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Limiting distributions

I MCs have one-step memory. Eventually they forget initial state

I Q: What can we say about probabilities for large n?

πj := lim
n→∞

P
(
Xn = j

∣∣X0 = i
)

= lim
n→∞

Pn
ij

⇒ Assumed that limit is independent of initial state X0 = i

I We’ve seen that this problem is related to the matrix power Pn

P =

(
0.8 0.2
0.3 0.7

)
, P7 =

(
0.6031 0.3969
0.5953 0.4047

)
P2 =

(
0.7 0.3
0.45 0.55

)
, P30 =

(
0.6000 0.4000
0.6000 0.4000

)

I Matrix product converges ⇒ probs. independent of time (large n)

I All rows are equal ⇒ probs. independent of initial condition
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Periodicity

I Def: Period d of a state i is (gcd means greatest common divisor)

d = gcd {n : Pn
ii 6= 0}

I State i is periodic with period d if and only if

⇒ Pn
ii 6= 0 only if n is a multiple of d

⇒ d is the largest number with this property

I Positive probability of returning to i only every d time steps

⇒ If period d = 1 state is aperiodic (most often the case)

⇒ Periodicity is a class property

10 2

p 1− p

1 1

I State 1 has period 2. So do 0 and 2 (class property)

I Ex: One dimensional random walk also has period 2
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Periodicity example

Example

P =

(
0 1

0.5 0.5

)
, P2 =

(
0.50 0.50
0.25 0.75

)
, P3 =

(
0.250 0.750
0.375 0.625

)

I P11 = 0, but P2
11,P

3
11 6= 0 so gcd{2, 3, . . .} = 1. State 1 is aperiodic

I P22 6= 0. State 2 is aperiodic (had to be, since 1↔ 2)

Example

P =

(
0 1
1 0

)
, P2 =

(
1 0
0 1

)
, P3 =

(
0 1
1 0

)
, . . .

I P2n+1
11 = 0, but P2n

11 6= 0 so gcd{2, 4, . . .} = 2. State 1 has period 2

I The same is true for state 2 (since 1↔ 2)
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Positive recurrence and ergodicity

I Recall: state i is recurrent if the MC returns to i with probability 1

⇒ Define the return time to state i as

Ti = min{n > 0 : Xn = i
∣∣X0 = i}

I Def: State i is positive recurrent when expected value of Ti is finite

E
[
Ti

∣∣X0 = i
]

=
∞∑
n=1

nP
(
Ti = n

∣∣X0 = i
)
<∞

I Def: State i is null recurrent if recurrent but E
[
Ti

∣∣X0 = i
]

=∞
⇒ Positive and null recurrence are class properties

⇒ Recurrent states in a finite-state MC are positive recurrent

I Def: Jointly positive recurrent and aperiodic states are ergodic

⇒ Irreducible MC with ergodic states is said to be an ergodic MC

Introduction to Random Processes Markov Chains 6



Null recurrent Markov chain example

0 1 2 3

1 1/2

1/2

2/3

1/3

3/4

1/4

. . .

P
(
T0 = 2

∣∣X0 = 0
)

=
1

2
P
(
T0 = 3

∣∣X0 = 0
)

=
1

2
×

1

3

P
(
T0 = 4

∣∣X0 = 0
)

=
1

2
×

2

3
×

1

4
=

1

3× 4
. . . P

(
T0 = n

∣∣X0 = 0
)

=
1

(n − 1)× n

I State 0 is recurrent because probability of not returning is 0

P
(
T0 =∞

∣∣X0 = 0
)

= lim
n→∞

1

(n − 1)× n
→ 0

I Also null recurrent because expected return time is infinite

E
[
T0

∣∣X0 = 0
]

=
∞∑
n=2

nP
(
T0 = n

∣∣X0 = 0
)

=
∞∑
n=2

1

(n − 1)
=∞
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Limit distribution of ergodic Markov chains

Theorem
For an ergodic (i.e., irreducible, aperiodic and positive recurrent) MC,
limn→∞ Pn

ij exists and is independent of the initial state i , i.e.,

πj = lim
n→∞

Pn
ij

Furthermore, steady-state probabilities πj ≥ 0 are the unique nonnegative
solution of the system of linear equations

πj =
∞∑
i=0

πiPij ,

∞∑
j=0

πj = 1

I Limit probs. independent of initial condition exist for ergodic MC

⇒ Simple algebraic equations can be solved to find πj

I No periodic, transient, null recurrent states, or multiple classes

Introduction to Random Processes Markov Chains 8



Algebraic relation to determine limit probabilities

I Difficult part of theorem is to prove that πj = lim
n→∞

Pn
ij exists

I To see that algebraic relation is true use total probability

Pn+1
kj =

∞∑
i=0

P
(
Xn+1 = j

∣∣Xn = i ,X0 = k
)
Pn
ki

=
∞∑
i=0

PijP
n
ki

I If limits exists, Pn+1
kj ≈ πj and Pn

ki ≈ πi (sufficiently large n)

πj =
∞∑
i=0

πiPij

I The other equation is true because the πj are probabilities
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Vector/matrix notation: Matrix limit

I More compact and illuminating using vector/matrix notation

⇒ Finite MC with J states

I First part of theorem says that lim
n→∞

Pn exists and

lim
n→∞

Pn =


π1 π2 . . . πJ
π1 π2 . . . πJ

...
...

...
...

π1 π2 . . . πJ


I Same probabilities for all rows ⇒ Independent of initial state

I Probability distribution for large n

lim
n→∞

p(n) = lim
n→∞

(PT )np(0) = [π1, . . . , πJ ]T

⇒ Independent of initial condition p(0)
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Vector/matrix notation: Eigenvector

I Def: Vector limit (steady-state) distribution is π := [π1, . . . , πJ ]T

I Limit distribution is unique solution of (1 := [1, 1, . . .]T )

π = PTπ, πT1 = 1

I π eigenvector associated with eigenvalue 1 of PT

I Eigenvectors are defined up to a scaling factor
I Normalize to sum 1

I All other eigenvalues of PT have modulus smaller than 1
I If not, Pn diverges, but we know Pn contains n-step transition probs.
I π eigenvector associated with largest eigenvalue of PT

I Computing π as eigenvector is often computationally efficient
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Vector/matrix notation: Rank

I Can also write as (I is identity matrix, 0 = [0, 0, . . .]T )(
I− PT

)
π = 0 πT1 = 1

I π has J elements, but there are J + 1 equations ⇒ Overdetermined

I If 1 is eigenvalue of PT , then 0 is eigenvalue of I− PT

I I− PT is rank deficient, in fact rank(I− PT ) = J − 1
I Then, there are in fact only J linearly independent equations

I π is eigenvector associated with eigenvalue 0 of I− PT

I π spans null space of I− PT (not much significance)

Introduction to Random Processes Markov Chains 12



Ergodic Markov chain example

I MC with transition probability matrix

P =

 0 0.3 0.7
0.1 0.5 0.4
0.1 0.2 0.7


I Q: Does P correspond to an ergodic MC?

I Irreducible: all states communicate with state 2 X
I Positive recurrent: irreducible and finite X
I Aperiodic: period of state 2 is 1 X

I Then, there exist π1, π2 and π3 such that πj = limn→∞ Pn
ij

⇒ Limit is independent of i
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Ergodic Markov chain example (continued)

I Q: How do we determine the limit probabilities πj?

I Solve system of linear equations πj =
∑3

i=1 πiPij and
∑3

j=1 πj = 1
π1

π2

π3

1

 =


0 0.1 0.1

0.3 0.5 0.2
0.7 0.4 0.7

1 1 1


 π1

π2

π3


⇒ The blue block in the matrix above is PT

I There are three variables and four equations
I Some equations might be linearly dependent
I Indeed, summing first three equations: π1 + π2 + π3 = π1 + π2 + π3

I Always true, because probabilities in rows of P sum up to 1
I A manifestation of the rank deficiency of I− PT

I Solution yields π1 = 0.0909, π2 = 0.2987 and π3 = 0.6104
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Stationary distribution

I Limit distributions are sometimes called stationary distributions

⇒ Select initial distribution to P (X0 = i) = πi for all i

I Probabilities at time n = 1 follow from law of total probability

P (X1 = j) =
∞∑
i=1

P
(
X1 = j

∣∣X0 = i
)

P (X0 = i)

I Definitions of Pij , and P (X0 = i) = πi . Algebraic property of πj

P (X1 = j) =
∞∑
i=1

Pijπi = πj

⇒ Probability distribution is unchanged

I Proceeding recursively, system initialized with P (X0 = i) = πi

⇒ Probability distribution invariant: P (Xn = i) = πi for all n

I MC stationary in a probabilistic sense (states change, probs. do not)
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Ergodicity

Limiting distributions

Ergodicity

Queues in communication networks: Limit probabilities
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Ergodicity

I Def: Fraction of time T
(n)
i spent in i-th state by time n is

T
(n)
i :=

1

n

n∑
m=1

I {Xm = i}

I Compute expected value of T
(n)
i

E
[
T

(n)
i

]
=

1

n

n∑
m=1

E [I {Xm = i}] =
1

n

n∑
m=1

P (Xm = i)

I As n→∞, probabilities P (Xm = i)→ πi (ergodic MC). Then

lim
n→∞

E
[
T

(n)
i

]
= lim

n→∞

1

n

n∑
m=1

P (Xm = i) = πi

I For ergodic MCs same is true without expected value ⇒ Ergodicity

lim
n→∞

T
(n)
i = lim

n→∞

1

n

n∑
m=1

I {Xm = i} = πi , a.s.
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Ergodic Markov chain example

I Recall transition probability matrix

P :=

 0 0.3 0.7
0.1 0.5 0.4
0.1 0.2 0.7


Visits to states, nT

(n)
i Ergodic averages, T

(n)
i
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I Ergodic averages slowly converge to π = [0.09, 0.29, 0.61]T
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Function’s ergodic average

Theorem
Consider an ergodic Markov chain with states Xn = 0, 1, 2, . . . and stationary
probabilities πj . Let f (Xn) be a bounded function of the state Xn. Then,

lim
n→∞

1

n

n∑
m=1

f (Xm) =
∞∑
j=1

f (j)πj , a.s.

I Ergodic average → Expectation under stationary distribution π

I Use of ergodic averages is more general than T
(n)
i

⇒ T
(n)
i is a particular case with f (Xm) = I {Xm = i}

I Think of f (Xm) as a reward (or cost) associated with state Xm

⇒ (1/n)
∑n

m=1 f (Xm) is the time average of rewards (costs)
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Function’s ergodic average (cheat’s proof)

Proof.

I Because I {Xm = i} = 1 if and only if Xm = i we can write

1

n

n∑
m=1

f (Xm) =
1

n

n∑
m=1

( ∞∑
i=1

f (i)I {Xm = i}

)

I Change order of summations. Use definition of T
(n)
i

1

n

n∑
m=1

f (Xm) =
∞∑
i=1

f (i)

(
1

n

n∑
m=1

I {Xm = i}

)
=
∞∑
i=1

f (i)T
(n)
i

I Let n→∞, use ergodicity result for lim
n→∞

T
(n)
i = πi [cf. page 17]
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Ensemble and ergodic averages

I Ensemble average: across different realizations of the MC

E [f (Xn)] =
∞∑
i=1

f (i)P (Xn = i)→
∞∑
i=1

f (i)πi

I Ergodic average: across time for a single realization of the MC

f̄n =
1

n

n∑
m=1

f (Xm)

I These quantities are fundamentally different

⇒ But E [f (Xn)] = f̄n almost surely, asymptotically in n

I One realization of the MC as informative as all realizations

⇒ Practical value: observe/simulate only one path of the MC
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Ergodicity in periodic Markov chains

I Ergodic averages still converge if the MC is periodic

I For irreducible, positive recurrent MC (periodic or aperiodic) define

πj =
∞∑
i=0

πiPij ,

∞∑
j=0

πj = 1

I Claim 1: A unique solution exists (we say πj are well defined)

I Claim 2: The fraction of time spent in state i converges to πi

lim
n→∞

T
(n)
i = lim

n→∞

1

n

n∑
m=1

I {Xm = i} → πi

I If MC is periodic the probabilities Pn
ij oscillate

⇒ But fraction of time spent in state i converges to πi
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Periodic irreducible Markov chain example

I Matrix P and state transition diagram of a periodic MC

P :=

 0 1 0
0.3 0 0.7

0 1 0

 0−1 1

0.3 0.7

1 1

I MC has period 2. If initialized with X0 = 0, then

P2n+1
00 = P

(
X2n+1 = 0

∣∣X0 = 0
)

= 0,

P2n
00 = P

(
X2n = 0

∣∣X0 = 0
)

= 1 6= 0

I Define π := [π−1, π0, π1]T as solution of
π−1

π0

π1

1

 =


0 0.3 0
1 0 1
0 0.7 0
1 1 1


 π−1

π0

π1


⇒ Normalized eigenvector for eigenvalue 1 (π = PTπ, πT1 = 1)
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Periodic irreducible MC example (continued)

I Solution yields π−1 = 0.15, π0 = 0.50 and π1 = 0.35

Visits to states, nT
(n)
i Ergodic averages, T

(n)
i
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I Ergodic averages T
(n)
i converge to the ergodic limits πi
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Periodic irreducible MC example (continued)

I Powers of the transition probability matrix do not converge

P2 =

 0.3 0 0.7
0 1 0

0.3 0 0.7

 , P3 =

 0 1 0
0.3 0 0.7

0 1 0

 = P

⇒ In general we have P2n = P2 and P2n+1 = P

I At least one other eigenvalue of PT has modulus 1∣∣eig2

(
PT
)∣∣ = 1

⇒ In this example, eigenvalues of PT are 1, −1 and 0
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Reducible Markov chains

I If MC is not irreducible it can be decomposed in transient (Tk),
ergodic (Ek), periodic (Pk) and null recurrent (Nk) components

⇒ All these are (communication) class properties

I Limit probabilities for transient states are null

P (Xn = i)→ 0, for all i ∈ Tk

I For arbitrary ergodic component Ek , define conditional limits

πj = lim
n→∞

P
(
Xn = j

∣∣X0 ∈ Ek
)
, for all j ∈ Ek

I Results in pages 8 and 19 are true with this (re)defined πj , where

πj =
∑
i∈Ek

πiPij ,
∑
j∈Ek

πj = 1, for all j ∈ Ek
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Reducible Markov chains (continued)

I Likewise, for arbitrary periodic component Pk (re)define πj as

πj =
∑
i∈Pk

πiPij ,
∑
j∈Pk

πj = 1, for all j ∈ Pk

I Probabilities P
(
Xn = j

∣∣X0 ∈ Pk

)
do not converge (they oscillate)

I A conditional version of the result in page 22 is true

lim
n→∞

T
(n)
i := lim

n→∞

1

n

n∑
m=1

I
{
Xm = i

∣∣X0 ∈ Pk

}
→ πi

I Limit probabilities for null-recurrent states are null

P (Xn = i)→ 0, for all i ∈ Nk
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Reducible Markov chain example

I Transition matrix and state diagram of a reducible MC

P :=


0 0.6 0.2 0 0.2

0.6 0 0 0.2 0.2
0 0 0.3 0.7 0
0 0 0.6 0.4 0
0 0 0 0 1


1

2

3

4

5 0.6

0.20.2

0.6

0.20.2

0.3

0.7

0.4

0.6

1

I States 1 and 2 are transient T = {1, 2}
I States 3 and 4 form an ergodic class E1 = {3, 4}
I State 5 (absorbing) is a separate ergodic class E2 = {5}
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Reducible MC example - Matrix powers

I 5-step and 10-step transition probabilities

P5 =


0 0.08 0.24 0.22 0.46

0.08 0 0.19 0.27 0.46
0 0 0.46 0.54 0
0 0 0.46 0.54 0
0 0 0 0 1

 P10 =


0.00 0 0.23 0.27 0.50

0 0.00 0.23 0.27 0.50
0 0 0.46 0.54 0
0 0 0.46 0.54 0
0 0 0 0 1


I Transition into transient states is vanishing (columns 1 and 2)

⇒ From T = {1, 2} will end up in either E1 = {3, 4} or E2 = {5}

I Transition from 3 and 4 into 3 and 4 only

⇒ If initialized in ergodic class E1 = {3, 4} stays in E1

I Transition from 5 only into 5 (absorbing state)
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Reducible MC example - Matrix decomposition

I Matrix P can be decomposed in blocks

P =


0 0.6 0.2 0 0.2

0.6 0 0 0.2 0.2
0 0 0.3 0.7 0
0 0 0.6 0.4 0
0 0 0 0 1

 =

 PT PT E1 PT E2

0 PE1 0
0 0 PE2



(a) Block PT describes transition between transient states
(b) Blocks PE1 and PE2 describe transitions within ergodic components
(c) Blocks PT E1 and PT E2 describe transitions from T to E1 and E2

I Powers of n can be written as

Pn =

 Pn
T QT E1 QT E2

0 Pn
E1

0
0 0 Pn

E2


I The transient transition block vanishes, limn→∞ Pn

T = 0
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Reducible MC example - Limiting behavior

I As n grows the MC hits an ergodic state almost surely

⇒ Henceforth, MC stays within ergodic component

P
(
Xn+m ∈ Ei

∣∣Xn ∈ Ei
)

= 1, for all m

I For large n suffices to study ergodic components

⇒ Behaves like a MC with transition probabilities PE1

⇒ Or like one with transition probabilities PE2

I We can think of all MCs as ergodic

I Ergodic behavior cannot be inferred a priori (before observing)

I Becomes known a posteriori (after observing sufficiently large time)

Cultural aside: Something is known a priori if its knowledge is independent of experience (MCs

exhibit ergodic behavior). A posteriori knowledge depends on experience (values of the ergodic

limits). They are inherently different forms of knowledge (search for Immanuel Kant).
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Queues in communication systems

Limiting distributions

Ergodicity

Queues in communication networks: Limit probabilities
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Non-concurrent communication queue

I Communication system: Move packets from source to destination

I Between arrival and transmission hold packets in a memory buffer

I Example engineering problem, buffer design:
I Packets arrive at a rate of 0.45 packets per unit of time
I Packets depart at a rate of 0.55 packets per unit of time
I How big should the buffer be to have a drop rate smaller than 10−6?

(i.e., one packet dropped for every million packets handled)

I Model: Time slotted in intervals of duration ∆t. Each time slot n

⇒ A packet arrives with prob. λ, arrival rate is λ/∆t

⇒ A packet is transmitted with prob. µ, departure rate is µ/∆t

I No concurrence: No simultaneous arrival and departure (small ∆t)
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Queue evolution equations (reminder)

I Qn denotes number of packets in queue (backlog) in n-th time slot

I An = nr. of packet arrivals, Dn = nr. of departures (during n-th slot)

I If the queue is empty Qn = 0 then there are no departures

⇒ Queue length at time n + 1 can be written as

Qn+1 = Qn + An, if Qn = 0

I If Qn > 0, departures and arrivals may happen

Qn+1 = Qn + An − Dn, if Qn > 0

I An ∈ {0, 1}, Dn ∈ {0, 1} and either An = 1 or Dn = 1 but not both

⇒ Arrival and departure probabilities are

P (An = 1) = λ, P (Dn = 1) = µ
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Queue evolution probabilities (reminder)

I Future queue lengths depend on current length only

I Probability of queue length increasing

P
(
Qn+1 = i + 1

∣∣Qn = i
)

= P (An = 1) = λ, for all i

I Queue length might decrease only if Qn > 0. Probability is

P
(
Qn+1 = i − 1

∣∣Qn = i
)

= P (Dn = 1) = µ, for all i > 0

I Queue length stays the same if it neither increases nor decreases

P
(
Qn+1 = i

∣∣Qn = i
)

= 1− λ− µ, for all i > 0

P
(
Qn+1 = 0

∣∣Qn = 0
)

= 1− λ

⇒ No departures when Qn = 0 explain second equation
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Queue as a Markov chain (reminder)

I MC with states 0, 1, 2, . . .. Identify states with queue lengths

I Transition probabilities for i 6= 0 are

Pi,i−1 = µ, Pi,i = 1− λ− µ, Pi,i+1 = λ

I For i = 0: P00 = 1− λ and P01 = λ

i i+1i−10

λ

µ µ

λλ

1− λ
λ

µ µ

1− λ− µ 1− λ− µ1− λ− µ

. . . . . .
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Numerical example: Limit probabilities

I Build matrix P truncating at maximum queue length L = 100

⇒ Arrival rate λ = 0.3. Departure rate µ = 0.33

I Find eigenvector of PT associated with eigenvalue 1

⇒ Yields limit probabilities π = limn→∞ p(n) (ergodic MC)
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I Limit probabilities appear linear in logarithmic scale

⇒ Seemingly implying an exponential expression πi ∝ αi (0 < α < 1)
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Limit distribution equations

i i+1i−10

λ

µ µ

λλ

1− λ
λ

µ

1− λ− µ 1− λ− µ1− λ− µ

. . . . . .

I Total probability yields

P (Xn+1 = i) =
i+1∑

j=i−1

P
(
Xn+1 = i

∣∣Xn = j
)

P (Xn = j)

I Limit distribution equations for state 0 (empty queue)

π0 = (1− λ)π0 + µπ1

I For the remaining states i 6= 0

πi = λπi−1 + (1− λ− µ)πi + µπi+1
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Verification of candidate solution

I Substitute candidate solution πi = cαi in equation for π0

cα0 = (1− λ)cα0 + µcα1 ⇒ 1 = (1− λ) + µα

⇒ The above equation holds for α = λ/µ

I Q: Does α = λ/µ verify the remaining equations?

I From the equation for generic πi (divide by cαi−1)

cαi = λcαi−1 + (1− λ− µ)cαi + µcαi+1

µα2 − (λ+ µ)α + λ = 0

⇒ The above quadratic equation is satisfied by α = λ/µ

⇒ And α = 1, which is irrelevant
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Compute normalization constant

I Next, determine c so that probabilities sum to 1 (
∑∞

i=0 πi = 1)

∞∑
i=0

πi =
∞∑
i=0

c(λ/µ)i =
c

1− λ/µ
= 1

⇒ Used geometric sum, need λ/µ < 1 (queue stability condition)

I Solving for c and substituting in πi = cαi yields

πi = (1− λ/µ)

(
λ

µ

)i

I The ratio µ/λ is the queue’s stability margin

⇒ Probability of having fewer queued packets grows with µ/λ
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Queue balance equations

I Rearrange terms in equation for limit probabilities [cf. page 38]

λπ0 = µπ1

(λ+ µ)πi = λπi−1 + µπi+1

I λπ0 is average rate at which the queue leaves state 0
I Likewise (λ+ µ)πi is the rate at which the queue leaves state i
I µπ1 is average rate at which the queue enters state 0
I λπi−1 + µπi+1 is rate at which the queue enters state i

I Limit equations prove validity of queue balance equations

Rate at which leaves = Rate at which enters

i i+1i−10

λ

µ µ

λλ

1− λ
λ

µ

1− λ− µ 1− λ− µ1− λ− µ

. . . . . .
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Concurrent arrival and departures

I Packets may arrive and depart in same time slot (concurrence)

⇒ Queue evolution equations remain the same [cf. page 34]

⇒ But queue probabilities change [cf. page 35]

I Probability of queue length increasing (for all i)

P
(
Qn+1 = i + 1

∣∣Qn = i
)

= P (An = 1) P (Dn = 0) = λ(1− µ)

I Queue length might decrease only if Qn > 0 (for all i > 0)

P
(
Qn+1 = i − 1

∣∣Qn = i
)

= P (An = 0) P (Dn = 1) = (1− λ)µ

I Queue length stays the same if it neither increases nor decreases

P
(
Qn+1 = i

∣∣Qn = i
)

= λµ+ (1− λ)(1− µ) = ν, for all i > 0

P
(
Qn+1 = 0

∣∣Qn = 0
)

= (1− λ) + λµ
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Limit distribution from queue balance equations

I Write limit distribution equations ⇒ Queue balance equations

⇒ Rate at which leaves = Rate at which enters

λ(1− µ)π0 = µ(1− λ)π1(
λ(1− µ) + µ(1− λ)

)
πi = λ(1− µ)πi−1 + µ(1− λ)πi+1

i i+1i−10

λ(1− µ)

µ(1− λ) µ(1− λ)

λ(1− µ)λ(1− µ)

(1− λ) + λµ

λ(1− µ)

µ(1− λ)

ν νν

. . . . . .

I Again, try an exponential solution πi = cαi
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Solving for limit distribution

I Substitute candidate solution in equation for π0

λ(1− µ)c = µ(1− λ)cα ⇒ α =
λ(1− µ)

µ(1− λ)

I Same substitution in equation for generic πi

µ(1− λ)cα2 +
(
λ(1− µ) + µ(1− λ)

)
cα + λ(1− µ)c = 0

⇒ As before is solved for α = λ(1− µ)/µ(1− λ)

I Find constant c to ensure
∑∞

i=0 cα
i = 1 (geometric series). Yields

πi = (1− α)αi =

(
1− λ(1− µ)

µ(1− λ)

)(
λ(1− µ)

µ(1− λ)

)i
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Limited queue size

I Packets dropped if queue backlog exceeds buffer size J

⇒ Many packets → large delays → packets useless upon arrival

⇒ Also preserve memory

i i+1i−10 J

λ(1− µ)

µ(1− λ) µ(1− λ)

λ(1− µ)λ(1− µ)

(1− λ) + λµ

µ(1− λ) µ(1− λ)

λ + (1− µ)(1− λ)

λ(1− µ)

ν νν

. . . . . .

I Should modify equation for state J (Rate leaves = Rate enters)

µ(1− λ)πJ = λ(1− µ)πJ−1

I πi = cαi with α = λ(1−µ)/µ(1−λ) also solves this equation (Yes!)
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Compute limit distribution

I Limit probabilities are not the same because constant c is different

I To compute c , sum a finite geometric series

1 =
J∑

i=0

cαi = c
1− αJ+1

1− α
⇒ c =

1− α
1− αJ+1

I Limit probabilities for the finite queue thus are

πi =
1− α

1− αJ+1
αi ≈ (1− α)αi

⇒ Recall α = λ(1− µ)/µ(1− λ), and ≈ valid for large J

I Large J approximation yields same result as infinite length queue
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Simulations: Process realization

I Arrival rate λ = 0.3. Departure rate µ = 0.33. Resulting α ≈ 0.87

I Maximum queue length J = 100. Initial state Q0 = 0 (queue empty)

Queue lenght as function of time
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Simulations: Average occupancy and limit distribution

I Can estimate average time spent at each queue state

⇒ Should coincide with the limit (stationary) distribution π
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I For i = 60 occupancy probability is πi ≈ 10−5

⇒ Explains inaccurate prediction for large i (rarely visit state i)
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Buffer overflow

I Closing the loop, recall our buffer design problem
I Arrival rate λ = 0.45 and departure rate µ = 0.55
I How big should the buffer be to have a drop rate smaller than 10−6?

(i.e., one packet dropped for every million packets handled)

I Q: What is the probability of buffer overflow (non-concurrent case)?

I A: Packet discarded if queue is in state J and a new packet arrives

P (overflow) = λπJ =
1− α

1− αJ+1
λαJ ≈ (1− α)λαJ

⇒ With λ = 0.45 and µ = 0.55, α ≈ 0.82 ⇒ J ≈ 57

I A final caveat

⇒ Still assuming only 1 packet arrives per time slot

⇒ Lifting this assumption requires continuous-time MCs
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Glossary

I Periodicty

I Aperiodic state

I Positive recurrent state

I Null recurrent state

I Ergodic state

I Limit probabilities

I Stationary distribution

I Ergodic average

I Ensemble average

I Oscillating probabilities

I Reducible Markov chain

I Ergodic component

I Non-concurrent queue

I Queue limit probabilities

I Queue stability condition

I Stability margin

I Balance equations

I Concurrency

I Limited queue size

I Buffer overflow
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