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Markov chains in discrete time

I Consider discrete-time index n = 0, 1, 2, . . .

I Time-dependent random state Xn takes values on a countable set
I In general, states are i = 0,±1,±2, . . ., i.e., here the state space is Z
I If Xn = i we say “the process is in state i at time n”

I Random process is XN, its history up to n is Xn = [Xn,Xn−1, . . . ,X0]T

I Def: process XN is a Markov chain (MC) if for all n ≥ 1, i , j , x ∈ Zn

P
(
Xn+1 = j

∣∣Xn = i ,Xn−1 = x
)

= P
(
Xn+1 = j

∣∣Xn = i
)

= Pij

I Future depends only on current state Xn (memoryless, Markov property)

⇒ Future conditionally independent of the past, given the present
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Observations

I Given Xn, history Xn−1 irrelevant for future evolution of the process

I From the Markov property, can show that for arbitrary m > 0

P
(
Xn+m = j

∣∣Xn = i ,Xn−1 = x
)

= P
(
Xn+m = j

∣∣Xn = i
)

I Transition probabilities Pij are constant (MC is time invariant)

P
(
Xn+1 = j

∣∣Xn = i
)

= P
(
X1 = j

∣∣X0 = i
)

= Pij

I Since Pij ’s are probabilities they are non-negative and sum up to 1

Pij ≥ 0,
∞∑
j=0

Pij = 1

⇒ Conditional probabilities satisfy the axioms
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Matrix representation

I Group the Pij in a transition probability “matrix” P

P =


P00 P01 P02 . . . P0j . . .
P10 P11 P12 . . . P1j . . .
...

...
...

...
...

...
Pi0 Pi1 Pi2 . . . Pij . . .
...

...
...

...
...

. . .


⇒ Not really a matrix if number of states is infinite

I Row-wise sums should be equal to one, i.e.,
∑∞

j=0 Pij = 1 for all i
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Graph representation

I A graph representation or state transition diagram is also used

i i+1i−1 . . .. . .

Pi,i

Pi,i+1

Pi,i−1

Pi+1,i+1

Pi+1,i

Pi+1,i+2

Pi−1,i−1

Pi−1,i

Pi−1,i−2 Pi+2,i+1

Pi−2,i−1

I Useful when number of states is infinite, skip arrows if Pij = 0

I Again, sum of per-state outgoing arrow weights should be one
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Example: Happy - Sad

I I can be happy (Xn = 0) or sad (Xn = 1)

⇒ My mood tomorrow is only affected by my mood today

I Model as Markov chain with transition probabilities

P =

(
0.8 0.2
0.3 0.7

)
H S

0.8

0.2

0.7

0.3

I Inertia ⇒ happy or sad today, likely to stay happy or sad tomorrow

I But when sad, a little less likely so (P00 > P11)
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Example: Happy - Sad with memory

I Happiness tomorrow affected by today’s and yesterday’s mood

⇒ Not a Markov chain with the previous state space

I Define double states HH (Happy-Happy), HS (Happy-Sad), SH, SS
I Only some transitions are possible

I HH and SH can only become HH or HS
I HS and SS can only become SH or SS

P =


0.8 0.2 0 0
0 0 0.3 0.7
0.8 0.2 0 0
0 0 0.3 0.7


HH HS

SH SS

0.8

0.2

0.2

0.8

0.7

0.3

0.3

0.7

I Key: can capture longer time memory via state augmentation
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Random (drunkard’s) walk

I Step to the right w.p. p, to the left w.p. 1− p

⇒ Not that drunk to stay on the same place

i i+1i−1 . . .. . .

p

1− p 1− p

pp

1− p 1− p

p

I States are 0,±1,±2, . . . (state space is Z), infinite number of states

I Transition probabilities are

Pi,i+1 = p, Pi,i−1 = 1− p

I Pij = 0 for all other transitions
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Random (drunkard’s) walk (continued)

I Random walks behave differently if p < 1/2, p = 1/2 or p > 1/2

p = 0.45 p = 0.50 p = 0.55
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⇒ With p > 1/2 diverges to the right (↗ almost surely)

⇒ With p < 1/2 diverges to the left (↘ almost surely)

⇒ With p = 1/2 always come back to visit origin (almost surely)

I Because number of states is infinite we can have all states transient
I Transient states not revisited after some time (more later)

Introduction to Random Processes Markov Chains 10



Two dimensional random walk

I Take a step in random direction E, W, S or N

⇒ E, W, S, N chosen with equal probability

I States are pairs of coordinates (Xn,Yn)
I Xn = 0,±1,±2, . . . and Yn = 0,±1,±2, . . .

I Transiton probs. 6= 0 only for adjacent points

East: P
(
Xn+1 = i+1,Yn+1 = j

∣∣Xn = i ,Yn = j
)
=

1

4

West: P
(
Xn+1 = i−1,Yn+1 = j

∣∣Xn = i ,Yn = j
)
=

1

4

North: P
(
Xn+1 = i ,Yn+1 = j+1

∣∣Xn = i ,Yn = j
)
=

1

4

South: P
(
Xn+1 = i ,Yn+1 = j−1

∣∣Xn = i ,Yn = j
)
=

1

4
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More about random walks

I Some random facts of life for equiprobable random walks

I In one and two dimensions probability of returning to origin is 1

⇒ Will almost surely return home

I In more than two dimensions, probability of returning to origin is < 1

⇒ In three dimensions probability of returning to origin is 0.34

⇒ Then 0.19, 0.14, 0.10, 0.08, . . .
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Another representation of a random walk

I Consider an i.i.d. sequence of RVs YN = Y1,Y2, . . . ,Yn, . . .

I Yn takes the value ±1, P (Yn = 1) = p, P (Yn = −1) = 1− p

I Define X0 = 0 and the cumulative sum

Xn =
n∑

k=1

Yk

⇒ The process XN is a random walk (same we saw earlier)

⇒ YN are i.i.d. steps (increments) because Xn = Xn−1 + Yn

I Q: Can we formally establish the random walk is a Markov chain?

I A: Since Xn = Xn−1 + Yn, n ≥ 1, and Yn independent of Xn−1

P
(
Xn = j

∣∣Xn−1 = i ,Xn−2 = x
)

= P
(
Xn−1 + Yn = j

∣∣Xn−1 = i ,Xn−2 = x
)

= P (Y1 = j − i) := Pij
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General result to identify Markov chains

Theorem
Suppose YN = Y1,Y2, . . . ,Yn, . . . are i.i.d. and independent of X0.
Consider the random process XN = X1,X2, . . . ,Xn, . . . of the form

Xn = f (Xn−1,Yn), n ≥ 1

Then XN is a Markov chain with transition probabilities

Pij = P (f (i ,Y1) = j)

I Useful result to identify Markov chains

⇒ Often simpler than checking the Markov property

I Proof similar to the random walk special case, i.e., f (x , y) = x + y
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Random walk with boundaries (gambling)

I As a random walk, but stop moving when Xn = 0 or Xn = J
I Models a gambler that stops playing when ruined, Xn = 0
I Or when reaches target gains Xn = J

i i+1i−1 J0

p

1− p 1− p

p
11

. . . . . .

I States are 0, 1, . . . , J, finite number of states

I Transition probabilities are

Pi,i+1 = p, Pi,i−1 = 1− p, P00 = 1, PJJ = 1

I Pij = 0 for all other transitions

I States 0 and J are called absorbing. Once there stay there forever

⇒ The rest are transient states. Visits stop almost surely
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Multiple-step transition probabilities

I Q: What can be said about multiple transitions?

I Ex: Transition probabilities between two time slots

P2
ij = P

(
Xm+2 = j

∣∣Xm = i
)

⇒ Caution: P2
ij is just notation, P2

ij 6= Pij × Pij

I Ex: Probabilities of Xm+n given Xm ⇒ n-step transition probabilities

Pn
ij = P

(
Xm+n = j

∣∣Xm = i
)

I Relation between n-, m-, and (m + n)-step transition probabilities

⇒ Write Pm+n
ij in terms of Pm

ij and Pn
ij

I All questions answered by Chapman-Kolmogorov’s equations
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2-step transition probabilities

I Start considering transition probabilities between two time slots

P2
ij = P

(
Xn+2 = j

∣∣Xn = i
)

I Using the law of total probability

P2
ij =

∞∑
k=0

P
(
Xn+2 = j

∣∣Xn+1 = k ,Xn = i
)

P
(
Xn+1 = k

∣∣Xn = i
)

I In the first probability, conditioning on Xn = i is unnecessary. Thus

P2
ij =

∞∑
k=0

P
(
Xn+2 = j

∣∣Xn+1 = k
)

P
(
Xn+1 = k

∣∣Xn = i
)

I Which by definition of transition probabilities yields

P2
ij =

∞∑
k=0

PkjPik
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Relating n-, m-, and (m + n)-step probabilities

I Same argument works (condition on X0 w.l.o.g., time invariance)

Pm+n
ij = P

(
Xn+m = j

∣∣X0 = i
)

I Use law of total probability, drop unnecessary conditioning and use
definitions of n-step and m-step transition probabilities

Pm+n
ij =

∞∑
k=0

P
(
Xm+n = j

∣∣Xm = k ,X0 = i
)

P
(
Xm = k

∣∣X0 = i
)

Pm+n
ij =

∞∑
k=0

P
(
Xm+n = j

∣∣Xm = k
)

P
(
Xm = k

∣∣X0 = i
)

Pm+n
ij =

∞∑
k=0

Pn
kjP

m
ik for all i , j and n,m ≥ 0

⇒ These are the Chapman-Kolmogorov equations
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Interpretation

I Chapman-Kolmogorov equations are intuitive. Recall

Pm+n
ij =

∞∑
k=0

Pm
ik P

n
kj

I Between times 0 and m + n, time m occurred

I At time m, the Markov chain is in some state Xm = k

⇒ Pm
ik is the probability of going from X0 = i to Xm = k

⇒ Pn
kj is the probability of going from Xm = k to Xm+n = j

⇒ Product Pm
ik P

n
kj is then the probability of going from

X0 = i to Xm+n = j passing through Xm = k at time m

I Since any k might have occurred, just sum over all k
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Chapman-Kolmogorov equations in matrix form

I Define the following three matrices:

⇒ P(m) with elements Pm
ij

⇒ P(n) with elements Pn
ij

⇒ P(m+n) with elements Pm+n
ij

I Matrix product P(m)P(n) has (i , j)-th element
∑∞

k=0 P
m
ik P

n
kj

I Chapman Kolmogorov in matrix form

P(m+n) = P(m)P(n)

I Matrix of (m + n)-step transitions is product of m-step and n-step
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Computing n-step transition probabilities

I For m = n = 1 (2-step transition probabilities) matrix form is

P(2) = PP = P2

I Proceed recursively backwards from n

P(n) = P(n−1)P = P(n−2)PP = . . . = Pn

I Have proved the following

Theorem
The matrix of n-step transition probabilities P(n) is given by the n-th
power of the transition probability matrix P, i.e.,

P(n) = Pn

Henceforth we write Pn

Introduction to Random Processes Markov Chains 22



Example: Happy-Sad

I Mood transitions in one day

P =

(
0.8 0.2
0.3 0.7

)
H S

0.8

0.2

0.7

0.3

I Transition probabilities between today and the day after tomorrow?

P2 =

(
0.70 0.30
0.45 0.55

)
H S

0.70

0.30

0.55

0.45
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Example: Happy-Sad (continued)

I ... After a week and after a month

P7 =

(
0.6031 0.3969
0.5953 0.4047

)
P30 =

(
0.6000 0.4000
0.6000 0.4000

)
I Matrices P7 and P30 almost identical ⇒ limn→∞ Pn exists

⇒ Note that this is a regular limit

I After a month transition from H to H and from S to H w.p. 0.6

⇒ State becomes independent of initial condition (H w.p. 0.6)

I Rationale: 1-step memory ⇒ Initial condition eventually forgotten
I More about this soon
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Unconditional probabilities

I All probabilities so far are conditional, i.e., Pn
ij = P

(
Xn = j

∣∣X0 = i
)

⇒ May want unconditional probabilities pj(n) = P (Xn = j)

I Requires specification of initial conditions pi (0) = P (X0 = i)

I Using law of total probability and definitions of Pn
ij and pj(n)

pj(n) = P (Xn = j) =
∞∑
i=0

P
(
Xn = j

∣∣X0 = i
)

P (X0 = i)

=
∞∑
i=0

Pn
ijpi (0)

I In matrix form (define vector p(n) = [p1(n), p2(n), . . .]T )

p(n) = (Pn)T p(0)
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Example: Happy-Sad

I Transition probability matrix ⇒ P =

(
0.8 0.2
0.3 0.7

)
p(0) = [1, 0]T p(0) = [0, 1]T
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I For large n probabilities p(n) are independent of initial state p(0)
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Gambler’s ruin problem

I You place $1 bets

(i) With probability p you gain $1, and
(ii) With probability q = 1− p you loose your $1 bet

I Start with an initial wealth of $i

I Define bias factor α := q/p
I If α > 1 more likely to loose than win (biased against gambler)
I α < 1 favors gambler (more likely to win than loose)
I α = 1 game is fair

I You keep playing until

(a) You go broke (loose all your money)
(b) You reach a wealth of $N (same as first lecture, HW1 for N →∞)

I Prob. Si of reaching $N before going broke for initial wealth $i?
I S stands for success, or successful betting run (SBR)
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Gambler’s Markov chain

I Model wealth as Markov chain XN. Transition probabilities

Pi,i+1 = p, Pi,i−1 = q, P00 = PNN = 1

i i+1i−1 N0

p

q q

p

11

. . . . . .

I Realizations xN. Initial state = Initial wealth = i

⇒ Sates 0 and N are absorbing. Eventually end up in one of them

⇒ Remaining states are transient (visits eventually stop)

I Being absorbing states says something about the limit wealth

lim
n→∞

xn = 0, or lim
n→∞

xn = N ⇒ Si := P
(

lim
n→∞

Xn = N
∣∣X0 = i

)
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Recursive relations

I Total probability to relate Si with Si+1,Si−1 from adjacent states

⇒ Condition on first bet X1, Markov chain homogeneous

Si = Si+1Pi,i+1 + Si−1Pi,i−1 = Si+1p + Si−1q

I Recall p + q = 1 and reorder terms

p(Si+1 − Si ) = q(Si − Si−1)

I Recall definition of bias α = q/p

Si+1 − Si = α(Si − Si−1)
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Recursive relations (continued)

I If current state is 0 then Si = S0 = 0. Can write

S2 − S1 = α(S1 − S0) = αS1

I Substitute this in the expression for S3 − S2

S3 − S2 = α(S2 − S1) = α2S1

I Apply recursively backwards from Si − Si−1

Si − Si−1 = α(Si−1 − Si−2) = . . . = αi−1S1

I Sum up all of the former to obtain

Si − S1 = S1
(
α + α2 + . . .+ αi−1

)
I The latter can be written as a geometric series

Si = S1
(

1 + α + α2 + . . .+ αi−1
)
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Probability of successful betting run

I Geometric series can be summed in closed form, assuming α 6= 1

Si =

(
i−1∑
k=0

αk

)
S1 =

1− αi

1− α
S1

I When in state N, SN = 1 and so

1 = SN =
1− αN

1− α
S1 ⇒ S1 =

1− α
1− αN

I Substitute S1 above into expression for probability of SBR Si

Si =
1− αi

1− αN
, α 6= 1

I For α = 1 ⇒ Si = iS1, 1 = SN = NS1, ⇒ Si = i
N
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Analysis for large N

I Recall

Si =

{
(1− αi )/(1− αN), α 6= 1,

i/N, α = 1

I Consider exit bound N arbitrarily large

(i) For α > 1, Si ≈ (αi − 1)/αN → 0

(ii) Likewise for α = 1, Si = i/N → 0

I If win probability p does not exceed loose probability q

⇒ Will almost surely loose all money

(iii) For α < 1, Si → 1− αi

I If win probability p exceeds loose probability q

⇒ For sufficiently high initial wealth i , will most likely win

I This explains what we saw on first lecture and HW1
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Queues in communication systems

I General communication systems goal

⇒ Move packets from generating sources to intended destinations

I Between arrival and departure we hold packets in a memory buffer

⇒ Want to design buffers appropriately
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Non-concurrent queue

I Time slotted in intervals of duration ∆t

⇒ n-th slot between times n∆t and (n + 1)∆t

I Average arrival rate is λ̄ packets per unit time

⇒ Probability of packet arrival in ∆t is λ = λ̄∆t

I Packets are transmitted (depart) at a rate of µ̄ packets per unit time

⇒ Probability of packet departure in ∆t is µ = µ̄∆t

I Assume no simultaneous arrival and departure (no concurrence)

⇒ Reasonable for small ∆t (µ and λ likely to be small)
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Queue evolution equations

I Qn denotes number of packets in queue (backlog) in n-th time slot

I An = nr. of packet arrivals, Dn = nr. of departures (during n-th slot)

I If the queue is empty Qn = 0 then there are no departures

⇒ Queue length at time n + 1 can be written as

Qn+1 = Qn + An, if Qn = 0

I If Qn > 0, departures and arrivals may happen

Qn+1 = Qn + An − Dn, if Qn > 0

I An ∈ {0, 1}, Dn ∈ {0, 1} and either An = 1 or Dn = 1 but not both

⇒ Arrival and departure probabilities are

P (An = 1) = λ, P (Dn = 1) = µ
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Queue evolution probabilities

I Future queue lengths depend on current length only

I Probability of queue length increasing

P
(
Qn+1 = i + 1

∣∣Qn = i
)

= P (An = 1) = λ, for all i

I Queue length might decrease only if Qn > 0. Probability is

P
(
Qn+1 = i − 1

∣∣Qn = i
)

= P (Dn = 1) = µ, for all i > 0

I Queue length stays the same if it neither increases nor decreases

P
(
Qn+1 = i

∣∣Qn = i
)

= 1− λ− µ, for all i > 0

P
(
Qn+1 = 0

∣∣Qn = 0
)

= 1− λ

⇒ No departures when Qn = 0 explain second equation
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Queue as a Markov chain

I MC with states 0, 1, 2, . . .. Identify states with queue lengths

I Transition probabilities for i 6= 0 are

Pi,i−1 = µ, Pi,i = 1− λ− µ, Pi,i+1 = λ

I For i = 0: P00 = 1− λ and P01 = λ

i i+1i−10

λ

µ µ

λλ

1− λ

λ

µ µ

1− λ− µ 1− λ− µ1− λ− µ

. . . . . .
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Numerical example: Probability propagation

I Build matrix P truncating at maximum queue length L = 100

⇒ Arrival rate λ = 0.3. Departure rate µ = 0.33

⇒ Initial distribution p(0) = [1, 0, 0, . . .]T (queue empty)
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I Propagate probabilities (Pn)Tp(0)

I Probabilities obtained are

P
(
Qn = i

∣∣Q0 = 0
)

= pi (n)

I A few i ’s (0, 10, 20) shown

I Probability of empty queue ≈ 0.1

I Occupancy decreases with i
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Transient and recurrent states

I States of a MC can be recurrent or transient

I Transient states might be visited early on but visits eventually stop

I Almost surely, Xn 6= i for n sufficiently large (qualifications needed)

I Visits to recurrent states keep happening forever. Fix arbitrary m

I Almost surely, Xn = i for some n ≥ m (qualifications needed)

T1

T2
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R2

R3 0.6

0.20.2
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1
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Definitions

I Let fi be the probability that starting at i , MC ever reenters state i

fi := P

( ∞⋃
n=1

Xn = i
∣∣X0 = i

)
= P

( ∞⋃
n=m+1

Xn = i
∣∣Xm = i

)

I State i is recurrent if fi = 1

⇒ Process reenters i again and again (a.s.). Infinitely often

I State i is transient if fi < 1

⇒ Positive probability 1− fi > 0 of never coming back to i
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Recurrent states example

I State R3 is recurrent because it is absorbing P
(
X1 = R3

∣∣X0 = R3

)
= 1

I State R1 is recurrent because

P
(
X1 = R1

∣∣X0 = R1

)
= 0.3

P
(
X2 = R1,X1 6= R1

∣∣X0 = R1

)
= (0.7)(0.6)

P
(
X3 = R1,X2 6= R1,X1 6= R1

∣∣X0 = R1

)
= (0.7)(0.4)(0.6)

...

P
(
Xn = R1,Xn−1 6= R1, . . . ,X1 6= R1

∣∣X0 = R1

)
= (0.7)(0.4)n−2(0.6)

I Sum up: fi =
∞∑
n=1

P
(
Xn = R1,Xn−1 6= R1, . . . ,X1 6= R1

∣∣X0 = R1

)
= 0.3 + 0.7

(
∞∑
n=2

0.4n−2

)
0.6 = 0.3 + 0.7

(
1

1− 0.4

)
0.6 = 1
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Transient state example

I States T1 and T2 are transient

I Probability of returning to T1 is fT1 = (0.6)2 = 0.36

⇒ Might come back to T1 only if it goes to T2 (w.p. 0.6)

⇒ Will come back only if it moves back from T2 to T1 (w.p. 0.6)
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I Likewise, fT2 = (0.6)2 = 0.36
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Expected number of visits to states

I Define Ni as the number of visits to state i given that X0 = i

Ni :=
∞∑
n=1

I
{
Xn = i

∣∣X0 = i
}

I If Xn = i , this is the last visit to i w.p. 1− fi

I Prob. revisiting state i exactly n times is (n visits × no more visits)

P (Ni = n) = f ni (1− fi )

⇒ Number of visits Ni + 1 is geometric with parameter 1− fi

I Expected number of visits is

E [Ni ] + 1 =
1

1− fi
⇒ E [Ni ] =

fi
1− fi

⇒ For recurrent states Ni =∞ a.s. and E [Ni ] =∞ (fi = 1)
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Alternative transience/recurrence characterization

I Another way of writing E [Ni ]

E [Ni ] =
∞∑
n=1

E
[
I
{
Xn = i

∣∣X0 = i
}]

=
∞∑
n=1

Pn
ii

I Recall that: for transient states E [Ni ] = fi/(1− fi ) <∞
for recurrent states E [Ni ] =∞

Theorem

I State i is transient if and only if
∑∞

n=1 P
n
ii <∞

I State i is recurrent if and only if
∑∞

n=1 P
n
ii =∞

I Number of future visits to transient states is finite

⇒ If number of states is finite some states have to be recurrent
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Accessibility

I Def: State j is accessible from state i if Pn
ij > 0 for some n ≥ 0

⇒ It is possible to enter j if MC initialized at X0 = i

I Since P0
ii = P

(
X0 = i

∣∣X0 = i
)

= 1, state i is accessible from itself
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I All states accessible from T1 and T2

I Only R1 and R2 accessible from R1 or R2

I None other than R3 accessible from itself
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Communication

I Def: States i and j are said to communicate (i ↔ j) if

⇒ j is accessible from i , i.e., Pn
ij > 0 for some n; and

⇒ i is accessible from j , i.e., Pm
ji > 0 for some m

I Communication is an equivalence relation

I Reflexivity: i ↔ i
I Holds because P0

ii = 1

I Symmetry: If i ↔ j then j ↔ i
I If i ↔ j then Pn

ij > 0 and Pm
ji > 0 from where j ↔ i

I Transitivity: If i ↔ j and j ↔ k , then i ↔ k
I Just notice that Pn+m

ik ≥ Pn
ijP

m
jk > 0

I Partitions set of states into disjoint classes (as all equivalences do)

⇒ What are these classes?
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Recurrence and communication

Theorem
If state i is recurrent and i ↔ j , then j is recurrent

Proof.

I If i ↔ j then there are l ,m such that P l
ji > 0 and Pm

ij > 0

I Then, for any n we have

P l+n+m
jj ≥ P l

jiP
n
iiP

m
ij

I Sum for all n. Note that since i is recurrent
∑∞

n=1 P
n
ii =∞

∞∑
n=1

P l+n+m
jj ≥

∞∑
n=1

P l
jiP

n
iiP

m
ij = P l

ji

( ∞∑
n=1

Pn
ii

)
Pm
ij =∞

⇒ Which implies j is recurrent
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Recurrence and transience are class properties

Corollary

If state i is transient and i ↔ j , then j is transient

Proof.

I If j were recurrent, then i would be recurrent from previous theorem

I Recurrence is shared by elements of a communication class

⇒ We say that recurrence is a class property

I Likewise, transience is also a class property

I MC states are separated in classes of transient and recurrent states
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Irreducible Markov chains

I A MC is called irreducible if it has only one class
I All states communicate with each other
I If MC also has finite number of states the single class is recurrent
I If MC infinite, class might be transient

I When it has multiple classes (not irreducible)
I Classes of transient states T1, T2, . . .
I Classes of recurrent states R1,R2, . . .

I If MC initialized in a recurrent class Rk , stays within the class

I If MC starts in transient class Tk , then it might

(a) Stay on Tk (only if |Tk | =∞)
(b) End up in another transient class Tr (only if |Tr | =∞)
(c) End up in a recurrent class Rl

I For large time index n, MC restricted to one class

⇒ Can be separated into irreducible components
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Communication classes example
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I Three classes

⇒ T := {T1,T2}, class with transient states

⇒ R1 := {R1,R2}, class with recurrent states

⇒ R2 := {R3}, class with recurrent state

I For large n suffices to study the irreducible components R1 and R2
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Example: Random walk

I Step right with probability p, left with probability q = 1− p

i i+1i−1 . . .. . .

p

1− p 1− p

pp

1− p 1− p

p

I All states communicate ⇒ States either all transient or all recurrent

I To see which, consider initially X0 = 0 and note for any n ≥ 1

P2n
00 =

(
2n

n

)
pnqn =

(2n)!

n!n!
pnqn

⇒ Back to 0 in 2n steps ⇔ n steps right and n steps left
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Example: Random walk (continued)

I Stirling’s formula n! ≈ nn
√
ne−n

√
2π

⇒ Approximate probability P2n
00 of returning home as

P2n
00 =

(2n)!

n!n!
pnqn ≈ (4pq)n√

nπ

I Symmetric random walk (p = q = 1/2)

∞∑
n=1

P2n
00 =

∞∑
n=1

1√
nπ

=∞

⇒ State 0 (hence all states) are recurrent

I Biased random walk (p > 1/2 or p < 1/2), then pq < 1/4 and

∞∑
n=1

P2n
00 =

∞∑
n=1

(4pq)n√
nπ

<∞

⇒ State 0 (hence all states) are transient
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Example: Right-biased random walk

I Alternative proof of transience of right-biased random walk (p > 1/2)

i i+1i−1 . . .. . .

p

1− p 1− p

pp

1− p 1− p

p

I Write current position of random walker as Xn =
∑n

k=1 Yk

⇒ Yk are the i.i.d. steps: E [Yk ] = 2p − 1, var [Yk ] = 4p(1− p)

I From Central Limit Theorem (Φ(x) is cdf of standard Normal)

P

(∑n
k=1 Yk − n(2p − 1)√

n4p(1− p)
≤ a

)
→ Φ(a)
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Example: Right-biased random walk (continued)

I Choose a =
√
n(1−2p)√
4p(1−p)

< 0, use Chernoff bound Φ(a) ≤ exp(−a2/2)

P (Xn ≤ 0) = P

(
n∑

k=1

Yk ≤ 0

)
→ Φ

(√
n(1− 2p)√
4p(1− p)

)
< e−

n(1−2p)2

8p(1−p) → 0

I Since Pn
00 ≤ P (Xn ≤ 0), sum over n

∞∑
n=1

Pn
00 ≤

∞∑
n=1

P (Xn ≤ 0) <
∞∑
n=1

e−
n(1−2p)2

8p(1−p) <∞

I This establishes state 0 is transient

⇒ Since all states communicate, all states are transient
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Take-home messages

I States of a MC can be transient or recurrent

I A MC can be partitioned into classes of communicating states

⇒ Class members are either all transient or all recurrent

⇒ Recurrence and transience are class properties

⇒ A finite MC has at least one recurrent class

I A MC with only one class is irreducible

⇒ If reducible it can be separated into irreducible components
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Glossary

I Markov chain

I State space

I Markov property

I Transition probability matrix

I State transition diagram

I State augmentation

I Random walk

I n-step transition probabilities

I Chapman-Kolmogorov eqs.

I Initial distribution

I Gambler’s ruin problem

I Communication system

I Non-concurrent queue

I Queue evolution model

I Recurrent and transient states

I Accessibility

I Communication

I Equivalence relation

I Communication classes

I Class property

I Irreducible Markov chain

I Irreducible components
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