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Markov chains in discrete time

v

Consider discrete-time index n =10,1,2,...

» Time-dependent random state X,, takes values on a countable set

> In general, states are i = 0,+1,£2,..., i.e., here the state space is Z
> If X, =i we say “the process is in state / at time n”

v

Random process is Xy, its history up to nis X, = [X,, Xp_1, ..., Xo] "
» Def: process Xy is a Markov chain (MC) if for all n > 1, i,j, x € Z"

P(Xpr1=J|Xo =i, Xpo1=%) =P (Xpp1 =j | Xo = i) = P}

v

Future depends only on current state X, (memoryless, Markov property)

= Future conditionally independent of the past, given the present



» Given X,, history X,_1 irrelevant for future evolution of the process

v

From the Markov property, can show that for arbitrary m > 0

P(Xotm=j| Xo=1i,Xn-1=%X) =P (Xom=Jj| Xo=1i)

v

Transition probabilities Pj; are constant (MC is time invariant)

P(Xpp1=J|Xa=1)=P(Xi=j|Xo=1i) =Py

> Since Pj’s are probabilities they are non-negative and sum up to 1

Jj=0

P..

j >0

= Conditional probabilities satisfy the axioms



Matrix representation

» Group the Pj in a transition probability “matrix” P

o

= Not really a matrix if number of states is infinite

» Row-wise sums should be equal to one, i.e., Zf.io Pj =1 for all i



Graph representation

» A graph representation or state transition diagram is also used

PI 1 i—1 PI i Pl+1 i+1
1 2,i—1 I 1,i I ,i+1 I+1 i+2
l 1,i—2 l+1 i I+2 i+1

> Useful when number of states is infinite, skip arrows if P;j =0

» Again, sum of per-state outgoing arrow weights should be one



Example: Happy - Sad

» | can be happy (X, =0) or sad (X, =1)

= My mood tomorrow is only affected by my mood today

» Model as Markov chain with transition probabilities

0.8 0.7
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> Inertia = happy or sad today, likely to stay happy or sad tomorrow
» But when sad, a little less likely so (Pog > P11)



Example: Happy - Sad with memory

» Happiness tomorrow affected by today's and yesterday's mood
= Not a Markov chain with the previous state space

» Define double states HH (Happy-Happy), HS (Happy-Sad), SH, SS
» Only some transitions are possible

» HH and SH can only become HH or HS
» HS and SS can only become SH or SS

0.8
08 02 0 0
p_| 0 0 0307
08 02 0 0
0 0 03 07
\/

0.3

» Key: can capture longer time memory via state augmentation

o7



Random (drunkard’s) walk

> Step to the right w.p. p, to the left w.p. 1 —p
= Not that drunk to stay on the same place

> States are 0,+£1,£2,... (state space is Z), infinite number of states
» Transition probabilities are
Piit1=p, Piji-1=1-p

» P; = 0 for all other transitions



position (in steps)
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= With p > 1/2 diverges to the right (" almost surely)
= With p < 1/2 diverges to the left (N, almost surely)
= With p = 1/2 always come back to visit origin (almost surely)

» Because number of states is infinite we can have all states transient

> Transient states not revisited after some time (more later)



Two dimensional random walk

» Take a step in random direction E, W, S or N =

= E, W, S, N chosen with equal probability -

» States are pairs of coordinates (X, Y,)
» X, =0,+£1,+2 ... and Y, =0,£1,+£2,... :

Latitude (North-South)

» Transiton probs. # 0 only for adjacent points

0 s

East: P (X1 = i4+1, Yor1 =j | Xa =i, Yo =J) =

NN i
et s

West: P (Xps1 = i—=1, Yoy1 =j | Xa =i, Yo =)
North: P (Xps1 =i, Yoy1 = j+1| Xa =i, Yo =j) =

South: P (Xpp1 =i, Yoy1 = j—1|Xa =i, Yo =J) =

s 0 s



More about random walks

» Some random facts of life for equiprobable random walks

> In one and two dimensions probability of returning to origin is 1
= Will almost surely return home

» In more than two dimensions, probability of returning to origin is < 1
= In three dimensions probability of returning to origin is 0.34
= Then 0.19, 0.14, 0.10, 0.08, ...



Another representation of a random walk

v

Consider an i.i.d. sequence of RVs Yy = Y1, Y2,..., Y, ...
Y, takes the value +1, P(Y,=1)=p, P(Y,=-1)=1-p

v

v

Define Xo = 0 and the cumulative sum

Xn = i Yk
k=1

= The process Xy is a random walk (same we saw earlier)

= Yy are i.i.d. steps (increments) because X, = X,_1 + Y,

v

Q: Can we formally establish the random walk is a Markov chain?
A: Since X, = X,_1 4+ Y,, n>1, and Y, independent of X,,_;

v

P(Xn :j|Xn_1Ii,Xn_2IX) IP(X,,_1+Y,, :j|X,,_1Ii,X,,_2IX)
—P(Yi=j—i):=P;



General result to identify Markov chains

Theorem
Suppose Yy = Y1, Yo,..., Y, ... are i.id. and independent of Xj.
Consider the random process Xy = X1, Xa, ..., Xn, ... of the form

Xn = f(Xn—la Yn)a n Z 1
Then Xy is a Markov chain with transition probabilities
Py =P (f(i, Y1) =)
» Useful result to identify Markov chains
= Often simpler than checking the Markov property

» Proof similar to the random walk special case, i.e., f(x,y) =x+y



Random walk with boundaries (gambling)

» As a random walk, but stop moving when X, =0 or X, = J

> Models a gambler that stops playing when ruined, X, =0
» Or when reaches target gains X, = J

1
P P
® o0 O
\_/
1—p 1—-p

States are 0,1, ..., J, finite number of states

v

» Transition probabilities are
Piivi=p, Piici1=1-p, Po=1 Py=1
» P; = 0 for all other transitions

» States 0 and J are called absorbing. Once there stay there forever
= The rest are transient states. Visits stop almost surely
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Multiple-step transition probabilities

v

Q: What can be said about multiple transitions?
» Ex: Transition probabilities between two time slots
P =P (Xms2 =J| Xm=1i)

)

= Caution: P? is just notation, Pg # Pj x Py

» Ex: Probabilities of X1, given X, = n-step transition probabilities
Pg:P(Xm+n:j|Xm:i)
» Relation between n-, m-, and (m + n)-step transition probabilities

= Write Pé-"J“” in terms of P:T and Pg

v

All questions answered by Chapman-Kolmogorov's equations



2-step transition probabilities

v

Start considering transition probabilities between two time slots

P; =P (Xpr2=j| Xo=1)

v

Using the law of total probability

oo
P5 =Y P (Xora=J|Xos1 =k Xo=i)P(Xnj1 = k[ Xy =1)
k=0

> In the first probability, conditioning on X, = i is unnecessary. Thus
Pi = P (Xot2 =j| Xps1 = k) P (Xop1 = k| Xy = i)
k=0
» Which by definition of transition probabilities yields

=3 PP
k=0



Relating n-, m-, and (m + n)-step probabilities

» Same argument works (condition on Xy w.l.0.g., time invariance)

PIHT = P (Xopm = | Xo = i)

» Use law of total probability, drop unnecessary conditioning and use
definitions of n-step and m-step transition probabilities

Pg’+":ZP(xm+n=j|xm=k,xozi)P(szkyxozi)
k=0

Pitr =2 P (Xoin =J | X = K) P (X = k| Xo =)
k=0

(o]
P;]’*” = Z PPy foralli,j and n,m >0
k=0

= These are the Chapman-Kolmogorov equations



Interpretation

v

Chapman-Kolmogorov equations are intuitive. Recall
oo
m+n __ mpn
Pyt =Y PiPi
k=0

» Between times 0 and m + n, time m occurred

v

At time m, the Markov chain is in some state X,, = k
= P{ is the probability of going from Xy =i to X, = k
= Py, is the probability of going from Xy, = k to Xpin =
= Product PP}, is then the probability of going from
Xo = i to Xpm4n = J passing through X, = k at time m

v

Since any k might have occurred, just sum over all k



Chapman-Kolmogorov equations in matrix form

v

Define the following three matrices:
= P(™ with elements P

= P with elements P

= P(m+n) with elements pytn

v

Matrix product P(MP(") has (i,j)-th element Z(;O:O P:'Tpllzj

v

Chapman Kolmogorov in matrix form

p(m+n) — p(mp(n)

v

Matrix of (m + n)-step transitions is product of m-step and n-step



Computing n-step transition probabilities

» For m = n =1 (2-step transition probabilities) matrix form is

P@ = pp = P2

» Proceed recursively backwards from n

P = pir—Up — pr=2)pp —  — pn

» Have proved the following

Theorem
The matrix of n-step transition probabilities P(") is given by the n-th
power of the transition probability matrix P, i.e.,

p( — pn

Henceforth we write P"



Example: Happy-Sad

» Mood transitions in one day

0.8 0.7
0.2
0.8 0.2 T~
P= ( 03 07 ) ~__
0.3
» Transition probabilities between today and the day after tomorrow?
0.70 0.55

0.30
P2 _ ( 0.70 0.30 ) s
~\ 045 055
v
0.45



Example: Happy-Sad (continued)

> ... After a week and after a month

p7 _ 0.6031 0.3969 p30 _ 0.6000 0.4000
~\ 0.5953  0.4047 ~\_ 0.6000 0.4000

v

Matrices P7 and P3% almost identical = lim,_, P" exists
= Note that this is a regular limit

v

After a month transition from H to H and from S to H w.p. 0.6
= State becomes independent of initial condition (H w.p. 0.6)

v

Rationale: 1-step memory =- Initial condition eventually forgotten

>



Unconditional probabilities

v

All probabilities so far are conditional, i.e., Pjl =P (Xn = { Xo =)

= May want unconditional probabilities p;j(n) = P (X, = j)

v

Requires specification of initial conditions p;(0) = P (X = i)

v

Using law of total probability and definitions of P and p;(n)
pi(n) =P (Xo=j) =D P (Xo=j|Xo=1i)P(Xo=1)
i=0

= Pppi(0)
i—0

v

In matrix form (define vector p(n) = [p1(n), p2(n),...]7)

p(n) = (P")" p(0)



Example: Happy-Sad

» Transition probability matrix = P = ( 08 02 )

— T — T
1 1
—— P(Happy) —— P(Happy)
09 —— P(sad) 09 —— Pisad)
08 08
07| 07|
g 06 406
Sos Sos
e e
< 04 < 04
03 03
02 02
o1 o1
o 5 10 15 25 30 () 5 10 15 25 30
Time (days) Time (days)

» For large n probabilities p(n) are independent of initial state p(0)
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Gambler’s ruin problem

v

You place $1 bets
(i) With probability p you gain $1, and
(if) With probability ¢ =1 — p you loose your $1 bet

Start with an initial wealth of $/

v

v

Define bias factor o := q/p
> If & > 1 more likely to loose than win (biased against gambler)
» «a < 1 favors gambler (more likely to win than loose)
> o =1 game is fair

v

You keep playing until

(a) You go broke (loose all your money)
(b) You reach a wealth of $N

v

Prob. S; of reaching $N before going broke for initial wealth $/7?
> S stands for success, or successful betting run (SBR)



Gambler’'s Markov chain

» Model wealth as Markov chain Xy. Transition probabilities

Piitzi=p, Pii-1=q, Pop=Pnw=1

0 : 0

P
O ® o0 O O
\_/\_/

a g

» Realizations xy. Initial state = Initial wealth =/
= Sates 0 and N are absorbing. Eventually end up in one of them

= Remaining states are transient (visits eventually stop)
» Being absorbing states says something about the limit wealth

lim x, =0, or lim xo=N = s,»::P(limxnzN}xo:i)

n—oo n—o0o n— oo



Recursive relations

» Total probability to relate S; with S;;1,S;—1 from adjacent states

= Condition on first bet X;, Markov chain homogeneous
Si=S5it1Piit1+ Si—1Pii—1 = Sizip + Si—1q
» Recall p+ g = 1 and reorder terms
p(Sit1 — Si) = q(Si — Si-1)
» Recall definition of bias a = q/p

Siy1 — Si=a(S — Si-1)



Recursive relations (continued)

v

If current state is 0 then S; = Sg = 0. Can write

52 — 51 = 04(51 — 50) = 0151

v

Substitute this in the expression for S3 — S,

53 — 52 = 04(52 — 51) = a251

v

Apply recursively backwards from S; — S;_4
Si—Si1=a(Si_1—-S 2)=...=a"'S

v

Sum up all of the former to obtain

5i—51:51(a+a2+...—|—a’—1>

v

The latter can be written as a geometric series

5;:51<1+a—|—a2—|—...—|—o¢"71)



Probability of successful betting run

v

Geometric series can be summed in closed form, assuming o # 1
S = Za 1 o
— 5t

» When in state N, Sy = 1 and so

1—al l—a
1=35 S =5 =—7
N = 1 L= TN
» Substitute S; above into expression for probability of SBR S;
1—af
S,’ = m, « 7é 1

» Fora=1 :>5i:i5111:SN:N51, és,:ﬁ



Analysis for large N

» Recall .
5 — (1-a)/(1—aN), a#1,
i~ i/N, a=1

» Consider exit bound N arbitrarily large

(i) Fora>1, S~ (a—1)/a¥ -0
(i) Likewise fora =1, S5, =i/N =0
» If win probability p does not exceed loose probability g

= Will almost surely loose all money
(i) Fora<1, S —=1—af
» If win probability p exceeds loose probability g

= For sufficiently high initial wealth /i, will most likely win
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Queues in communication systems

» General communication systems goal

=- Move packets from generating sources to intended destinations

» Between arrival and departure we hold packets in a memory buffer
= Want to design buffers appropriately



Non-concurrent queue

v

Time slotted in intervals of duration At
= n-th slot between times nAt and (n + 1)At

» Average arrival rate is \ packets per unit time
= Probability of packet arrival in At is A = AAt

v

Packets are transmitted (depart) at a rate of /i packets per unit time
= Probability of packet departure in At is = iAt

v

Assume no simultaneous arrival and departure (no concurrence)

= Reasonable for small At (1 and A likely to be small)



Queue evolution equations

v

@, denotes number of packets in queue (backlog) in n-th time slot

v

A, = nr. of packet arrivals, D, = nr. of departures (during n-th slot)

v

If the queue is empty @, = 0 then there are no departures
= Queue length at time n+ 1 can be written as

Qn+1 - Qn + An, if Qn =0

v

If Q, > 0, departures and arrivals may happen

Qn+1:Qn+An_Dm if Qn>0

v

A, €{0,1}, D, € {0,1} and either A, =1 or D, = 1 but not both
= Arrival and departure probabilities are



Queue evolution probabilities

v

Future queue lengths depend on current length only

v

Probability of queue length increasing

P(Qui1=i+1|Qn=1i)=P(A,=1)=), for all i

v

Queue length might decrease only if @, > 0. Probability is

P(Qu1=i—1|Qu=i)=P[D,=1)=p, foralli>0

v

Queue length stays the same if it neither increases nor decreases

P(Qn+1:i|Qn:i):17A7u, foralli >0
P(Q1=0|Q,=0)=1-2

= No departures when @,, = 0 explain second equation



Queue as a Markov chain

» MC with states 0,1,2,.... Identify states with queue lengths

» Transition probabilities for / £ 0 are

Piji-1 = p, Pii=1-X—p, Piiv1=A

» Fori=0: Po=1—Xand Pp; = A

1-2A 1-A—p 1-A—p 1—A—p



Numerical example: Probability propagation

» Build matrix P truncating at maximum queue length L =100
= Arrival rate A = 0.3. Departure rate pr = 0.33
= Initial distribution p(0) = [1,0,0,...]” (queue empty)

v

Propagate probabilities (P")p(0)

Probabilities obtained are
P(Qn=1]Q =0)=pi(n)

A few i's (0, 10, 20) shown
Probability of empty queue = 0.1

T ; r

: queue length 0
queue length 10
queue length 20

v

Probabilities
vV vvY

Occupancy decreases with |

0 100 200 300 400 500 600 700 800 900 1000
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Transient and recurrent states

States of a MC can be recurrent or transient

v

v

Transient states might be visited early on but visits eventually stop

v

Almost surely, X,, # i for n sufficiently large (qualifications needed)

v

Visits to recurrent states keep happening forever. Fix arbitrary m

v

Almost surely, X, = i for some n > m (qualifications needed)

2 0.2

|03

1 0
e 0.6 0.6 0.6 0.7
@ Qo




Definitions

> Let f; be the probability that starting at i/, MC ever reenters state |

f,-::P(Gxnzi\XO:/):P( G Xo=1i]X :i)

n=1 n=m+1

» State / is recurrent if f; =1

= Process reenters j again and again (a.s.). Infinitely often

» State / is transient if ; <1
= Positive probability 1 — f; > 0 of never coming back to /



Recurrent states example

> State Rj is recurrent because it is absorbing P (X1 =Rs | Xo = R3) =1

1 0.2 0.2
) — 0.3
» State R is recurrent because Q) %D

@ o6( Jos o.e(\ 0.7
P (Xl =R ‘ Xo = Rl) =03 0.2 T@DOA

P (X2 = Ry, X1 # Ri| Xo = R1) = (0.7)(0.6)
P(Xs = Ri, X2 # Ri. X1 # Ri | Xo = Ri) = (0.7)(0.4)(0.6)

P (Xo=Ri,Xo—1 # R1,..., Xt # Ri | Xo = R1) = (0.7)(0.4)"2(0.6)

> Sum up: f,-:ZP(X,,:Rl,Xn_l#Rl,...,XHéRl]Xo:Rl)

n=1

=03+0.7 (Z 0.4"‘2) 0.6 =0.3+0.7 (1 _10 4) 06=1

n=2



Transient state example

» States T; and T, are transient

» Probability of returning to Ty is fr, = (0.6)2 = 0.36
= Might come back to Ty only if it goes to T, (w.p. 0.6)
= Will come back only if it moves back from T, to Ty (w.p. 0.6)

> Likewise, fr, = (0.6)% = 0.36



Expected number of visits to states

v

Define N; as the number of visits to state / given that Xy =/

Ni=Y T{X,=i|X =i}
n=1

v

If X, =i, this is the last visit to i w.p. 1 —f;
» Prob. revisiting state / exactly n times is (n visits X no more visits)
P(N;=n)=f"(1-1)

= Number of visits N; + 1 is geometric with parameter 1 — f;

v

Expected number of visits is

1 fi

= For recurrent states N; = oo a.s. and E[N;] = o0 (f; = 1)




Alternative transience/recurrence characterization

» Another way of writing E [N/]

]E[N;]ZiE[H{Xn:HXO:i}} :ipl!;

n=1

» Recall that: for transient states E[N;] = f/(1 — f;) < o0
for recurrent states E[N;] = oo

Theorem

» State i is transient if and only if Z;’il P! < o0

o}

» State i is recurrent if and only if Y~ | Pfl = 0o

» Number of future visits to transient states is finite

= If number of states is finite some states have to be recurrent



Accessibility

» Def: State j is accessible from state i if P} > 0 for some n > 0

= It is possible to enter j if MC initialized at Xo =/

> Since PY =P (Xo =i |Xo =1i) =1, state i is accessible from itself

» All states accessible from T; and T,
» Only Ry and R, accessible from Ry or R;
» None other than R3 accessible from itself



Communication

v

Def: States / and j are said to communicate (i < j) if
= j is accessible from i, i.e., P,;? > 0 for some n; and

= i is accessible from j, i.e., P/ > 0 for some m

v

Communication is an equivalence relation

v

Reflexivity: i <> i

» Holds because P =1
Symmetry: If i <> j then j <> |

> If i <+ j then P; > 0 and P > 0 from where j < i
Transitivity: If i <> j and j <> k, then i < k

> Just notice that P;"™ > PP > 0

v

v

v

Partitions set of states into disjoint classes (as all equivalences do)

= What are these classes?



Recurrence and communication

Theorem
If state i is recurrent and i < j, then j is recurrent

Proof.
> If i <+ j then there are /, m such that Pj; >0 and P’ > 0

> Then, for any n we have

I+n+m | pnpm
Py = PyiPii P

» Sum for all n. Note that since i is recurrent >~ P! = 0o

(oo} oo [ee]
Sepn= S myepey - (S0 oy
n=1 n=1 n=1

= Which implies j is recurrent



Recurrence and transience are class properties

Corollary
If state i is transient and i <> j, then j is transient

Proof.
> If j were recurrent, then i would be recurrent from previous theorem

O

» Recurrence is shared by elements of a communication class

= We say that recurrence is a class property
» Likewise, transience is also a class property

» MC states are separated in classes of transient and recurrent states



Irreducible Markov chains

» A MC is called irreducible if it has only one class

> All states communicate with each other
> If MC also has finite number of states the single class is recurrent
> If MC infinite, class might be transient

v

When it has multiple classes (not irreducible)

» Classes of transient states 71,7z, . ..
» Classes of recurrent states Ri1, Ro, ...

v

If MC initialized in a recurrent class Ry, stays within the class

v

If MC starts in transient class 7T, then it might
(a) Stay on Ty

(b) End up in another transient class 7,

(c) End up in a recurrent class R/

v

For large time index n, MC restricted to one class

= Can be separated into irreducible components



Communication classes example

(%l/—e—) > 0.3

@ 0.6 ) 0.6 0.7
0. 0.2 o 04

» Three classes
= T :={T1, T2}, class with transient states
= Ry := {Ry, R2}, class with recurrent states
= Ry := {R3}, class with recurrent state

» For large n suffices to study the irreducible components R; and R»



Example: Random walk

» All states communicate = States either all transient or all recurrent

» To see which, consider initially Xo = 0 and note for any n > 1
P0267 _ 2n pnqn _ (2n)!pnqn
n n'n!

= Back to 0 in 2n steps < n steps right and n steps left




Example: Random walk (continued)

» Stirling’s formula n! = n"\/ne™"\/27
= Approximate probability P27 of returning home as

2n)! (4pq)"
P2n —_ ( nan ~
00 n'n! pq \/nm

» Symmetric random walk (p = g = 1/2)
LT R
n=1 ” n=1 nm

= State 0 (hence all states) are recurrent

» Biased random walk (p > 1/2 or p < 1/2), then pg < 1/4 and

— p2n N~ (4p9)"
;POO:Z N < o0

n=1

= State 0 (hence all states) are transient



Example: Right-biased random walk

> Alternative proof of transience of right-biased random walk (p > 1/2)
P P

p p
p 1-p 1-p

1—-p 1-—

» Write current position of random walker as X, = >/ _; Yk
= Y are the i.i.d. steps: E[Yx] =2p — 1, var[Yi] = 4p(1 — p)

» From Central Limit Theorem

o (zzl Yi —n(2p — 1)
n4p(1 - p)

< a) — ®(a)



Example: Right-biased random walk (continued)

» Choose a = Y20=2P). 0 yse Chernoff bound ®(a) < exp(—a?/2)

V4p(1—p)
— n(1—2p)?
P(X,<0)=P ka<0 Lo (Y220
k=1 4p(1 - p)

» Since P§, < P (X, <0), sum over n

ipgogip(xnso Ze T < oo
n=1 n=1

» This establishes state 0 is transient

= Since all states communicate, all states are transient



Take-home messages

» States of a MC can be transient or recurrent

» A MC can be partitioned into classes of communicating states
= Class members are either all transient or all recurrent
= Recurrence and transience are class properties

= A finite MC has at least one recurrent class

» A MC with only one class is irreducible
= If reducible it can be separated into irreducible components



Glossary

vV V. Y VY VY VY Vv VvV VY

Markov chain

State space

Markov property

Transition probability matrix
State transition diagram
State augmentation

Random walk

n-step transition probabilities
Chapman-Kolmogorov egs.
Initial distribution

Gambler's ruin problem

vV V. v V. YV VYV VYV VvV VY

Communication system
Non-concurrent queue

Queue evolution model
Recurrent and transient states
Accessibility

Communication

Equivalence relation
Communication classes

Class property

Irreducible Markov chain

Irreducible components
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