraction of times X ∈ E happens in N experiments is

X̄N =
1

N

N∑
n=1

I {Xn ∈ E}

I Since the indicators also i.i.d., the strong law asserts that

lim
N→∞

X̄N = E [I {X1 ∈ E}] = P (X1 ∈ E ) a.s.

I Strong law consistent with our intuitive notion of probability

⇒ Relative frequency of occurrence of an event in many trials

⇒ Justifies simulation-based prob. estimates (e.g. histograms)
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Central limit theorem (CLT)

Theorem (Central limit theorem)

Consider a sequence of i.i.d. RVs X1,X2, . . . ,Xn, . . . with mean
E [Xn] = µ and variance E

[
(Xn − µ)2

]
= σ2 for all n. Then

lim
N→∞

P

(∑N
n=1 Xn − Nµ

σ
√
N

≤ x

)
=

1√
2π

∫ x

−∞
e−u2/2 du

I Former statement implies that for N sufficiently large

ZN :=

∑N
n=1 Xn − Nµ

σ
√
N

∼ N (0, 1)

⇒ ZN converges in distribution to a standard normal RV

⇒ Remarkable universality. Distribution of Xn arbitrary
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CLT (continued)

I Equivalently can say ⇒
N∑

n=1

Xn ∼ N (Nµ,Nσ2)

I Sum of large number of i.i.d. RVs has a normal distribution

⇒ Cannot take a meaningful limit here

⇒ But intuitively, this is what the CLT states

Example

I Binomial RV X with parameters (n, p)

I Write as X =
∑n

i=1 Xi with Xi i.i.d. Bernoulli with parameter p

I Mean E [Xi ] = p and variance var [Xi ] = p(1− p)

⇒ For sufficiently large n ⇒ X ∼ N (np, np(1− p))
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Conditional pmf and cdf for discrete RVs

I Recall definition of conditional probability for events E and F

P(E
∣∣F ) = P(E ∩ F )

P(F )

⇒ Change in likelihoods when information is given, renormalization

I Def: Conditional pmf of RV X given Y is (both RVs discrete)

pX |Y (x
∣∣ y) = P

(
X = x

∣∣Y = y
)
=

P (X = x ,Y = y)

P (Y = y)

I Which we can rewrite as

pX |Y (x
∣∣ y) = P (X = x ,Y = y)

P (Y = y)
=

pXY (x , y)

pY (y)

⇒ Pmf for RV X , given parameter y (“Y not random anymore”)

I Def: Conditional cdf is (a range of X conditioned on a value of Y )

FX |Y (x
∣∣ y) = P

(
X ≤ x

∣∣Y = y
)
=

∑
z≤x

pX |Y (z
∣∣ y)
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Conditional pmf example

I Consider independent Bernoulli RVs Y and Z , define X = Y + Z

I Q: Conditional pmf of X given Y ? For X = 0, Y = 0

pX |Y (X = 0
∣∣Y = 0) =

P (X = 0,Y = 0)

P (Y = 0)
=

(1− p)2

1− p
= 1− p

I Or, from joint and marginal pmfs (just a matter of definition)

pX |Y (X = 0
∣∣Y = 0) =

pXY (0, 0)

pY (0)
=

(1− p)2

1− p
= 1− p

I Can compute the rest analogously

pX |Y (0|0) = 1− p, pX |Y (1|0) = p, pX |Y (2|0) = 0

pX |Y (0|1) = 0, pX |Y (1|1) = 1− p, pX |Y (2|1) = p
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Conditioning on sum of Poisson RVs

I Consider independent Poisson RVs Y and Z , parameters λ1 and λ2

I Define X = Y + Z . Q: Conditional pmf of Y given X?

pY |X (Y = y
∣∣X = x) =

P (Y = y ,X = x)

P (X = x)
=

P (Y = y) P (Z = x − y)

P (X = x)

I Used Y and Z independent. Now recall X is Poisson, λ = λ1 + λ2

pY |X (Y = y
∣∣X = x) =

e−λ1λy
1

y !

e−λ2λx−y
2

(x − y)!

[
e−(λ1+λ2)(λ1 + λ2)

x

x!

]−1

=
x!

y !(x − y)!

λy
1λ

x−y
2

(λ1 + λ2)x

=

(
x

y

)(
λ1

λ1 + λ2

)y (
λ2

λ1 + λ2

)x−y

⇒ Conditioned on X = x , Y is binomial (x , λ1/(λ1 + λ2))
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Conditional pdf and cdf for continuous RVs

I Def: Conditional pdf of RV X given Y is (both RVs continuous)

fX |Y (x
∣∣ y) = fXY (x , y)

fY (y)

I For motivation, define intervals ∆x = [x , x+dx ] and ∆y = [y , y+dy ]

⇒ Approximate conditional probability P
(
X ∈ ∆x

∣∣Y ∈ ∆y
)
as

P
(
X ∈ ∆x

∣∣Y ∈ ∆y
)
=

P (X ∈ ∆x ,Y ∈ ∆y)

P (Y ∈ ∆y)
≈ fXY (x , y)dxdy

fY (y)dy

I From definition of conditional pdf it follows

P
(
X ∈ ∆x

∣∣Y ∈ ∆y
)
≈ fX |Y (x

∣∣ y)dx
⇒ What we would expect of a density

I Def: Conditional cdf is ⇒ FX |Y (x
∣∣ y) = ∫ x

−∞
fX |Y (u

∣∣ y)du
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Communications channel example

I Random message (RV) Y , transmit signal y (realization of Y )

I Received signal is x = y + z (z realization of random noise)

⇒ Model communication system as a relation between RVs

X = Y + Z

⇒ Model additive noise as Z ∼ N (0, σ2) independent of Y

I Q: Conditional pdf of X given Y ? Try the definition

fX |Y (x
∣∣ y) = fXY (x , y)

fY (y)
=

?

fY (y)

⇒ Problem is we don’t know fXY (x , y). Have to calculate

I Computing conditional probs. typically easier than computing joints
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Communications channel example (continued)

I If Y = y is given, then “Y not random anymore”

⇒ It is still random in reality, we are thinking of it as given

I If Y were not random, say Y = y with y given then X = y + Z

⇒ Cdf of X given Y = y now easy (use Y and Z independent)

P
(
X ≤ x

∣∣Y = y
)
= P (y + Z ≤ x |Y = y) = P (Z ≤ x − y)

I But since Z is normal with zero mean and variance σ2

P
(
X ≤ x

∣∣Y = y
)
=

1√
2πσ

∫ x−y

−∞
e−z2/2σ2

dz

=
1√
2πσ

∫ x

−∞
e−(z−y)2/2σ2

dz

⇒ X given Y = y is normal with mean y and variance σ2
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Digital communications channel

I Conditioning is a common tool to compute probabilities

I Message 1 (w.p. p) ⇒ Transmit Y = 1

I Message 2 (w.p. q) ⇒ Transmit Y = −1
I Received signal ⇒ X = Y + Z

+ XY = ±1

Z ∼ N (0, σ2)

I Decoding rule ⇒ Ŷ = 1 if X ≥ 0, Ŷ = −1 if X < 0

⇒ Errors: • to the left of 0 and • to the right

x
1−1 0

Ŷ = 1Ŷ = −1

I Q: What is the probability of error, Pe := P
(
Ŷ 6= Y

)
?
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Output pdf

I From communications channel example we know

⇒ If Y = 1 then X
∣∣Y = 1 ∼ N (1, σ2). Conditional pdf is

fX |Y (x
∣∣ 1) = 1√

2πσ
e−(x−1)2/2σ2

⇒ If Y = −1 then X
∣∣Y = −1 ∼ N (−1, σ2). Conditional pdf is

fX |Y (x
∣∣ − 1) =

1√
2πσ

e−(x+1)2/2σ2

x

fX |Y (x)

1−1

N (1, σ2)N (−1, σ2)
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Probability of error

I Write probability of error by conditioning on Y = ±1 (total probability)

Pe = P
(
Ŷ 6= Y

∣∣Y = 1
)
P (Y = 1) + P

(
Ŷ 6= Y

∣∣Y = −1
)
P (Y = −1)

= P
(
Ŷ =−1

∣∣Y = 1
)

p + P
(
Ŷ = 1

∣∣Y = −1
)

q

I According to the decision rule

Pe = P
(
X < 0

∣∣Y = 1
)
p + P

(
X ≥ 0

∣∣Y = −1
)
q

I But X given Y is normally distributed, then

Pe =
p√
2πσ

∫ 0

−∞
e−(x−1)2/2σ2

dx +
q√
2πσ

∫ ∞

0

e−(x+1)2/2σ2

dx

x

fX |Y (x)

1−1

N (1, σ2)N (−1, σ2)

Introduction to Random Processes Probability Review 34



Conditional expectation

Markov and Chebyshev’s inequalities

Convergence of random variables

Limit theorems

Conditional probabilities

Conditional expectation

Introduction to Random Processes Probability Review 35



Definition of conditional expectation

I Def: For continuous RVs X , Y , conditional expectation is

E
[
X
∣∣Y = y

]
=

∫ ∞

−∞
x fX |Y (x |y) dx

I Def: For discrete RVs X , Y , conditional expectation is

E
[
X
∣∣Y = y

]
=
∑
x

x pX |Y (x |y)

I Defined for given y ⇒ E
[
X
∣∣Y = y

]
is a number

⇒ All possible values y of Y ⇒ random variable E
[
X
∣∣Y ]

I E
[
X
∣∣Y ] a function of the RV Y , hence itself a RV

⇒ E
[
X
∣∣Y = y

]
value associated with outcome Y = y

I If X and Y independent, then E
[
X
∣∣Y ] = E [X ]
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Conditional expectation example

I Consider independent Bernoulli RVs Y and Z , define X = Y + Z

I Q: What is E
[
X
∣∣Y = 0

]
? Recall we found the conditional pmf

pX |Y (0|0) = 1− p, pX |Y (1|0) = p, pX |Y (2|0) = 0

pX |Y (0|1) = 0, pX |Y (1|1) = 1− p, pX |Y (2|1) = p

I Use definition of conditional expectation for discrete RVs

E
[
X
∣∣Y = 0

]
=
∑
x

x pX |Y (x |0)

= 0× (1− p) + 1× p + 2× 0 = p
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Iterated expectations

I If E
[
X
∣∣Y ]

is a RV, can compute expected value EY

[
EX

[
X
∣∣Y ]]

Subindices clarify innermost expectation is w.r.t. X , outermost w.r.t. Y

I Q: What is EY

[
EX

[
X
∣∣Y ]]

? Not surprisingly ⇒ E [X ] = EY

[
EX

[
X
∣∣Y ]]

I Show for discrete RVs (write integrals for continuous)

EY

[
EX

[
X

∣∣Y ]]
=

∑
y

EX

[
X

∣∣Y = y
]
pY (y) =

∑
y

[∑
x

x pX |Y (x |y)
]
pY (y)

=
∑
x

x

[∑
y

pX |Y (x |y)pY (y)

]
=

∑
x

x

[∑
y

pXY (x , y)

]
=

∑
x

xpX (x) = E [X ]

I Offers a useful method to compute expected values

⇒ Condition on Y = y ⇒ X
∣∣Y = y

⇒ Compute expected value over X for given y ⇒ EX

[
X
∣∣Y = y

]
⇒ Compute expected value over all values y of Y ⇒ EY

[
EX

[
X
∣∣Y ] ]
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Iterated expectations example

I Consider a probability class in some university

⇒ Seniors get an A = 4 w.p. 0.5, B = 3 w.p. 0.5

⇒ Juniors get a B = 3 w.p. 0.6, C = 2 w.p. 0.4

⇒ An exchange student is a senior w.p. 0.7, and a junior w.p. 0.3

I Q: Expectation of X = exchange student’s grade?

I Start by conditioning on standing

E
[
X
∣∣Senior] = 0.5× 4 + 0.5× 3 = 3.5

E
[
X
∣∣ Junior] = 0.6× 3 + 0.4× 2 = 2.6

I Now sum over standing’s probability

E [X ] = E
[
X
∣∣ Senior]P (Senior) + E

[
X
∣∣ Junior]P (Junior)

= 3.5× 0.7 + 2.6× 0.3 = 3.23
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Conditioning on sum of Poisson RVs

I Consider independent Poisson RVs Y and Z , parameters λ1 and λ2

I Define X = Y + Z . What is E
[
Y
∣∣X = x

]
?

⇒ We found Y
∣∣X = x is binomial (x , λ1/(λ1 + λ2)), hence

E
[
Y
∣∣X = x

]
=

xλ1

λ1 + λ2

I Now use iterated expectations to obtain E [Y ]

⇒ Recall X is Poisson with parameter λ = λ1 + λ2

E [Y ] =
∞∑
x=0

E
[
Y
∣∣X = x

]
pX (x) =

∞∑
x=0

xλ1

λ1 + λ2
pX (x)

=
λ1

λ1 + λ2
E [X ] =

λ1

λ1 + λ2
(λ1 + λ2) = λ1

I Of course, since Y is Poisson with parameter λ1
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Conditioning to compute expectations

I As with probabilities conditioning is useful to compute expectations

⇒ Spreads difficulty into simpler problems (divide and conquer)

Example

I A baseball player scores Xi runs per game

⇒ Expected runs are E [Xi ] = E [X ] independently of game

I Player plays N games in the season. N is random (playoffs, injuries?)

⇒ Expected value of number of games is E [N]

I What is the expected number of runs in the season? ⇒ E
[ N∑

i=1

Xi

]
I Both N and Xi are random, and here also assumed independent

⇒ The sum
∑N

i=1 Xi is known as compound RV
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Sum of random number of random quantities

Step 1: Condition on N = n then[ N∑
i=1

Xi

∣∣N = n

]
=

n∑
i=1

Xi

Step 2: Compute expected value w.r.t. Xi , use N and the Xi independent

EXi

[ N∑
i=1

Xi

∣∣N = n

]
= EXi

[ n∑
i=1

Xi

∣∣N = n

]
= EXi

[ n∑
i=1

Xi

]
= nE [X ]

⇒ Third equality possible because n is a number (not a RV)

Step 3: Compute expected value w.r.t. values n of N

EN

[
EXi

[ N∑
i=1

Xi

∣∣N]] = EN

[
NE [X ]

]
= E [N]E [X ]

Yielding result ⇒ E
[ N∑

i=1

Xi

]
= E [N]E [X ]
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Expectation of geometric RV

Ex: Suppose X is a geometric RV with parameter p

I Calculate E [X ] by conditioning on Y = I {“first trial is a success”}
⇒ If Y = 1, then clearly E

[
X
∣∣Y = 1

]
= 1

⇒ If Y = 0, independence of trials yields E
[
X
∣∣Y = 0

]
= 1 + E [X ]

I Use iterated expectations

E [X ] = E
[
X
∣∣Y = 1

]
P (Y = 1) + E

[
X
∣∣Y = 0

]
P (Y = 0)

= 1× p + (1 + E [X ])× (1− p)

I Solving for E [X ] yields

E [X ] =
1

p

I Here, direct approach is straightforward (geometric series, derivative)

⇒ Oftentimes simplifications can be major
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The trapped miner example

I A miner is trapped in a mine containing three doors

I At all times n ≥ 1 while still trapped
I The miner chooses a door Dn = j , j = 1, 2, 3
I Choice of door Dn made independently of prior choices
I Equally likely to pick either door, i.e., P (Dn = j) = 1/3

I Each door leads to a tunnel, but only one leads to safety
I Door 1: the miner reaches safety after two hours of travel
I Door 2: the miner returns back after three hours of travel
I Door 3: the miner returns back after five hours of travel

I Let X denote the total time traveled till the miner reaches safety

I Q: What is E [X ]?

Introduction to Random Processes Probability Review 44



The trapped miner example (continued)

I Calculate E [X ] by conditioning on first door choice D1

⇒ If D1 = 1, then 2 hours and out, i.e., E
[
X
∣∣D1 = 1

]
= 2

⇒ If D1 = 2, door choices independent so E
[
X
∣∣D1 = 2

]
= 3 + E [X ]

⇒ Likewise for D1 = 3, we have E
[
X
∣∣D1 = 3

]
= 5 + E [X ]

I Use iterated expectations

E [X ] =
3∑

j=1

E
[
X
∣∣D1 = j

]
P (D1 = j) =

1

3

3∑
j=1

E
[
X
∣∣D1 = j

]
=

2 + 3 + E [X ] + 5 + E [X ]

3
=

10 + 2E [X ]

3

I Solving for E [X ] yields
E [X ] = 10

I You will solve it again using compound RVs in the homework
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Conditional variance formula

I Def: The conditional variance of X given Y = y is

var [X |Y = y ] = E
[
(X − E

[
X
∣∣Y = y

]
)2
∣∣Y = y

]
= E

[
X 2
∣∣Y = y

]
− (E

[
X
∣∣Y = y

]
)2

⇒ var [X |Y ] a function of RV Y , value for Y = y is var [X |Y = y ]

I Calculate var [X ] by conditioning on Y = y . Quick guesses?

⇒ var [X ] 6= EY [varX (X
∣∣Y )]

⇒ var [X ] 6= varY [EX (X
∣∣Y )]

I Neither. Following conditional variance formula is the correct way

var [X ] = EY [varX (X
∣∣Y )] + varY [EX (X

∣∣Y )]
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Conditional variance formula (continued)

Proof.

I Start from the first summand, use linearity, iterated expectations

EY [varX (X
∣∣Y )] = EY

[
EX (X

2
∣∣Y )− (EX (X

∣∣Y ))2
]

= EY

[
EX (X

2
∣∣Y )

]
− EY

[
(EX (X

∣∣Y ))2
]

= E
[
X 2
]
− EY

[
(EX (X

∣∣Y ))2
]

I For the second term use variance definition, iterated expectations

varY [EX (X
∣∣Y )] = EY

[
(EX (X

∣∣Y ))2
]
−
(
EY [EX (X

∣∣Y )]
)2

= EY

[
(EX (X

∣∣Y ))2
]
− (E [X ])2

I Summing up both terms yields (blue terms cancel)

EY [varX (X
∣∣Y )] + varY [EX (X

∣∣Y )] = E
[
X 2
]
− (E [X ])2 = var [X ]
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Variance of a compound RV

I Let X1,X2, . . . be i.i.d. RVs with E [X1] = µ and var [X1] = σ2

I Let N be a nonnegative integer-valued RV independent of the Xi

I Consider the compound RV S =
∑N

i=1 Xi . What is var [S ]?

I The conditional variance formula is useful here

I Earlier, we found E [S |N] = Nµ. What about var [S |N = n]?

var

[
N∑
i=1

Xi |N = n

]
= var

[
n∑

i=1

Xi |N = n

]
= var

[
n∑

i=1

Xi

]
= nσ2

⇒ var [S |N] = Nσ2. Used independence of N and the i.i.d. Xi

I The conditional variance formula is var [S ] = E
[
Nσ2

]
+ var [Nµ]

Yielding result ⇒ var

[ N∑
i=1

Xi

]
= E [N]σ2 + var [N]µ2
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Glossary

I Markov’s inequality

I Chebyshev’s inequality

I Limit of a sequence

I Almost sure convergence

I Convergence in probability

I Mean-square convergence

I Convergence in distribution

I I.i.d. random variables

I Sample average

I Centering and scaling

I Law of large numbers

I Central limit theorem

I Conditional distribution

I Communication channel

I Probability of error

I Conditional expectation

I Iterated expectations

I Expectations by conditioning

I Compound random variable

I Conditional variance
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